The presently disclosed subject matter relates to a vehicle lighting unit, and in particular to a vehicle lighting unit including a light guide and an LED light source in combination.
Conventionally, there have been various lighting units proposed including a light guide and an LED light source in the technical field of vehicular lighting units (for example, see Japanese Patent No. 4339028 or corresponding U.S. Pat. No. 7,070,312).
The light guide 91 can be configured such that light emitted from the LED light source 92 can enter the inside of the light guide 91, be reflected off the front surface 91a and reflected off the rear surface 91b, thereby being projected forward from the front surface 91a.
The lighting unit 90 has the front surface 91a of the light guide 91 being a plane surface and the rear surface 91b opposite thereto being a continuous surface (for example, revolved paraboloid), and accordingly, the thickness between the front and rear surfaces 91a and 91b becomes large. This may increase the molding time for the light guide 91 and the amount of a transparent resin material, thereby resulting in cost increase. In general, the molding time for a molded article may be proportional to the square of the thickness of the molded article.
In addition, when the thickness is large, shrinkage or the like giving adverse effects on the accuracy of the light guide 91 (by extension, light distribution) may be likely to occur. There may be another problem due the large thickness (namely, the optical path length in the light guide 91 may be longer) wherein the light entering the light guide may be likely to be affected by the absorption of the transparent resin material or haze (volume scattering). In order to reduce such adverse effects like the absorption of the transparent resin material or haze (volume scattering), it has been a consideration to shorten the optical path length in the light guide 91. However, this has been achieved by miniaturization of the entire size of the light guide 91, resulting in decrease of the light utilization efficiency and the like.
Further, the lighting unit 90 as described above may have a problem of lower degree of freedom with regard to the formation of light distribution because the rear surface 91b of the light guide 91 is a continuous surface (revolved paraboloid, for example). In order to cope with this problem, a plurality of lighting units 90 each forming different light distribution are combined to synthesize a desired light distribution pattern as disclosed in the above patent literature.
The presently disclosed subject matter was devised in view of these and other problems and features and in association with the conventional art. According to an aspect of the presently disclosed subject matter, a vehicle lighting unit can include a light guide thinner than the conventional one.
According to another aspect of the presently disclosed subject matter, a vehicle lighting unit can improve the degree of freedom to form light distribution.
According to still another aspect of the presently disclosed subject matter, a vehicle lighting unit can include: a solid light guide having a first surface, a second surface opposite to the first surface and including a reflection portion, and a light incident surface through which light enters the light guide, the first surface including an internal reflection portion and a light exiting portion that are formed as a single continued surface, the light guide configured such that light entering via the light incident surface reaches and is internally reflected off the internal reflection portion of the first surface, then internally reflected off the reflection portion of the second surface, and exits through the light exiting portion of the first surface; and an LED light source disposed to face forward and obliquely downward with respect to the optical axis and towards the light incident surface, is internally reflected off the reflection portion of the first surface, is internally reflected off the reflection portion of the second surface, and exits through the light exiting portion of the first surface, wherein the light is emitted from the LED light source within a predetermined range and enters the light guide through the light incident surface, is internally reflected off the internal reflection portion of the first surface, is internally reflected off the reflection portion of the second surface, and exits through the light exiting portion of the first surface within a predetermined range, and light entering the light guide at an uppermost position among the light entering the light guide exits through the light exiting portion of the first surface above a reference point where light exiting the light guide at a lowermost position is present.
In the vehicle lighting unit with the above configuration, the reflection portion of the second surface can include a plurality of divided reflection regions. The reflection regions can include at least one reflection region disposed at a reference position and at least one reflection region disposed at a position closer to the light exiting portion of the first surface than the reference position.
With the above configuration, since the certain reflection region can be disposed (shifted) at the position closer to the light exiting portion of the first surface than the reference position, the thickness of the light guide can be thinned by that amount corresponding to the shift.
Further, since the thinning of the thickness of the light guide can be achieved with ease, the molding time for the light guide and the amount of a transparent resin material used for the light guide can be reduced, thereby suppressing cost.
