The present invention relates to the automated monitoring and reporting of vehicle performance data while incorporating user preferences regarding the manner in which the data is prioritized and presented to the user. In particular, the systems and methods of the present invention combine real-time performance data gathered by a performance monitoring system for a vehicle with certain user preferences, such that each user can customize the system to report to and/or alert the user of certain types of performance data in a desired manner and/or at a desired time.
Vehicles, particularly commercial air, marine and land vehicles, typically include some type of performance monitoring system that records data regarding the vehicle performance, which includes the performance of the various components of the vehicle. The data includes a record of certain performance events that occur during the operation of the vehicle. The performance monitoring system typically conducts data collection and reports all of the data collected to the user. The user then may utilize the data in determining the type of maintenance, if any, that the vehicle may need. For example, if the data indicates that a particular component of the vehicle is malfunctioning or that the performance of one or more components may contribute to a vehicle failure in the future, then the user can perform the appropriate maintenance on the vehicle at the next opportunity.
For example, an air vehicle typically has a central maintenance computer (CMC) and/or an aircraft condition monitoring system (ACMS). The central maintenance computer collects, consolidates and reports performance data for the components of the air vehicle. Certain maintenance messages are associated with one or more types of performance data, and are stored in the CMC. Thus, when the CMC receives performance data, it analyzes the data to determine if the received data meets the criteria associated with the maintenance messages. If the received data meets the criteria, then the CMC presents the appropriate stored maintenance message to the user via a user interface. A CMC is further described, for example, in U.S. Pat. No. 4,943,919 entitled, “Central Maintenance Computer System and Fault Data Handling Method.”
Similar to the CMC, an ACMS also collects, monitors, records and reports real-time aircraft system data. For example, the data collected by the ACMS is used to perform cabin pressure and temperature monitoring, hard landing detection, flight crew monitoring, and engine monitoring in addition to many other aircraft performance functions. The reported data is then utilized to analyze aircraft performance and trends in aircraft performance, report significant flight events, and troubleshoot faults.
While the current system(s) utilized for vehicle performance monitoring provide the necessary data for a user to make an appropriate maintenance decision, it is still necessary for a user to sort through all of the data and maintenance messages to determine what type of maintenance is necessary. Thus, the user must sort and interpret the data provided by the monitoring system, such as the CMC and/or ACMS for an air vehicle, in light of the user's knowledge of the particular maintenance plan for the vehicle. For example, one user may implement a conservative maintenance plan for its vehicles, and as such, that user may carry out a certain type of maintenance the first time a particular performance event occurs during the operation of the vehicle. Another user, however, may wish to carry out a certain type of maintenance only if a particular performance event occurs more than five times during the operation of the vehicle.
With the current monitoring systems, each user will be presented with the same performance data, and the user must interpret it in light of their preferred maintenance plan, which is time consuming and dependent upon the user being familiar with the appropriate maintenance plan and any recent changes to the maintenance plan. For many types of vehicles, particularly commercial vehicles, the amount of time the vehicle is out of service is costly to the vehicle owner. As such, the longer it takes for a user to determine the type of maintenance that is necessary for a vehicle in accordance with the particular maintenance plan for the vehicle, the longer the vehicle will be out of service, which may be expensive to the vehicle owner if the vehicle would otherwise be in service.
Other monitoring systems include certain user customizable settings. For instance, some systems permit a user to specify alarm filtering and prioritization, and general alarm level triggers and thresholds. Thus, the data presented to the user will be associated with an alarm only if the data meets the criteria specified by the system. One example of such a system is disclosed in published application 2002/0163427 to Eryurek et al., which was published on Nov. 7, 2002. Further systems permit management of maintenance tasks based upon operational and scheduling preferences, such that the intervals between maintenance tasks may be increased or the tasks may be organized into groups. Examples of these systems are described in U.S. Pat. No. 6,442,459 to Sinex and published application 2002/0143445 to Sinex, which published on Oct. 3, 2002. While these systems permit users to customize a performance monitoring system to some extent, they do not provide for the level of customization that is necessary to allow a user to implement a particular maintenance program based upon the user preferences. As such, although a user may be permitted to specify when and how alarms associated with the data are presented and/or when and how the user is notified of certain maintenance tasks in general, the systems do not allow a user to specify how the system interprets and presents particular type(s) of data. For example, the conventional monitoring systems would not permit a user to specify the number of times a particular performance event must occur during the operation of the vehicle before the user is notified that a particular type of maintenance is recommended.
