Embodiments of the invention relate to a vehicle navigation system that includes a vehicle mounted data display and a portable global positioning system (“GPS”) unit that may interface with the vehicle mounted data display.
Global positioning systems, or GPSs, use information received from a network of satellites and stored or loaded map information to help users of the systems navigate. GPS systems may be made very compact and portable and may have sophisticated functionality. The combination of the satellite information and map information allows users to understand their current position on a map, plot a course to a desired location, retrace a previously traveled path, and perform other useful navigational tasks. Applications of GPSs have even been used to control a vehicle's speed and navigation.
As GPS technology develops, its use is becoming more widespread. Use of GPS units in recreational applications is increasing dramatically, but there are many obstacles to overcome.
One embodiment of the present invention includes a vehicle navigation system with a vehicle having a vehicle mounted data display attached to the vehicle that is viewable by an operator of the vehicle. This embodiment may include a portable GPS unit having a GPS sensor capable of sensing the location of the GPS unit and a portable display. A mounting point on the vehicle is configured for mounting the GPS unit so that the portable data display is viewable by the operator of the vehicle. This embodiment also includes a data interface between the portable GPS unit and the vehicle mounted display so that data from the portable GPS unit may be displayed on the vehicle mounted display.
Another embodiment of the present invention includes a vehicle navigation system with a vehicle having a vehicle mounted data display attached to the vehicle that is viewable by an operator of the vehicle. This embodiment may include a portable GPS unit having a GPS sensor capable of sensing the location of the GPS unit and a portable display. A mounting point on the vehicle is configured for mounting the GPS unit so that the portable data display is viewable by the operator of the vehicle. This embodiment also includes a data interface between the portable GPS unit and the vehicle mounted display so that data from the portable GPS unit may be displayed on the vehicle mounted display. The data interface of this embodiment also allows data from the vehicle to be displayed on the portable display unit.
In another embodiment of the present invention, a vehicle navigation system includes a vehicle having a vehicle mounted data display attached to the vehicle that is viewable by an operator of the vehicle. This embodiment may include a portable GPS unit including a GPS sensor capable of sensing the location of the GPS unit and a portable display. A mounting point on the vehicle is configured for mounting the GPS unit so that the portable data display is viewable by the operator of the vehicle. This embodiment also includes a data interface between the portable GPS unit and the vehicle mounted display so that data from the portable GPS unit may be displayed on the vehicle mounted display. In this embodiment the vehicle further includes an input device that is configured to send a signal to the GPS unit through the data interface.
In another embodiment of the present invention, a vehicle navigation system includes a vehicle having a vehicle mounted data display attached to the vehicle that is viewable by an operator of the vehicle. This embodiment may include portable GPS unit including a GPS sensor capable of sensing the location of the GPS unit and a portable display. A mounting point on the vehicle is configured for mounting the GPS unit so that the portable data display is viewable by the operator of the vehicle. This embodiment also includes a data interface between the portable GPS unit and the vehicle mounted display so that data from the portable GPS unit may be displayed on the vehicle mounted display. In this embodiment the vehicle further includes an input device that is configured to send a signal to the GPS unit through the data interface. The vehicle has hand-operated vehicle steering controls for controlling the operation of the vehicle and the input device is located so that the operator may activate it without removing a hand from the vehicle steering controls.
Global positioning systems, or GPSs, have become increasingly popular with advances in technology. GPS systems are now very portable and lightweight as well as user friendly. Handheld units such as the Garmin® GPSmap76S and others allow users to navigate while traveling by vehicle or otherwise, and allow the units to be used in more than one vehicle.
A network of GPS satellites transmit satellite data to GPS units. GPS units take this information and use triangulation to calculate the unit's location. If the GPS unit is equipped with stored mapping information, the GPS display may show the unit's location on a map.