In addition, since the thinning of the thickness of the light guide can be achieved with ease, the shrinkage or the like that may adversely affect the accuracy of the light guide (light distribution by extension) can be prevented from occurring.
Furthermore, since the thinning of the thickness of the light guide can be achieved with ease, i.e., the optical path length in the light guide can be shortened, the adverse effects due to the absorption of the transparent resin material or haze (volume scattering) can be suppressed.
Accordingly, with the above configuration, a vehicle lighting unit with a thinner light guide as compared to the conventional ones can be provided.
Further, since the certain reflection region(s) out of the plurality of divided reflection regions can be shifted closer to the light exiting portion of the first surface, the vehicle lighting unit with a novel appearance wherein a step can be observed between the reflection regions can be provided.
In the vehicle lighting unit with any of the above configurations, the reflection portion of the second surface can be divided into the plurality of reflection regions by at least one horizontal plane.
If the certain reflection region out of the plurality of reflection regions divided by the at least one horizontal plane is disposed at a position shifted closer to the light exiting portion of the first surface, the light guide can be thinned by that amount (corresponding to the shift amount).
In the vehicle lighting unit with any of the above configurations, the reflection portion of the second surface can be divided into the plurality of reflection regions by at least one vertical plane.
If the certain reflection region out of the plurality of reflection regions divided by the at least one vertical plane is disposed at a position shifted closer to the light exiting portion of the first surface, the light guide can be thinned by that amount (corresponding to the shift amount).
In the vehicle lighting unit with any of the above configurations, the reflection portion of the second surface can be divided into the plurality of reflection regions by at least two vertical planes, and the reflection regions between the two vertical planes can be disposed at positions shifted closer to the light exiting portion of the first surface than the adjacent reflection regions on both sides.
If the certain reflection region out of the plurality of reflection regions divided by the at least two vertical planes and positioned between the at least two vertical planes is disposed at a position shifted closer to the light exiting portion of the first surface, the light guide can be thinned by that amount (corresponding to the shift amount).
In the vehicle lighting unit with any of the above configurations, the plurality of reflection regions can be disposed at a position shifted closer to the light exiting portion of the first surface as the reflection region is closer to the light incident surface.
Since the reflection region can be disposed at a position shifted closer to the light exiting portion of the first surface as the reflection region is closer to the light incident surface, the light internally reflected can be prevented from entering a step appearing between the adjacent reflection regions.
In the vehicle lighting unit with any of the above configurations, the plurality of reflection regions each can form a light distribution pattern part constituting a desired light distribution pattern formed by the light projected through the light exiting portion of the first surface.
With this configuration, when compared with a conventional case in which the reflection surface is a continuous surface (revolved paraboloid), the reflection surface is divided into the plurality of reflection regions each capable of forming a particular light distribution pattern part. This can give a higher degree of freedom for forming the light distribution for the vehicle lighting unit.
In the vehicle lighting unit with any of the above configurations, the light internally reflected off the plurality of reflection regions of the second surface and projected through the light exiting portion of the first surface can be configured to be not parallel with each other and with the optical axis in part. In this case, the directions of the light projected through the light exiting portion of the first surface can be spread within a horizontal plane or vertical plane.
This configuration can form a wider or narrower light distribution pattern as desired to give a higher degree of freedom for forming the desired light distribution patterns for the vehicle lighting unit.
In the vehicle lighting unit with any of the above configurations, the reflection portion of the second surface can include at least a first reflection portion and a second reflection portion that are vertically adjacent to each other. The first reflection portion of the reflection portion of the second surface is capable of reflecting light that is projected through the light exiting portion of the first surface at a position above the reference point where the light exiting the light guide at the lowermost position is internally reflected off the internal reflection portion of the first surface, and the second reflection portion of the reflection portion of the second surface is capable of reflecting light that is projected through the light exiting portion of the first surface at a position below the reference point where the light exiting the light guide at the lowermost position is internally reflected off the internal reflection portion of the first surface, so that the light reflected off the first reflection portion and the light reflected off the second reflection portion can illuminate different areas.
