This application claims the priority benefit under 35 U.S.C. § 119 of Japanese Patent Application No. 2015-084231 filed on Apr. 16, 2015, which is hereby incorporated in its entirety by reference.
The presently disclosed subject matter relates to vehicle lighting fixtures, and in particular, to a vehicle lighting fixture using a reflecting surface.
There have been conventionally proposed vehicle lighting fixtures configured to use a reflecting surface, such as those disclosed in Japanese Patent Application Laid-Open No. 2012-119277.
As illustrated in
In the vehicle lighting fixture 210, the reflecting surface 211d is configured to include not only the plurality of individual total reflecting surfaces 211d1 but also a plurality of connecting surfaces 211d2, so that the cross section of the reflecting surface 211d shows a sawtooth shape. Here, the plurality of connecting surfaces 211d2 have no optical function but are used only for configuring the shape of the lens member 211. Therefore, the plurality of connecting surfaces 211d2 having no optical function can be visually observed through the light exiting surface 211c, thereby deteriorating the aesthetic appearance. Furthermore, when the light source 212 (213) is turned on to emit light, the light therefrom cannot be incident on the connecting surfaces 211d2. As a result, there arises a problem in that the connecting surfaces 211d2 may become not-shining portions.
The presently disclosed subject matter was devised in view of these and other problems and features in association with the conventional art. According to an aspect of the presently disclosed subject matter, a vehicle lighting fixture using a reflecting surface can be configured such that connecting surfaces cannot be visually recognized while having an excellent aesthetic appearance without not-shining portions when a light source is lit.
According to another aspect of the presently disclosed subject matter, a vehicle lighting fixture can include a paraboloidal reflecting surface, and a light source configured to emit light to be reflected by the reflecting surface, the reflecting surface including a plurality of projections and recesses to show a wavy vertical cross section and a wavy horizontal cross section.
With this configuration, the vehicle lighting fixture can be visually observed without any connecting surface observed and have an excellent aesthetic appearance without not-shining portions when the light source is lit.
This is because the reflecting face can be configured by the plurality of projections and recesses as a single reflecting surface to ensure the tangential continuity.
According to another aspect of the presently disclosed subject matter, the vehicle lighting fixture of the aforementioned aspect can be configured such that the plurality of recesses can each have a lowermost point which is contained in a first paraboloidal surface having a focal point at or near the light source; the plurality of projections can each have an uppermost point appearing in the vertical cross section thereof so that the uppermost points are contained in a second paraboloidal surface having a focal point at or near the light source and a focal distance shorter than that of the first paraboloidal surface; and the plurality of projections can each have an uppermost point appearing in the horizontal cross section thereof so that the uppermost points are contained in a third paraboloidal surface having a focal point at or near the light source and a focal distance shorter than that of the first paraboloidal surface.
With this configuration, when the focal distance of the second paraboloidal surface is appropriately adjusted, the vertical length of a light distribution to be formed can be controlled. Furthermore, when the focal distance of the third paraboloidal surface is appropriately adjusted, the horizontal length of the light distribution to be formed can be controlled.
In the vehicle lighting fixture with the above-described configuration, the focal distance of the third paraboloidal surface can be set to be shorter than the focal distance of the second paraboloidal surface, so that the light distribution pattern can be formed to have a horizontal length longer than a vertical length thereof for use as a DRL light distribution pattern.
According to still another aspect of the presently disclosed subject matter, the vehicle lighting fixture of any of the aforementioned aspects can be configured to include a lens member that can include an incident surface on which the light from the light source can be incident to enter the lens member, the reflecting surface, and a light exiting surface through which the light having been reflected by the reflecting surface can exit. The reflecting surface can be formed from metal deposited on part of the lens member.
With this configuration, the vehicle lighting fixture with such a lens member including the reflecting surface can be visually observed without any connecting surface observed through the light exiting surface and have an excellent aesthetic appearance without not-shining portions when the light source is lit.