As such, there is a need for a vehicle monitoring and reporting system that combines real-time vehicle performance data with specific user preferences for different types of data that may be potentially captured by the system, such that a user may implement a maintenance plan that fits their specific business plan for their vehicles.
The system and associated method for monitoring a vehicle of the present invention permits a user to implement a maintenance plan that fits a specific business plan for their vehicles by combing real-time vehicle performance data with specific user preferences for each potential type of data that is captured by the system. The system and associated method therefore save time and costs that are normally associated with a user interpreting all of the data provided by a vehicle monitoring system in light of a preferred maintenance plan, which is time consuming and dependent upon the user being familiar with the appropriate maintenance plan and any recent changes to the maintenance plan.
The system and associated method for monitoring a vehicle made of a plurality of components includes receiving data, which may be fault data and/or prognostic data, associated with operation of the vehicle, such as via a data gathering element. In addition, at least one user preference is applied to the data, such as via a customization element, and at least a portion of the data is presented, such as via a display element. The data gathering element may be located within the vehicle and the customization element may be located outside the vehicle, with a communication link between the two elements to transmit data between the data gathering element and the customization element. In other embodiments, the data gathering element may be located outside the vehicle, and a communication link between the data gathering element and the vehicle may be utilized to transmit data between the vehicle and the data gathering element. In further embodiments, the data gathering element and the customization element may be integrated.
The at least one user preference may be: (1) an alerting preference, which includes alerting the user once the data reaches' a predetermined threshold, (2) a prioritization preference, which includes prioritizing the data based upon historical data related to the vehicle and/or the type of vehicle, and/or (3) a data delivery preference, which includes delivering one type of data to the user and another type of data elsewhere to another location for further analysis. The data delivery preferences may also include directions to deliver data to the user via the desired type of display element, such as a pager, an electronic mail display device, and/or a terminal.
In some embodiments of the system and method, the data may represent events associated with operation of the vehicle, and an alerting preference may be applied to alert the user once the data reflects that a maximum number of events have occurred. The data also may be consolidated and the probability of vehicle failure from the occurrence of an event over time may be determined, such as by a processing element. In addition, a prioritization preference may be applied to prioritize the data based upon a probability of vehicle failure after the occurrence of an event, where data associated with a higher probability of vehicle failure has a higher priority than data associated with a lower probability of vehicle failure. Prioritization preferences also may include directions for presenting data based upon the priority of the data. In this embodiment, the alerting preferences may include directions to alert the user, and the data delivery preferences may include directions to immediately deliver the data to the user when the probability of vehicle failure after the occurrence of an event in the data is at least a predetermined value. At least one predetermined value for the probability of failure of the vehicle following at least one event therefore may be stored, such as in a storage element. A user-defined status may also be assigned to data associated with an event based upon the probability of failure of the vehicle following the event, such as via the customization element.
The data regarding the operation of the vehicle also may be integrated with other data associated with at least one of a design of the vehicle, a maintenance history of the vehicle, a maintenance supply list for the vehicle, and an aggregate performance for the type of vehicle, such as via the data gathering element. In addition, at least a portion of the integrated data may be presented, such as via the display element.
Thus, the system and method for monitoring a vehicle provide techniques for not only gathering and displaying data associated with the operation of the vehicle, but also for applying user preferences to the data that permit the user to determine when to be alerted of certain data, how to prioritize the data based upon historical data for the vehicle, and how the data is to be delivered to the user and/or other data analysts. Thus, the user can set the preferences to automatically implement a specific maintenance plan for the vehicle, which is much less costly and time-consuming than the conventional techniques of physically interpreting the vehicle performance data in light of a desired maintenance plan to determine what type of maintenance is needed.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
The present inventions now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the invention are shown. Indeed, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
As shown in
The data includes any type of performance-related data regarding the overall operation of the vehicle 12 or any component or combination of components of the vehicle. The data may include information regarding a fault experienced by the vehicle or any component or combination of components of the vehicle. In addition, the data may include prognostic information regarding the vehicle or any component or combination of components of the vehicle that may be used to indicate whether a fault is likely. In particular, the data generally includes a record of certain performance events that occur during the operation of the vehicle. For example, a performance event may be a failure of a component or a portion of a component, which may affect the performance of the vehicle either immediately or eventually.
The data gathering element 14 may also receive other types of data that may be integrated with the performance data. For example, data associated with the design of the vehicle, a maintenance history of the vehicle, a maintenance supply list for the vehicle and/or an aggregate performance for the type of vehicle may be received by the data gathering element 14 and integrated with the vehicle performance data that is collected by the data gathering element. This additional data may be provided in various manners, including being originally provided by the manufacturer of the vehicle and then updated by the maintenance personnel.