According to an aspect of the presently disclosed subject matter, there can be provided a vehicle lighting unit that includes a light guide thinner than the conventional one. In addition, there can be provided a vehicle lighting unit that improves the degree of freedom for forming light distribution.
These and other characteristics, features, and advantages of the presently disclosed subject matter will become clear from the following description with reference to the accompanying drawings, wherein:
A description will now be made below to vehicle lighting units of the presently disclosed subject matter with reference to the accompanying drawings in accordance with exemplary embodiments.
A vehicle lighting unit 1 of the present exemplary embodiment can constitute a vehicle headlamp to be installed on the right and left sides of the vehicle front body.
As shown in these drawings, the vehicle lighting unit 1 can include a light source 2 and a light guide 3 so as to project light along an optical axis Ax (extending in the front to rear direction of a vehicle body) forward.
The light source 2 can be a white LED light source including a blue LED chip and a phosphor in combination, for example. The light source 2 can be disposed such that the light source 2 can emit light in a direction inclined with respect to the optical axis Ax. Specifically, the light source 2 (light emission surface 21) can be directed along and evenly about a center emission axis forward and obliquely downward such that the angle θ formed between the center emission axis of the light emission direction of the light source and the optical axis Ax in the vertical cross-section can be 45 degrees±10 degrees.
The light guide 3 can be a light-transmitting member disposed forward and obliquely downward with respect to the light source 2. The light guide 3 can be configured to receive light from the light source 2 to project the light having become parallel to the optical axis Ax as a result of light guiding.
The light guide 3 can have a light incident surface 31 at its upper rear portion, the light incident surface 31 capable of receiving light therethrough from the light source 2. The light incident surface 31 can be opposite to the light emission surface 21 of the light source 2 with a certain gap and parallel to the light emission surface 21, namely, be inclined by an angle of 45 degrees±10 degrees with respect to the optical axis Ax in the vertical cross-section as shown in the drawing.
The light guide 3 can further have a light exiting surface 34 on its front surface 3a (being a first surface (3a) including an internal reflection portion (32) and a light exiting portion (34)). The light exiting surface 34 can be a plane extending along the vertical and horizontal directions. The light exiting surface 34 can serve as a first reflection surface 32 (inner surface) for internally reflecting the light entering through the light incident surface 31 rearward.
The light guide 3 can further have a second reflection surface 33 on its rear surface 3b (being a second surface (3b) including a second reflection portion (33)). The second reflection surface 33 can be a curved surface toward the lower end of the front surface 3a and be configured to internally reflect the light having internally reflected by the first reflection surface 32 toward the light exiting surface 34 while converting it to parallel light along and about the optical axis Ax.
Accordingly, the light guide 3 can be a solid light guide lens including the light incident surface 31 for receiving light from the light source 2, the light exiting surface 34 serving also as the first reflection surface 32 for reflecting the light rearward, and the second reflection surface opposite to the light exiting surface 34 while being inclined with respect to the light exiting surface 34. The light entering the light guide 3 through the light incident surface 31 can be internally reflected off the first reflection surface 32 at the light exiting surface 34 rearward and can travel to the second reflection surface 33, and then can be internally reflected off the second reflection surface 34 to be parallel to each other, and finally can exit through the light exiting surface 34. The light guide 3 can be formed by injection molding a transparent resin material such as an acrylic resin, a polycarbonate, a cycloolefine polymer, and the like.
Here, a description will be given of how to determine the rear surface 3b or the second reflection surface 33 of the light guide 3 while describing the vertical cross sectional shape.
First, as shown in
Next, as shown in
Then, as shown in
Next, the inclined angle at the next reflection point, that is positioned on the straight line as determined by the inclined angle at the reflection point R and crossing the second top traced light ray, can be determined so that the second top traced light ray can be totally reflected at the point forward in parallel to the optical axis Ax.