These and other characteristics, features, and advantages of the presently disclosed subject matter will become clear from the following description with reference to the accompanying drawings, wherein:
A description will now be made below to vehicle lights of the presently disclosed subject matter with reference to the accompanying drawings in accordance with exemplary embodiments.
A vehicle lighting fixture 10 of the present exemplary embodiment can be constituted by a vehicle lighting fixture 10L, as illustrated in
The vehicle lighting fixture 10L can include a high-beam lighting unit 12, a low-beam lighting unit 14, a DRL lighting unit 16, and the like.
The high-beam lighting unit 12 can be configured to form a high-beam light distribution pattern and may be a known lighting unit. The low-beam lighting unit 14 can be configured to form a low-beam light distribution pattern and may be a known lighting unit.
The DRL lighting unit 16 can be configured to form a DRL light distribution pattern PDRL as shown in
The five DRL lighting units 16 can have the same structure including a lens member 20 except that the lens members 20 can each have a different light exiting surface 20c in its shape. A description will now be given of one DRL lighting unit 16 on the left end side in
As illustrated in
The light source 18 can be held by a not-illustrated holding member to be secured while maintaining a posture so that the light source 18 can emit light upward while the light source 18 can be located at or near the focal point F20b of the reflecting surface 20b of the lens member 20. The light source 18 can be configured as a white light source utilizing a combination of an LED element (LED chip) mounted on a substrate K and a wavelength converting member to emit light by the excitation with light from the LED element. The light source 18 can have alight emission surface with 250 lm, for example, and the light emission surface can have a rectangular shape with a width in a front-rear direction of 1 mm and a width in a vehicle width direction of 1 mm, for example. The light source 18 (light emission surface) can be disposed horizontally or inclined with respect to a horizontal plane. The light source 18 is not limited to the aforementioned white light source composed of the combination of the LED element and the wavelength converting member, but may be any of an incandescent bulb, a halogen bulb, an bulb, and a white light source composed of a combination of an LD element and a wavelength converting member.
The lens member 20 can be configured to include an incident surface 20a, a reflecting surface 20b, a light exiting surface 20c, and a top surface 20d. The lens member 20 can be formed by molding a transparent material such as glass, an acrylic resin, a polycarbonate resin, or the like.
The incident surface 20a can be configured to receive light from the light source 18 to allow the light to enter the lens member 20, and can be a planar surface in parallel with the light emission surface of the light source 18, although it may be a curved surface in accordance with a desired specification of the lens member 20.
As illustrated in
A description will now be given of production procedures of the reflecting surface 20b having the plurality of projections and recesses.
Note that the following procedures may be performed using a predetermined simulation software.
First, as shown in
Next, as shown in
The distance L1 between the planes PA1 to PAn, may preferably be 1/10 to 10 times the size of the light emission surface (portion) of the light source 18 although it depends on the size of the reflecting surface 20b. For example, when the light source 18 is a 1-mm square, L1 is preferably 0.1 mm to 10 mm. In the illustrated exemplary embodiment, the distance L1 between the planes PA1 to PAn is 1 mm. If the distance L1 between the planes PA1 to PAn is set to be equal to the size of the light emission surface of the light source 18 (1 mm×1 mm), the image of the light emission surface of the light source 18 can be reflected in the entire reflecting surface 20b when the light source 18 is not turned on, and when the light source 18 is turned on, the entire reflecting surface 20b can serve as a light emission portion.
If the distance L1 between the planes PA1 to PAn exceeds 10 times the size of the light emission surface of the light source 18, the light source 18 and its surrounding area are reflected in the reflecting surface 20b when the light source is not turned on, and when the light source 18 is turned on, the surrounding area become darkened and the light source 18 can be recognized as a point light source. On the other hand, if the distance L1 between the planes PA1 to PAn is made less than 1/10 times the size of the light emission surface of the light source 18, the technical difficulty in molding may be increased, resulting in deterioration of the surface accuracy during molding (for example, fine irregularities of a metal mold cannot be accurately transferred to a molded article).
