The present disclosure relates to vehicle management systems.
Automobile dealerships often have horizontally-spread inventory of new and/or used vehicles across a car lot, many of which may appear similar but have different options packages. Further, the location of these vehicles may change, for instance, due to turnover in inventory, customer test drives, or other vehicle movement. In addition, as vehicles remain on the lot, there may be a need to perform limited maintenance to assure the vehicle remains ready for purchase.
An embodiment includes a lot management system. The lot management system includes a transmitter comprising a location determination module having a GPS data pathway to an RF transmission module and a receiver including an RF antenna and a receiver processor.
Another embodiment is directed to a process. The process includes providing a vehicle management system. The vehicle management system includes a transmitter in electrical contact with a vehicle, wherein the transmitter comprises a location determination module having a GPS data pathway to an RF transmission module and a vehicle information module having a vehicle information data pathway to the RF transmission module. The vehicle management system further includes a receiver having an RF antenna, a receiver processor, and a receiver database. The receiver database includes a non-transitory, tangible computer readable storage medium. The process further includes determining a location of the transmitter using the location determination module and transmitting the location of the transmitter using the RF transmission module. In addition, the process includes receiving the location of the transmitter using the RF antenna and storing the location of the transmitter in the receiver database.
The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Certain embodiments of the present disclosure are directed to systems and methods for locating vehicles on a car lot. The embodiments may include at least one receiver station and one or more transmitters.
As shown in
In certain embodiments, transmitter 120 may further include vehicle information module 230. In other embodiments (not shown), transmitter 120 does not include vehicle information module 230. Vehicle information module 230 may be adapted to communicate with one or more computer systems of the vehicle. Vehicle information module 230 may gather vehicle information from the vehicle and pass that information to transmission module 220 through vehicle information data pathway 222.
In some non-limiting embodiments, vehicle information module 230 is configured to meet OBD-II standards in terms of, for example, diagnostic connector and its pinout, electrical signaling protocols and messaging format. In certain embodiments of the present disclosure, vehicle information module 230 may receive power from the vehicle's battery through a power pin connector (not shown). Power pin connector may be configured in accordance with OBD-II standards. Vehicle information module 230 may gather information such as, but not limited to VIN, battery voltage, alternator voltage, fuel level, engine RPMs, vehicle speed, distance traveled since codes last cleared, run time since engine start and other parameters, such as those specified in the OBD-II standard. Vehicle information module 230 may be configured in accordance with OBD-II standards to plug into or be removed from a vehicle's OBD-II port. When so configured, transmitter 120 may be removable from the vehicle, for instance, when the vehicle is purchased, and reused on a different vehicle.
Transmitter 120 may be associated with a particular identifier, such as a serial number, that may be transmitted via transmitter module 220 to receiver 110. The particular identifier may be stored in a transmission module processor or memory associated with a transmission module processor. In certain embodiments, vehicle information module 230, transmitter module 220 and location determination module 210 may be powered by the vehicle battery, such as through the power pin connector. In other embodiments, vehicle information module 230, transmitter module 220 and location determination module 210 are powered with a battery other than that of the vehicle battery. In still other embodiments, vehicle information module 230, transmitter module 220 and location determination module 210 are powered by the vehicle battery and a battery other than that of the vehicle battery.
Transmission module 220 may contain a transmission module processor that controls and processes data received from, for instance, location determination module 210 and vehicle information module 230, which is described below. The transmission module processor of transmission module 220 may include in the processor or memory associated with the transmission module processor code instructions to transmit information to receiver station 110 continuously, at pre-determined times, or may use the information obtained from location determination module 210 or vehicle information module 230 to determine when to transmit information to receiver station 110. The code instructions may be stored on a non-transitory, tangible computer readable storage medium. As an example, when vehicle information module 230 communicates to transmission module 220 that the measured voltage is such that the engine of the vehicle is running, transmission module may transmit vehicle location more frequently than if the measured voltage is such that the engine of the vehicle is not running. As another example, if the engine of the vehicle is running, transmission module 220 may transmit location information every two seconds, every five seconds, or every 10 seconds. If the engine of the vehicle is not running, transmission module 220 may transmit location information once every two hours, once every hour, or once every 30 minutes, for example. Similarly, the duration of the transmission of vehicle information by transmission module 220 may be for a set time or based on vehicle information.
In some embodiments, transmitter 120 may be limited in range in that the signal of transmitter 120 may be received less than a mile, less than 2500 feet or less than 1500 feet from transmitter 120.