In the same manner, as shown in
In this manner, the rear surface 3b in the vertical cross-sectional shape can be determined with respect to the front-to-rear direction. Note that the light guide 3 of the present exemplary embodiment can have the rear surface 3b extending in the horizontal direction, and accordingly, any vertical cross-section along the front-to-rear direction can satisfy the same light guiding conditions if the light rays as shown in
In the vehicle lighting unit 1 with the above configuration, as illustrated in
As a result, the thickness variation of the light guide 3 can be smaller than in the conventional ones, thereby improving the molding accuracy of the light guide 3. By extension, the molding cost can be reduced.
The light that has entered the light guide 3 can be internally reflected off the first reflection surface 32 rearward, and again be internally reflected off the second reflection surface 33 forward while becoming parallel to the optical axis Ax, and then be projected through the light exiting surface 34 of the light guide 3. Namely, the light guide 3 can internally reflect the light twice in the front or rear direction before exiting through the light exiting surface 34. The conventional light guide can internally reflect light once. Accordingly, the light guide 3 can be configured with compact dimension in the front-to-rear direction.
Further, since the light incident surface 31 of the light guide 3 can face towards the light source 2 with a certain gap therebetween, the effect of the heat generated from the light source 2 to the light guide 3 can be reduced when compared with the conventional case wherein the light source is in contact with the light guide.
<Modification 1>
Next, a description will be given of a modification 1 of the present exemplary embodiment. Note that the same as or similar components to the above exemplary embodiment are denoted by the same reference numerals, and a redundant description therefor will be omitted here.
As shown in the drawings, the vehicle lighting unit 1A can include a light guide 3A in place of the light guide 3 of the above exemplary embodiment.
The light guide 3A can have a curved front surface 3c curved in the vertical direction and horizontal direction, rather than the flat front surface 3a. In response to the curved front surface 3c, the light guide 3A should have a rear surface 3d differently curved from the rear surface 3b of the above exemplary embodiment.
Here, a description will be given of how to determine the rear surface 3d or the second reflection surface 33 of the light guide 3A while describing the vertical cross sectional shape.
First, as shown in
Then, as shown in
Next, as shown in
All the inclined angles and the crossing points (reflection points) of light rays can be sequentially determined, and these points can be connected sequentially from the light incident surface 31 to the lower end of the front surface 3c by a continuous curve or a spline curve.
In this manner, the rear surface 3d in the vertical cross-sectional shape can be determined with respect to the front-to-rear direction.
Note that if the curvature of the front surface 3c is excessively large and, as shown in
The vehicle lighting unit 1A with the above configuration can provide the same advantageous effects as those of the vehicle lighting units 1 of the above exemplary embodiment.
<Modification 2>
Next, a description will be given of a modification 2 of the present exemplary embodiment.
The vehicle lighting unit 1B of the modification 2 can have the same configuration as that of the above exemplary embodiment, except that the second reflection surface 33 of the light guide 3B can include a plurality of reflection regions a1 to a3, b1 to b3, and c1 to c3 divided by two horizontal planes and two vertical planes parallel to the optical axis Ax. Note that the number of the planes for dividing the surface is not limited to two, but one or three or more planes (vertical and/or horizontal planes) can be employed.
The plurality of reflection regions a1 to a3, b1 to b3, and c1 to c3 can be configured such that the reflection region can be disposed closer to the light exiting surface 34 as the reflection region is closer to the light incident surface 31. For example, as shown in
In the modification 2, the reflection regions a2, b2, and c2 positioned between the two vertical planes can be disposed at respective positions shifted closer to the light exiting surface 34 than the adjacent reflection regions a1 to c1 and a3 to c3. For example, as shown in
As shown in these drawings, the maximum inscribed circle C1 in
As shown, the modification 2 can be configured such that the reflection region among the plurality of divide reflection regions a1 to a3, b1 to b3, and c1 to c3 can be disposed at a position shifted closer to the light exiting surface 34 with reference to the reference position as the reflection region is closer to the light incident surface 31. Further, the reflection regions a2, b2, and c2 between the two vertical planes can be disposed at respective positions shifted closer to the light exiting surface 34. In this manner, the thickness of the light guide 3 can be thinned more. Accordingly, the molding time for the light guide 3B can be optimized.