Next, as shown in
Next, these planes PA0 to PAn are vertically shifted by, for example, 0.5 mm to set planes PB0 to PBn. Then, lines of intersection LB0 to LBn formed between the second paraboloidal surface B and each of these planes PB0 to PBn are set.
Then, as shown in
In the same manner, the reflecting surface 20b having the plurality of projections and recesses can be formed to have a specific horizontal cross sectional shape by the following production procedures.
Specifically, planes PC0 to PCn (not shown) are set to be perpendicular to the planes PA0 to PAn. Then, lines of intersection LC0 to LCn (not shown) formed between the wavy surface C and each of these planes PC0 to PCn are set. Here, distances between the planes PC0 to PCn can be the same (for example, 1 mm), but may be different from each other. Here, the plane PC0 can be a plane containing the rotation axis AXA of the first paraboloidal surface A.
Next, as shown in
Next, these planes PC0 to PCn are horizontally shifted in a direction toward the outer side of the vehicle body and perpendicular to the reference axis AXA (in the illustrated exemplary embodiment, leftward) by, for example, 0.4 mm to set planes PD0 to PDn (not shown). Then, lines of intersection LD0 to LDn (not shown) formed between the third paraboloidal surface D and each of these planes PD0 to PDn are set. Note that the DRL lighting unit 16 disposed on the left front portion of the vehicle body is configured such that the horizontally shifting direction of the planes PC0 to PCn is leftward while the unit disposed on the right front portion of the vehicle body is configured such that the horizontally shifting direction thereof is rightward due to the bilateral symmetry.
Then, each of the lines of intersection LC0 to LCn and adjacent one of the lines of intersection LD0 to LDn are connected to each other sequentially so as to ensure the tangential continuity. Specifically, each of the lines of intersection LC0 to LCn and adjacent one of the lines of intersection LD0 to LDn are connected to each other sequentially without any step to form a smooth continuous curved surface.
In this manner, the reflecting surface 20b including the plurality of projections and recesses can be produced.
Thus, the reflecting surface 20b including the plurality of projections and recesses can have a wavy vertical cross section as illustrated in
The light emitted from the light source 18 can enter the lens member 20 through the incident surface 20a, and then be diffused and reflected in the vertical direction by the action of the vertical cross sectional shape (wavy form) of the reflecting surface 20b having the plurality of projections and recesses, as illustrated in
The light exiting surface 20c can allow the light reflected by the reflecting surface 20b to exit the lens member 20 therethrough. The light exiting surface 20c can also serve as a designed surface. The light exiting surface 20c can be designed in association with the design of a vehicle body, and in the illustrated exemplary embodiment, the light exiting surface 20c can be a flat plane inclined forward (the upper end portion thereof is positioned forward of the lower end portion) in the vertical cross section, as illustrated in
In the illustrated exemplary embodiment, the reflecting surface 20b can be configured by a flat plane inclined by 65 degrees in a plane containing Y axis and Z axis while inclined by 36 degrees in a plane containing X axis and Z axis. The vertical and horizontal inclination angles of the light exiting surface 20c can be appropriately set in accordance with the vehicle body design and the like.
When the light exiting surface 20c is configured by a flat plane inclined such that the center portion thereof is positioned forward of the sideward portion thereof, the DRL light distribution pattern PDRL formed thereby can be a bilaterally asymmetric shape. This can be adjusted by controlling the shift amount of the planes PC0 to PCn in the horizontal direction when setting the planes PD0 to PDn to adjust the shape of the DRL light distribution pattern PDRL to a bilaterally symmetric shape. In view of this, in the illustrated exemplary embodiment, the planes PC0 to PCn are shifted by 0.4 mm in the horizontal direction when setting the planes PD0 to PDn so that the lines of intersection LD0 to LDn are formed between the third paraboloidal surface D and each of these planes PD0 to PDn.
Examples of the size of the lens member 20 may include a long width W1 of 50 mm and a short width W2 of 25 mm in
A description will now be given of the DRL light distribution pattern PDRL formed.