Once the data is collected, the data gathering element 14 makes the data available to the customization element 16. For instance, the data gathering element 14 may transmit the data to the customization element 16 or the customization element 16 may access the data from the data gathering element 14. Thus, the data gathering element and the customization element may be located within the vehicle or outside the vehicle. For instance, the data gathering element 14 may be located within the vehicle while the customization element 16 is located outside the vehicle, and there may be a communication link between the elements for the data to travel between the elements. In other embodiments of the system 10, the data gathering element 14 may include the customization element 16, such that a communication link between the elements is not necessary. In embodiments in which the data gathering element 14 is located outside the vehicle, a communication link between the vehicle and the data gathering element 14 enables the transmission of data between the vehicle and the data gathering element. The communications link(s) described above may be any type of communication link known to those skilled in the art, such as any type of wireless or wired wide-area or local area communication network connection. In addition the data gathering element 14 and/or the customization element 16 may include a storage element for storing any of the data collected by and/or utilized by the system 10.
In some embodiments of the system 10, the gathered data may also be utilized to determine a probability of failure of the vehicle over time after the occurrence of a performance event. Thus, the vehicle monitoring system may include a processing element 20 to analyze the gathered vehicle operation data in light of historical data or simulated data, such as empirical and/or theoretical information, regarding the performance of the vehicle or similar vehicles under similar conditions to determine the probability of vehicle failure as the time from the occurrence of the event increases. Historical data may be gathered over time by monitoring the vehicle during each vehicle operation. Thus, the data may be updated continuously during or after each vehicle operation. In some embodiments of the system 10, the processing element 20 may be included in the customization element 16, or the processing element may be separate from and in communication with the customization element 16.
The customization element 16 includes a storage device for storing user preferences and applying the user preferences to the data. The customization element may be embodied as software or hardware that includes the directions necessary to carrying out the desired customization based upon the user preferences. Thus, the customization element 16 includes user preferences, such as alerting preferences, prioritization preferences, and data delivery preferences. Any other type of user preferences that may be desirable for a particular application of the system 10 may also be stored in and applied by the customization element 16. A user may select the desired preferences via any type of user interface to the customization element 16. For example, the customization element may be part of or in communication with a processing element having a user interface, such as a personal computer, personal data assistant or the like having an associated display, as known to those skilled in the art. The user interface may then permit the user to choose certain settings for the options included in the user preferences.
The alerting preferences include options for the user to select in order to supply directions to the system 10 to alert the user once the data reaches one or more predetermined thresholds. Thus, the alerting preferences may include options that permit a user to select the type of data and a threshold value associated with that particular type of data, such that when the data reaches or passes the threshold value, then the system 10 will be directed to alert the user of the particular data. For example, the alerting preferences may include options that permit a user to select the maximum number of times a particular type of performance event may occur in the data before alerting the user of the performance event(s). Specifically, a user may not want to be alerted of a particular performance event unless the performance event has occurred during three separate operations of the vehicle. In some embodiments of the system 10, the user may specify whether the events must occur in consecutive operations of the vehicle, over a certain number of vehicle operations, or over a predetermined period of time that the vehicle is in operation. Permitting the user select the number of times an event may occur before alerting the user of the event reduces the probability that the user will be alerted of an event caused by a false reading or some other type of error. Thus, the system 10 saves time and money for a user who would otherwise have to investigate each event or manually determine how many times the event has occurred from previous performance data.
Furthermore, in embodiments of the system 10 that determine the probability of failure of the vehicle after the occurrence of a particular performance event, the alerting preferences may include options that permit a user to select a probability value above which the user will be alerted to the probability of failure and to the associated data. For example, a user may determine that he wants to be alerted anytime the probability of vehicle failure is more than 30%. Thus, the system 10 may include a storage element 26 in which predetermined values, such as the maximum number of times a particular type of performance event may occur, the probability value above which the user will be alerted, and any other type of threshold value are stored. In certain embodiments, the storage element 26 may be part of the customization element 16, or the storage element 16 may be separate from, but in communication with, the customization element 16, in any manner known to those skilled in the art.
The prioritization preferences include options for the user to select in order to supply directions to the system 10 to prioritize the data based upon actual, empirical and/or simulated historical data related to the particular vehicle or the type of vehicle. Thus, data, such as the occurrence of a performance event, that indicates a greater probability of vehicle failure has a higher priority than data that indicates a lower probability of vehicle failure. The prioritization preferences may also include options that supply directions to display the data via the display element based upon the priority of the data. For example, data that indicates a 60% probability of vehicle failure may be presented to the user before or in a more prominent manner than data that indicates a 50% probability of vehicle failure.