Receiver processor 320 or remote processor 340 may communicate with receiver database 350 through processor data path 352. Receiver database 350 may include data relating to location information and vehicle information associated with transmitters 120. Receiver database 350 may include a non-transitory, tangible computer readable storage medium.
Data may be transferred along data paths 212, 222, 312, 322, and 352 using any appropriate methods, including, but not limited to wired connection, wireless connection, internet connection, RF connection or combinations thereof. When data is transferred along processor data path 352 through the internet, location information and vehicle information may be obtained by remote processor 340 through such methods as a web browser or mobile application.
In certain embodiments, receiver processor 320 may communicate to display 310 or remote processor 340 location or vehicle information upon certain events based on information received or previously received by RF antenna 330 from transmitter 120. In non-limiting examples, receiver processor 320 may communicate to display 310 or remote processor 340 if transmitter 120 has been outside the perimeter of lot 130 for a pre-determined period a time, if transmitter 120 is outside the perimeter of lot 130 after a pre-determined time of day, if the amount of fuel in the vehicle is below a certain level, or if the charge level of a vehicle battery is lower than a set voltage. This communication may be, for instance, by text or e-mail.
In certain embodiments, receiver processor 320 may aggregate data received from multiple transmitters 120 and communicate aggregate location data and vehicle information to display 310 or remote processor 340. Non-limiting examples of such aggregate data compilation include reports of which vehicles have low fuel, which vehicles have low battery voltage, or transmitters 120 that have not reported for a pre-determined period of time, such as 24 hours.
In some embodiments, processor 320 or remote processor 340 or databases associated with receiver processor 320 or remote processor 340 may have stored a map of lot 130. In these embodiments, the location of transmitter 120 may be displayed on a map of lot 130 on display 310 or remote processor 340. Map 130 may be created, for instance, by physically mapping the GPS coordinates of the edges of lot 130 or by determining the edges of lot 130 from a previously constructed map of the lot site, such as through an internet mapping site.
Database 350 may be configured such that only transmitters 120 associated with a pre-determined set of identifiers that are transmitted by transmission module 220 are stored in processor 320 or are communicated to display 310 or remote processor 340.
In embodiments where at least one remote processor 340 is a remote controller such as that described as “remote controller 54” in U.S. Pat. No. 7,342,494, filed Jan. 27, 2004, additional information may be communicated to display 310 or another interactive remote processor 340. As transmitters 120 may be associated with particular vehicles, processor 320 may query remote controller 54 to determine vehicle details regarding that particular vehicle including such information as make, model, color, options installed, year of vehicle, body style, condition, cylinder type, mileage, stock number, VIN, and other information that may be stored in remote controller 54. Processor 320 may then communicate this information to remote processor 340, such as a handheld device, laptop or other computer or to display 310. Thus, location, vehicle information and vehicle details are made available to a user. Further, in certain embodiments, vehicle location and vehicle information may be communicated to remote controller 54; remote controller 54 may make such information available to a user when the vehicle key is made available to the user.