As illustrated in
In some other cases, depending on a layout, the reflecting surface 20b cannot be formed in part and the light rays cannot be projected through the entire light exiting surface 20c. In this case, use of multiple reflections can achieve the entire emission.
In these cases, since the vertical cross sectional shape of the reflecting surface 20b including the plurality of projections and recesses does not have a simple paraboloidal shape but the wavy shape, the light rays travelling through the lens member 20 can be diffused and reflected by reflecting surface 20 in the vertical direction. With this configuration, the DRL light distribution pattern PDRL can be formed to be diffused in the vertical direction as illustrated in
When the F value (focal distance) of the second paraboloidal surface B is appropriately adjusted, the vertical length of the DRL light distribution PDRL can be controlled. For example, when the F value (focal distance) of the second paraboloidal surface B is increased to be close to that of the first paraboloidal surface A, the vertical length of the DRL light distribution PDRL can be shortened. Conversely, when the F value (focal distance) of the second paraboloidal surface B is decreased, the vertical length of the DRL light distribution PDRL can be elongated.
Similarly, since the horizontal cross sectional shape of the reflecting surface 20b including the plurality of projections and recesses does not have a simple paraboloidal shape but the wavy shape, the light rays travelling through the lens member 20 can be diffused and reflected by the reflecting surface 20 in the horizontal direction. With this configuration, the DRL light distribution pattern PDRL can be formed to be diffused in the horizontal direction as illustrated in
When the F value (focal distance) of the third paraboloidal surface D is appropriately adjusted, the horizontal length of the DRL light distribution PDRL can be controlled. For example, when the F value (focal distance) of the third paraboloidal surface D is increased to be close to that of the first paraboloidal surface A, the horizontal length of the DRL light distribution PDRL can be shortened. Conversely, when the F value (focal distance) of the third paraboloidal surface D is decreased, the horizontal length of the DRL light distribution PDRL, can be elongated.
In the illustrated exemplary embodiment, in order to form the DRL light distribution PDRL with horizontal length longer than a vertical length, the F value (for example, 16.96 mm) of the third paraboloidal surface D is set to be smaller than the F value (for example, 16.98 mm) of the second paraboloidal surface B.
As described above, the illustrated exemplary embodiment can provide the vehicle lighting fixture 10 using the lens member 20 having the reflecting surface 20b so that the vehicle lighting fixture 10 can be visually observed without any connecting surface observed and have an excellent aesthetic appearance without not-shining portions when the light source 18 is lit.
This is because the reflecting surface 20b can include the plurality of projections and recesses to show a wavy vertical cross section and a wavy horizontal cross section. Specifically, this is because the reflecting face 20b can be configured by the plurality of projections and recesses as a single reflecting surface to ensure the tangential continuity.
Furthermore, the conventional vehicle lighting fixture deteriorates the aesthetic appearance thereof due to the generation of bright lines and darkened areas by an optical surface (reflecting surface 211d) not to ensure the tangential continuity. In contrast thereto, the vehicle lighting fixture made in accordance with the principles of the presently disclosed subject matter can include an optical surface (reflecting surface 20b) configured to ensure the tangential continuity, resulting in excellent aesthetic appearance.
The conventional vehicle lighting fixture deteriorates the aesthetic appearance thereof due to the observation of the edge of the optical surface (reflecting surface 211d) that does not ensure the tangential continuity because the optical surface (reflecting surface 211d) is reflected in the designed surface (light exiting surface 211c) when the light source is not turned on. In contrast thereto, the vehicle lighting fixture made in accordance with the principles of the presently disclosed subject matter can have an excellent design due to the configuration of the optical surface (reflecting surface 20b) as a single reflecting surface that ensures the tangential continuity.
In addition, the conventional vehicle lighting fixture must have the light source (light source 212) to be disposed in a sideward position in the lengthwise direction of the designed surface (light exiting surface 211c). On the contrary, the vehicle lighting fixture made in accordance with the principles of the presently disclosed subject matter can improve the degree of freedom for the layout of the light source because the light source 18 may not be positioned in the sideward position in the length wise direction of the designed surface (light exiting surface 20c).