The data delivery preferences include options for the user to select in order to supply directions to the system 10 regarding the delivery of the data to the user, if at all. For example, the user's selection of options within the delivery preferences may supply directions to deliver one type of data to the user and another type of data to another location for further analysis. Thus, if the data clearly indicates a probability of failure of the vehicle that meets the requirements of the alerting preferences, as described above, then the data may be directly delivered to the user. If, however, the data is unclear or if the data does not meet the requirements for automatic delivery to the user, then the data may be delivered to another location, such as a location where further analysis may be performed on the data by an analyst or by another type of software or hardware. In one embodiment of the system 10, analysts may manually review the data delivered to the other location to determine if any of the data warrants alerting the user. If the analyst determines the data should be delivered to the user, then the analyst may manually construct a report, which the analyst transmits, manually, electronically or otherwise, to the user. The data delivery preferences also may include options to supply directions regarding where, i.e., the particular display element 18 as described below, to deliver the data and/or a message indicating that the user may access the data.
The display element 18 may be any type of element capable of displaying data that is to be reported to the user. For instance, the display element may be a pager, an electronic mail display device, a terminal or any other type of device that includes some type of screen or indication means to alert a user of data. The display element may automatically display the data or the display element may display an indication that the data is ready to be reviewed, such that the user knows to subsequently access the data. For example, if the display element is a pager, the pager may have a screen large enough to display the data or a message may be displayed that indicates to the user that the data may be accessed at another location, such as via the Internet, an intranet, or in an electronic mail message. In other embodiments, an alert may be sent to the user via electronic mail, and the electronic mail may contain the data or it may contain a message indicating that the data may be accessed at another location or containing a link to the other location, such as a site on the Internet or an intranet. Thus, the data delivery preferences may include options to supply directions to the system 10 regarding the display element(s) 18 for displaying the data and/or a message indicating the data may be accessed.
The customization element 16 is also capable of receiving and assigning a user-defined status to data associated with an event based upon the probability of vehicle failure for the event, determined as described above based upon historical information as illustrated, for example, in
In
Thus, to be assigned a red or yellow status, the probability of vehicle failure associated with data analyzed by a system 10 that assigns a status to data according to the
Thus, if a user relies upon the status assigned to data to determine the type of action to take regarding the vehicle, if any, the
As shown in
The options provided to the user via the customization element 16 of the system 10 therefore provide a user with the ability to define the manner in which data regarding the operation of a vehicle is presented to the user. As such, each user may implement a different vehicle maintenance plan based upon the particular user's selections of the options provided by the system 10. By permitting users to select their desired options, the system 10 prioritizes the data and provides the data to the user in a manner that is most efficient for the user to carry out the types of maintenance that are considered most critical to the particular user. The system 10 therefore reduces the time and expense that is typically involved in physically interpreting and analyzing the data provided by a conventional vehicle monitoring system in light of a particular maintenance plan to determine the appropriate type of maintenance.
Data regarding the operation of a vehicle may enter the system 10 through the gateway 30. As described above, the data may be provided by a central maintenance computer (CMC) and/or an aircraft condition monitoring system (ACMS) and the data includes a record of certain performance events that occur during the operation of the vehicle. The gateway may be any type of data gateway known to those skilled in the art, such as an Aircraft Communications Addressing and Reporting System (ACARS) data gateway. The data then routed in at least two directions for further analysis by the system 10. In the first direction 32 the system determines to which portions, if any, of the data the user should be immediately alerted, while in the second direction 34, the system determines which portions of the data to report to the user, and how to report that information to the user.
Regarding the first direction 32, the data is transmitted to a first pre-filter 36 where the performance events included in the data are compared against a database of events, if any, that should be filtered out of the data, as desired for a particular type of vehicle or by a particular user. Thus, if any of the performance events in the data match the events included in the database, those performance events are filtered out of the data. For example, if, for a given vehicle operational condition, a particular performance event is known to occur, but not to provide useful feedback for the user, then that performance event may be filtered out of the data. The data may then be transmitted to a dispatch effect element 38, where the data is checked against information that may influence the dispatch of the data. For example, the data may be checked against a customer's minimum equipment list (MEL) to determine the degree to which the data will impact future vehicle dispatch. The data may also be checked against a customer's MEL to assign a priority to the event based upon known costs associated with the event. The user options 40, such as those illustrated in the user interface of
The data is then compared to the requirements and preferences set by the user at alert gate 44 to determine whether the user desires to be alerted to any of the data. If at least some of the data meets the user's alert requirements, then that data may be integrated with supporting data represented by box 46. Examples of supporting data include any type of maintenance documentation, such as a fault isolation manual or a vehicle maintenance manual, vehicle operation information, spare parts recommendation, spare parts availability, spare parts procurement information, or any other type of data that would be beneficial to present to the user with the alert data.