The foregoing outlines features of several embodiments so that a person of ordinary skill in the art may better understand the aspects of the present disclosure. Such features may be replaced by any one of numerous equivalent alternatives, only some of which are disclosed herein. One of ordinary skill in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. One of ordinary skill in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
This application is a non-provisional application which claims priority from U.S. provisional application No. 61/992,503, filed May 13, 2014, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5499182 | Ousborne | Mar 1996 | A |
6052646 | Kirkhart | Apr 2000 | A |
6225898 | Kamiya et al. | May 2001 | B1 |
6295492 | Lang et al. | Sep 2001 | B1 |
6330499 | Chou et al. | Dec 2001 | B1 |
6339745 | Novik | Jan 2002 | B1 |
6434455 | Snow | Aug 2002 | B1 |
6505106 | Lawrence et al. | Jan 2003 | B1 |
6526340 | Reul et al. | Feb 2003 | B1 |
6529808 | Diem | Mar 2003 | B1 |
6556905 | Mittelsteadt et al. | Apr 2003 | B1 |
6604033 | Banet et al. | Aug 2003 | B1 |
6611740 | Lowrey et al. | Aug 2003 | B2 |
6636790 | Lightener et al. | Oct 2003 | B1 |
6732031 | Lightener et al. | May 2004 | B1 |
6732032 | Banet et al. | May 2004 | B1 |
6807469 | Funkhouser et al. | Oct 2004 | B2 |
6810309 | Sadler et al. | Oct 2004 | B2 |
6823243 | Chinnadurai et al. | Nov 2004 | B2 |
6832141 | Skeen et al. | Dec 2004 | B2 |
6836708 | Triphath | Dec 2004 | B2 |
6879894 | Lightener et al. | Apr 2005 | B1 |
6882917 | Pillar et al. | Apr 2005 | B2 |
6885920 | Yakes et al. | Apr 2005 | B2 |
6920381 | Doherty et al. | Jul 2005 | B2 |
6928348 | Lightener et al. | Aug 2005 | B1 |
6931309 | Phelan et al. | Aug 2005 | B2 |
6947816 | Chen | Sep 2005 | B2 |
6993421 | Pillar et al. | Jan 2006 | B2 |
7004206 | Viken et al. | Feb 2006 | B2 |
7113127 | Banet et al. | Sep 2006 | B1 |
7174243 | Lightner et al. | Feb 2007 | B1 |
7184866 | Squires et al. | Feb 2007 | B2 |
7212893 | Doherty et al. | May 2007 | B2 |
7225065 | Hunt et al. | May 2007 | B1 |
7228211 | Lowrey et al. | Jun 2007 | B1 |
7317974 | Luskin et al. | Jan 2008 | B2 |
7342494 | Maloney | Mar 2008 | B2 |
7398176 | Bertness | Jul 2008 | B2 |
7447574 | Washicko et al. | Nov 2008 | B1 |
7477968 | Lowrey et al. | Jan 2009 | B1 |
7480551 | Lowrey et al. | Jan 2009 | B1 |
7519458 | Buckley | Apr 2009 | B2 |
7532962 | Lowrey et al. | May 2009 | B1 |
7532963 | Lowrey et al. | May 2009 | B1 |
7577503 | Bertosa et al. | Aug 2009 | B2 |
7584030 | Graham | Sep 2009 | B1 |
7593999 | Nathanson | Sep 2009 | B2 |
7596435 | Tripathi et al. | Sep 2009 | B1 |
7596437 | Hunt et al. | Sep 2009 | B1 |
7598744 | Bertness et al. | Oct 2009 | B2 |
7650210 | Breed | Jan 2010 | B2 |
7672763 | Hunt et al. | Mar 2010 | B1 |
7747365 | Lowrey et al. | Jun 2010 | B1 |
7778752 | Hunt et al. | Aug 2010 | B1 |
7853375 | Tuff | Dec 2010 | B2 |
7860619 | Bertosa et al. | Dec 2010 | B2 |
7904219 | Lowrey et al. | Mar 2011 | B1 |
8019501 | Breed | Sep 2011 | B2 |
8027763 | Webster et al. | Sep 2011 | B2 |
8036788 | Breed | Oct 2011 | B2 |
8055403 | Lowrey et al. | Nov 2011 | B2 |
8108093 | Bertosa et al. | Jan 2012 | B2 |
8140358 | Ling et al. | Mar 2012 | B1 |
8145379 | Schwinke | Mar 2012 | B2 |
8165781 | Johnson et al. | Apr 2012 | B2 |
8214100 | Lowrey et al. | Jul 2012 | B2 |
8237448 | Bertness | Aug 2012 | B2 |
8296008 | Sampson et al. | Oct 2012 | B2 |
8355837 | Avery et al. | Jan 2013 | B2 |
8370016 | Webster et al. | Feb 2013 | B2 |