A GPS unit must be receiving the signal of at least three satellites to calculate a unit's latitude and longitude and track movement. When receiving signals from four or more satellites, the receiver can determine the unit's latitude, longitude, and altitude, or three-dimensional position. Once the user's position has been determined, a GPS unit may be configured to calculate other information, such as speed, bearing, track, trip distance, distance to destination, sunrise and sunset time and more.
GPS units may record locations as “waypoints.” Waypoints may be stored in the GPS unit as goals to reach during a journey. Waypoints relating to the current location of the unit may be stored at various points throughout a journey to allow backtracking or review of a route. The storing of waypoints may be accomplished manually by an operator of a unit or automatically by the unit, for example at a routine interval.
Several embodiments of the invention relate to a vehicle navigation system that includes a vehicle with a vehicle mounted data display that is viewable by the operator of the vehicle. There is a portable GPS unit including a GPS sensor capable of sensing the location of the GPS unit. The portable GPS unit also has a portable display for displaying information to the user, possibly including the user's location, elevation, heading, distance to a predetermined location, time to a predetermined location, and other items of interest. The portable GPS unit may be used independently of the vehicle if the user is walking or using some form of transportation other than the vehicle. In some embodiments there is a mounting point on the vehicle for the portable GPS unit. The mounting point may be configured to mount the portable GPS unit so that the portable display is viewable by the operator of the vehicle. There may be a data interface so that data from the portable GPS unit may be conveyed to the vehicle mounted display for display. It would be possible in some of these embodiments to allow communication through the data interface to go two ways and have data from the vehicle displayed on the portable display. It may also be possible for an input device located at the vehicle display to send a signal through the data interface to the GPS unit.
Turning now to the figures,
The GPS unit of this invention may be linked via data interface 30 to a vehicle mounted data display 40 in accordance with embodiments of the invention. Data interface 30 could be an RS-232 port with associated wiring or any other type of wired porting (e.g. serial, parallel or USB), a wireless interface (e.g. Bluetooth® technology Wi-Fi, infrared, or RF), or any other data interface or protocol known in the art. Vehicle information from vehicle sensor 60 may also be displayed on the vehicle mounted data display 40 or may be transmitted through data interface 30 to the portable display 20 for display. Vehicle control unit 45 of this embodiment acts as a central processing unit for the vehicle sensors 60, vehicle mounted data display 40, input device 50, and data interface 30. In these instances, data interface 30 may be configured for two-way communication to allow GPS data from the GPS unit 10 to be displayed on the vehicle mounted data display 40 and vehicle data from the vehicle sensors 60 to be displayed on the portable display 20. Vehicle sensor 60 may be a vehicle speed sensor, an engine speed sensor, a transmission gear sensor, an engine temperature sensor, an engine diagnostic sensor, a fuel level sensor, a brake sensor, a headlight or high beam sensor, an oil level sensor, an oil pressure sensor, or any other vehicle sensor commonly known in the art.
Input device 50 may transmit signals at the operator's initiation from the vehicle to the GPS unit 10. For example, the operator could decide to set a waypoint at a current location by activating input device 50. Another example would be an operator starting an automatic recording of sequential waypoints at predetermined time intervals by activating the input device 50. This is commonly referred to as “breadcrumbing,” and allows the user to automatically store a representation of the route traveled in the GPS unit. Yet another example would be activating input device 50 to plot a return route along a path defined by previously stored waypoints.
In some embodiments, the portable GPS unit may be connected to the data interface while not being mounted on a mounting point 100. In these embodiments the portable GPS unit may be located in an operator's clothing (e.g., pocket), attached to the operator via a belt clip or bracket, in a storage compartment of the vehicle, or in any other location proximate to the vehicle mounted data display. The portable GPS unit so located may be connected to the data interface either with wires or wirelessly.
While preferred embodiments of the present invention have been described, it should be understood that various changes, adaptations and modifications may be made therein without departing from the spirit of the invention and the scope of the appended claims.