The alert data and any supporting data is then automatically delivered to the user in the manner selected by the user, as discussed above and as represented by box 48. Thus, the alert data may be sent directly to a report for presentation to the user, such as a web-based report that the user may access via a network, such as the Internet or an intranet, as discussed above and as represented by box 50. In addition an alert indication may be sent to the user in any manner and via any type of device known to those skilled in the art, such as via a pager, electronic mail, cellular phone or the like, as discussed above and as represented by box 52.
Regarding the second direction 34, the data is transmitted to a second pre-filter 54 where, similar to the first pre-filter 36, the performance events included in the data are compared against a database of events that should be filtered out of the data, as desired for a particular type of vehicle or by a particular user. The second pre-filter 54 is also capable of filtering out events in the data that have not occurred a minimum number of times, which may be defined by the user, as described above. The system 10 then determines if the filtered data is time-critical, as represented by decision block 56. Thus, the data is compared to a database of events that are to be considered time-critical and escalated to alert level, as required by the user preferences. The events listed in the database are typically those of a time-critical nature, such that if the cause of the event is not addressed relatively soon, then the performance of the vehicle may be adversely affected. If any of the events in the data match the events listed in the database, then that data is combined with the alert data prior to determining the user's alert preferences, as represented by box 42, as shown in the embodiment of
The user options 40, such as those illustrated in the user interface of
The system 10 then determines whether to automatically deliver the report data to the user in the manner selected by the user, as discussed above and as represented by box 64. If the report data is to be automatically transmitted to the user, then the report data may be sent directly to a report for presentation to the user, such as a web-based report that the user may access via a network, such as the Internet or an intranet, as discussed above and as represented by box 50. If the user has identified any type of the report data that should not be automatically transmitted to the user, then the system 10 determines whether to transmit that data to a remote location for analysts 66 to manually review. If the data meets the user-defined requirements for analyst review, then the data is transmitted to the analysts 66. If the analysts 66 determine that any of the data should be reported to the user, then the analysts may manually deliver, as represented by box 68, that data to a report for presentation to the user, such as a web-based report that the user may access via a network, such as the Internet or an intranet, as discussed above and as represented by box 50. In other embodiments of the system 10, the report data may also be transmitted to the user in addition to the analysts, if desired.
The method of the invention is applicable to a wide variety of applications including those involving customization of any type of vehicle performance data. Accordingly, the method preferably is implemented as a computer program product having a computer readable storage medium for storing computer readable instructions for implementing the elements described above and, in particular, the customization element described above.
The computer readable instructions that are stored in the computer-readable storage medium, such as a memory device, can direct a computer or other programmable apparatus to function in a particular manner, such that the instructions stored in the computer-readable storage medium produce an article of manufacture including instruction which implement the various functions of the method described above. In this regard, the computer readable instructions may also be loaded onto a computer or other programmable apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the functions of the method described above.
As described above, both for a general system 10 and the specific embodiment of system 10 illustrated in
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Number | Name | Date | Kind |
---|---|---|---|
4943919 | Aslin et al. | Jul 1990 | A |
5522026 | Records et al. | May 1996 | A |
5974349 | Levine | Oct 1999 | A |
6043757 | Patrick | Mar 2000 | A |
6198996 | Berstis | Mar 2001 | B1 |
6219626 | Steinmetz et al. | Apr 2001 | B1 |
6292724 | Apsell et al. | Sep 2001 | B1 |
6338152 | Fera et al. | Jan 2002 | B1 |
6434512 | Discenzo | Aug 2002 | B1 |
6442459 | Sinex | Aug 2002 | B1 |
6459969 | Bates et al. | Oct 2002 | B1 |
6553290 | Pillar | Apr 2003 | B1 |
6631384 | Richman et al. | Oct 2003 | B1 |
20010033225 | Razavi et al. | Oct 2001 | A1 |
20020065698 | Schick et al. | May 2002 | A1 |
20020143443 | Betters et al. | Oct 2002 | A1 |
20020143445 | Sinex | Oct 2002 | A1 |
20020163427 | Eryurek et al. | Nov 2002 | A1 |
Number | Date | Country |
---|---|---|
WO 9945519 | Sep 1999 | WO |
WO 0217184 | Feb 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040158367 A1 | Aug 2004 | US |