Further, since the thinning of the thickness of the light guide 3B can be achieved in the modification 2, the molding time for the light guide 3B and the amount of a transparent resin material used for the light guide 3B can be reduced, thereby suppressing cost.
In addition, since the thinning of the thickness of the light guide 3B can be achieved with ease in the modification 2, the shrinkage or the like that may adversely affect the accuracy of the light guide 3B (light distribution by extension) can be prevented from occurring. This can improve the accuracy of the light guide 3B, and also light distribution by extension, thereby suppressing the generation of unintended unnecessary light.
Further, in the modification 2 as shown in
The attenuation of light can be represented by the following formula:
I=I010−βx
wherein β is an absorbance, x is a distance that the light passes through a medium, I0 is an intensity of incident light, and I is an intensity of exiting light.
As described above, when compared with the conventional unit, the modification 2 can provide the vehicle lighting unit 1B with a thinner light guide 3B.
Since the reflection region among the reflection regions a1 to a3, b1 to b3, and c1 to c3 can be disposed at a position shifted closer to the light exiting surface 34 as the reflection region is closer to light incident surface 31, the steps d1 to d4 or the like can appear between the adjacent reflection regions as shown in
Since the reflection region among the reflection regions a1 to a3, b1 to b3, and c1 to c3 can be disposed at a position shifted closer to the light exiting surface 34 as the reflection region is closer to light incident surface 31, the light internally reflected off the light exiting surface 34 can be prevented from entering the step dl or the like appearing between the adjacent reflection regions.
In the vehicle lighting unit, the plurality of reflection regions a1 to a3, b1 to b3, and c1 to c3 each can form a light distribution pattern part A1 to A3, B1 to B3, or C1 to C3 (see
With this configuration, when compared with the conventional case in which the reflection surface is a continuous surface (revolved paraboloid), the second reflection surface 33 can be divided into the plurality of reflection regions a1 to a3, b1 to b3, and c1 to c3 each capable of forming a particular light distribution pattern part A1 to A3, B1 to B3, or C1 to C3 as shown in
In the modification 2, the vehicle lighting unit 1B includes the single light guide 3B, but the presently disclosed subject matter is not limited to this mode. For example, as shown in
<Modification 3>
Next, a description will be given of a modification 3 of the present exemplary embodiment.
The vehicle lighting unit 1D of the modification 3 can be configured in the same manner as in the modification 2, except that the light incident surface 31 of the light guide 3C can receive the light and the light source 2 can be disposed to face to the light incident surface 31 so that the light can be internally reflected off a reflection surface 33D corresponding to the second reflection surface 33 and exit through the light exiting surface 34, namely, except that the unit 1D does not include the first reflection surface 32 and the internal reflection is performed once within the light guide 3C by the reflection surface 33D.
Specifically, the light guide 3C can be a solid light guiding lens including the light incident surface 31, the light exiting surface 34, and the reflection surface 33D opposed to the light exiting surface 34 and inclined thereto, so that the light entering through the light incident surface 31 can be internally reflected off the reflection surface 33D and then exit through the light exiting surface 34.
The reflection surface 33D can include a plurality of reflection regions a1 to a3, b1 to b3, and c1 to c3 divided by two horizontal planes and two vertical planes parallel to the optical axis Ax as shown in
With reference to
In the modification 3, the same advantageous effects can be obtained as in the modification 2.