8437903 | Willard | May 2013 | B2 |
8447459 | Lowrey et al. | May 2013 | B2 |
8452478 | Bertosa et al. | May 2013 | B2 |
8452486 | Banet et al. | May 2013 | B2 |
8452673 | Boling et al. | May 2013 | B2 |
8478514 | Kargupta | Jul 2013 | B2 |
8480433 | Huang | Jul 2013 | B2 |
8493022 | Bertness | Jul 2013 | B2 |
8509987 | Resner | Aug 2013 | B2 |
8527135 | Lowrey et al. | Sep 2013 | B2 |
8527485 | Marzani et al. | Sep 2013 | B2 |
8532866 | Palmer | Sep 2013 | B1 |
8558678 | Van Wiemeersch et al. | Oct 2013 | B2 |
8565963 | Burke | Oct 2013 | B2 |
8612086 | Jardine | Dec 2013 | B2 |
8624758 | Ingram et al. | Jan 2014 | B2 |
8630768 | McClellan et al. | Jan 2014 | B2 |
8635091 | Amigo et al. | Jan 2014 | B2 |
8638202 | Oesterling | Jan 2014 | B2 |
8666588 | Geilen et al. | Mar 2014 | B2 |
8676439 | Huang | Mar 2014 | B2 |
8677019 | Bruenner et al. | Mar 2014 | B2 |
8688313 | Margol et al. | Apr 2014 | B2 |
8700254 | Basir et al. | Apr 2014 | B2 |
8700255 | Joseph | Apr 2014 | B2 |
8731764 | Bertosa et al. | May 2014 | B2 |
8788139 | Fedor et al. | Jul 2014 | B2 |
8799035 | Coleman et al. | Aug 2014 | B2 |
8805281 | Hsu et al. | Aug 2014 | B2 |
8812173 | Chen et al. | Aug 2014 | B2 |
8818616 | Sampson et al. | Aug 2014 | B2 |
8825270 | Chen | Sep 2014 | B2 |
8838362 | Higgins et al. | Sep 2014 | B2 |
8843263 | Willard | Sep 2014 | B2 |
8850083 | Raichle et al. | Sep 2014 | B2 |
8868285 | Park | Oct 2014 | B2 |
8868289 | Miljkovic et al. | Oct 2014 | B2 |
8886391 | Bertosa et al. | Nov 2014 | B2 |
8897952 | Palmer | Nov 2014 | B1 |
8903597 | Jones | Dec 2014 | B2 |
8918232 | Lavi et al. | Dec 2014 | B2 |
9002554 | Chen | Apr 2015 | B2 |
9026306 | Wu et al. | May 2015 | B2 |
9031710 | Barrett | May 2015 | B2 |
9038447 | Miller | May 2015 | B2 |
9052366 | Bertness | Jun 2015 | B2 |
9053591 | Phelan et al. | Jun 2015 | B2 |
9070168 | Amigo et al. | Jun 2015 | B2 |
9080519 | Howell et al. | Jul 2015 | B2 |
9081650 | Brinkmann et al. | Jul 2015 | B1 |
9097195 | Willard et al. | Aug 2015 | B2 |
9098388 | Cho et al. | Aug 2015 | B2 |
9103737 | Vaeretti et al. | Aug 2015 | B2 |
9117319 | Chen | Aug 2015 | B2 |
9129336 | Ehrman | Sep 2015 | B2 |
9142065 | Rude et al. | Sep 2015 | B2 |
9175649 | McGuffin | Nov 2015 | B2 |
9181895 | Roberts et al. | Nov 2015 | B2 |
9189895 | Phelan et al. | Nov 2015 | B2 |
9196098 | Phelan et al. | Nov 2015 | B2 |
9208525 | Hayward et al. | Dec 2015 | B2 |
9208623 | Baumert et al. | Dec 2015 | B2 |
9208624 | Rude et al. | Dec 2015 | B2 |
9224249 | Lowrey et al. | Dec 2015 | B2 |
9245392 | Yang et al. | Jan 2016 | B2 |
9246288 | Jones | Jan 2016 | B2 |
9248789 | Quintero | Feb 2016 | B2 |
9251628 | Ubik et al. | Feb 2016 | B2 |
9281647 | Krivtsov et al. | Mar 2016 | B2 |
9286265 | Simard et al. | Mar 2016 | B2 |
9297721 | Bertosa et al. | Mar 2016 | B2 |
9311758 | Choi | Apr 2016 | B2 |
9324192 | Chakravarty et al. | Apr 2016 | B2 |
9349223 | Palmer | May 2016 | B1 |
9363647 | Kim | Jun 2016 | B2 |
9367968 | Giraud et al. | Jun 2016 | B2 |
9373201 | Jeffries et al. | Jun 2016 | B2 |
9384598 | Berkobin et al. | Jul 2016 | B2 |
9384599 | Chen et al. | Jul 2016 | B2 |
9417078 | Seibert | Aug 2016 | B1 |
9418383 | Hayward et al. | Aug 2016 | B1 |
9421982 | Phelan et al. | Aug 2016 | B2 |
20020089434 | Ghazarian | Jul 2002 | A1 |
20080165030 | Kuo | Jul 2008 | A1 |
20100060485 | Kim | Mar 2010 | A1 |
20110093159 | Boling et al. | Apr 2011 | A1 |
20110227709 | Story | Sep 2011 | A1 |
20140067231 | Mosher | Mar 2014 | A1 |
Entry |
---|
Search Report issued in GB Application No. 1507552.6, dated Nov. 2, 2015, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20150332592 A1 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
61992503 | May 2014 | US |