In addition, the conventional vehicle lighting fixture is difficult to achieve a continuous elongated light emission portion by a plurality of lens members (lens members 211) due to the light source (light source 212) to be disposed in the sideward position in the lengthwise direction of the designed surface (light exiting surface 211c). On the contrary, the vehicle lighting fixture made in accordance with the principles of the presently disclosed subject matter can achieve a continuous elongated light emission portion by a plurality of lens members (lens members 20) because the light source 18 may not be positioned in the sideward position in the length wise direction of the designed surface (light exiting surface 20c).
The conventional vehicle lighting fixture is configured such that since the light from the light source is condensed by the light incident portion and then enter the lens member, the light emission range extends in the vertical direction with respect to the light source (light emission surface) but does not extend in the horizontal direction, resulting in generation of darkened area on both sides of the light emission range extending in the vertical direction with respect to the light source (light emission surface). On the contrary, the vehicle lighting fixture made in accordance with the principles of the presently disclosed subject matter is configured not to converge the light at the incident surface 20a hardly converge the light). This means that the light emitted from the light source 18 can extend not only in the vertical direction but also in the horizontal direction with respect to the light source (light emission surface), which can advantageously be used to irradiate a wider area.
Furthermore, the vehicle lighting fixture made in accordance with the principles of the presently disclosed subject matter can be configured such that, when the F value (focal distance) of the second paraboloidal surface B is appropriately adjusted, the vertical length of the DRL light distribution PDRL to be formed can be controlled. Furthermore, when the F value (focal distance) of the third paraboloidal surface D is appropriately adjusted, the horizontal length of the DRL light distribution PDRL to be formed can be controlled.
Furthermore, the vehicle lighting fixture made in accordance with the principles of the presently disclosed subject matter can be configured such that a plurality of DRL lighting units 16 including the lens member 20 can be arranged in line without any gap between the adjacent lens members 20, which has been used as a space for a light source in the conventional vehicle lighting fixture. Thus, a single horizontally elongated light emitting portion configured by the light exiting surfaces 20C of the plurality of lens members 20.
In the exemplary embodiment, the description has been given of the case where the reflecting surface 20b including the plurality of projections and recesses is formed in the lens member 20 in part, but it is not limitative. In a modified example of the exemplary embodiment, a reflector can be used in place of the lens member 20 to serve as the reflecting surface 20b. In this case, there is no need to form the incident surface 20a and the light exiting surface 20C. When the reflector can serve as the reflecting surface 20b including the plurality of projections and recesses in place of the lens member 20, the entire reflecting surface 20b can project the light.
In the exemplary embodiment, the description has been given of the case where the vehicle lighting fixture can include the DRL lighting unit 16 configured to form the DRL light distribution pattern PDRL as illustrated in
Furthermore, the various numerical values shown in the exemplary embodiment(s) and the modified example(s) are illustrative and various suitable numerical values can be adopted as long as the advantageous effects of the presently disclosed subject matter can be exerted.
It will be apparent to those skilled in the art that various modifications and variations can be made in the presently disclosed subject matter without departing from the spirit or scope of the presently disclosed subject matter. Thus, it is intended that the presently disclosed subject matter cover the modifications and variations of the presently disclosed subject matter provided they come within the scope of the appended claims and their equivalents. All related art references described above are hereby incorporated in their entirety by reference.
Number | Date | Country | Kind |
---|---|---|---|
2015-084231 | Apr 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6280064 | Sato | Aug 2001 | B1 |
8425090 | Foo | Apr 2013 | B2 |
20010003506 | Natsume | Jun 2001 | A1 |
20100321949 | Ohno | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
2012-119277 | Jun 2012 | JP |
Number | Date | Country | |
---|---|---|---|
20160305627 A1 | Oct 2016 | US |