<Modifications 4 and 5>
Next, modifications 4 and 5 of the present exemplary embodiment will be described with reference to
Modifications 4 and 5 show the case where the second surface 33 can have a plurality of reflection regions being different in reflection direction. Specifically, as illustrated in
On the other hand, the vehicle lighting unit 1F according to the modification 5 illustrated in
With this configuration, the light distribution pattern parts can be freely placed at desired areas to form desired light distribution patterns in accordance with specific local regulations or the like. Accordingly, if the lowermost reflection regions c1 to c3 are designed to reflect light slightly lower than the horizontal axis (optical axis) and light reflected off the other reflection regions to form light distribution pattern parts C1 to C3 at much lower positions as illustrated in
It will be apparent to those skilled in the art that various modifications and variations can be made in the presently disclosed subject matter without departing from the spirit or scope of the presently disclosed subject matter. Thus, it is intended that the presently disclosed subject matter cover the modifications and variations of the presently disclosed subject matter provided they come within the scope of the appended claims and their equivalents. All related art references described above are hereby incorporated in their entirety by reference.
For example, in the above exemplary embodiment and modifications 2 and 3, the front surface 3a of the light guide 3 can be a flat surface, but may be an appropriate curved surface in accordance with a desired light distribution pattern. For example, as shown in
Further, in the exemplary embodiment and the respective modifications, the light guide 3, 3A and the like can be disposed forward and obliquely downward with respect to the light source 2, but the presently disclosed subject matter is not limited thereto. For example, the light guide can be disposed forward and obliquely sideward with respect to the light source 2. In this case the other surfaces can be appropriately designed according to the positional relationship.
The first reflection surface 32 and the light exiting surface 34 can be a single surface 3a (3c), but they can also be formed separately.
Furthermore, the light incident surface 31 of the light guide 3 (3A) can be a curved surface other than a flat surface.
Number | Date | Country | Kind |
---|---|---|---|
2011-068270 | Mar 2011 | JP | national |
This application is a continuation in part and claims the priority benefit under 35 U.S.C. §120 of U.S. patent application Ser. No. 13/430,669 filed on Mar. 26, 2012 and which claims the priority benefit under 35 U.S.C. §119 of Japanese Patent Application No. 2011-068270 filed on Mar. 25, 2011, each disclosure of which is hereby incorporated in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
1421506 | Limpert | Jul 1922 | A |
4510560 | Negishi | Apr 1985 | A |
5165772 | Wu | Nov 1992 | A |
5276592 | Henkes | Jan 1994 | A |
5365412 | Koppolu | Nov 1994 | A |
6554455 | Perlo et al. | Apr 2003 | B2 |
6623132 | Lekson et al. | Sep 2003 | B2 |
7070312 | Tatsukawa | Jul 2006 | B2 |
7513654 | Okada | Apr 2009 | B2 |
7585096 | Fallahi et al. | Sep 2009 | B2 |
8696180 | Ishida | Apr 2014 | B2 |
8757846 | Otani | Jun 2014 | B2 |
20020071267 | Lekson | Jun 2002 | A1 |
20040257826 | Tatsukawa | Dec 2004 | A1 |
20050141227 | Tsukamoto et al. | Jun 2005 | A1 |
20050162857 | Tsukamoto | Jul 2005 | A1 |
20070070643 | Lampen et al. | Mar 2007 | A1 |
20080013333 | Koizumi | Jan 2008 | A1 |
20090185389 | Tessnow | Jul 2009 | A1 |
20090213608 | Mozaffari-Afshar | Aug 2009 | A1 |
20090284980 | Iwasaki | Nov 2009 | A1 |
20100066249 | Nagafuchi et al. | Mar 2010 | A1 |
20110286229 | Ohno | Nov 2011 | A1 |
20120243249 | Ohno | Sep 2012 | A1 |
20130188377 | Konishi | Jul 2013 | A1 |
20140022804 | Konishi | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
2005-11704 | Jan 2005 | JP |
2007-250233 | Sep 2007 | JP |
4108597 | Jun 2008 | JP |
4113111 | Jul 2008 | JP |
4339028 | Oct 2009 | JP |
Number | Date | Country | |
---|---|---|---|
20150078027 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13430669 | Mar 2012 | US |
Child | 14552242 | US |