This application is based on and claims priority under 35 U.S.C. § 119 with respect to Japanese Patent Application No. 2005-081334 filed on Mar. 22, 2005, the entire content of which is incorporated herein by reference.
1. Field of the Invention
The present invention relates to a vehicle occupant discriminating apparatus for discriminating an occupant on a vehicle seat based on the load applied to the vehicle seat.
2. Description of the Related Art
Such a vehicle occupant discriminating apparatus is used for determining whether an occupant is seated on a front passenger seat where an airbag system is provided, for example. That is, if no occupant is seated on the front passenger seat, operation of the airbag system is meaningless and expenses are necessary for its recovery, so that the airbag system is operated based on the determined result. It is more effective to change the airbag operation method, such as airbag inflation speed and direction, and to operate the airbag or not, on the basis that the sitting occupant is an adult or child and the occupant is large or small in pattern. Thus, it is very preferable that the vehicle occupant discriminating apparatus discriminate not only whether an occupant is seated but also discriminate the occupant including his or her physical constitution.
Various kinds of such a vehicle occupant discriminating apparatus have been proposed, and in Japanese Unexamined Patent Application Publication No. H09-207638 (first to sixth and eighteenth and nineteenth paragraphs,
In Japanese Unexamined Patent Application Publication No. 2003-341403 (second, fourteenth to sixteenth, twenty-third, thirty-second, and thirty-ninth paragraphs, FIGS. 4 to 7), an apparatus that can precisely detect the kind of an occupant (adult, child, or vacant) on a seat is also disclosed. In this apparatus, by adding up detected respective load values from load sensors arranged at four lateral and back-and-forth positions below the vehicle seat, a total load is calculated. Then, on the basis of the total load, the kind of the occupant (adult, child, or vacant) is determined so as to output a drive signal for changing the inflation amount of the airbag system, for example, on the basis of the kind of the occupant.
In the apparatus of Japanese Unexamined Patent Application Publication No. 2003-341403, the precise occupant detection is achieved; however, four load sensors are used therefor. On the other hand, the apparatus of Japanese Unexamined Patent Application Publication No. H09-207638 can work with two load sensors; however, it can detect the presence of an occupant but cannot determine the kind of the occupant. That is, in any of the above prior arts, the reduction in the number of the load sensors is incompatible with the precise determination of an occupant even to its kind.
When the load sensors at the four positions are used for detecting the load on the vehicle seat, the load is not be applied to the four positions uniformly in general. In the vehicle seat, while the front portion is slightly raised, the rear portion is slightly sunk so as to have a structure capable of easily resting oneself on a seat back. Hence, the occupant load is mainly applied to the rear portion. Then, the load sensors may be provided only on the rear lateral positions; however, if a child is standing on the seat, the load is concentrated only on the rear portion so that a minus load may be applied to the front portion. If the load sensors are arranged only on the rear side at this time, since the minus load on the front side is not added, a large load is mistakenly detected consequently. As a result, a child on the vehicle seat may be determined to be an adult.
The present invention has been made in view of the problems described above, and it is an object of the present invention to provide a vehicle occupant discriminating apparatus capable of precisely discriminating an occupant using data detected by few load sensors in number arranged at parts of a vehicle seat to which a load is applied.
In order to achieve the object mentioned above, in a vehicle occupant discrimination apparatus for discriminating the kind of an occupant on a vehicle seat on the basis of the load applied to the vehicle seat according to the present invention, the apparatus includes state detecting means for detecting the occupant state on the vehicle seat; load measuring means for measuring the load applied to the vehicle seat; and discriminating means for discriminating the kind of the occupant on the basis of a discrimination condition discriminating whether the occupant is an adult or a child and the result measured by the load measuring means, wherein the discriminating means discriminates the kind of the occupant on the basis of the discrimination condition differing in accordance with the result detected by the state detecting means.
According to the featured configuration, the occupant sitting state on the vehicle seat can be detected by the state detecting means. For example, the state detecting means can detect whether a child is standing or not. Also, using the discrimination condition differing corresponding to the result detected by the state detecting means, the occupant is discriminated. For example, when a child is standing on the vehicle seat, a load rather larger than a normal load may be detected because of the concentration of the load. In this case, if the occupant would be discriminated on the basis of the normal discrimination condition, it might be determined to be “adult”. Whereas, if the occupant is discriminated using the discrimination condition corresponding to the result detected by the state detecting means, the occupant can be determined to be “child” in view of the standing posture of the child. In such a manner, the occupant is discriminated on the basis of the discrimination condition differing in accordance with the result detected by the state detecting means and the result measured by the load measuring means, so that the occupant can be precisely discriminated using load data.
In addition, “discrimination between an adult and a child” is not a legal and age condition but a physical constitution. Hence, “discrimination between a large build and a small build” is also included in the technical field of the present invention. Not only alternatives such as “adult or child” and “large or small” but also choices between three or more things such as “adult, child, or infant” and “large, normal, or small” belong to the technical range of the present invention, Preferably, the discriminating means discriminates the kind of the occupant on the basis of the discrimination conditions differing from a case, where the load measured by the load measuring means varies from a smaller side to a larger side, to a case where it varies from the larger side to the smaller side.
When the result by the load measuring means varies up and down in the vicinity of the boundary between the discrimination conditions, the occupant kind is frequently switched. For example, the discriminated result may be switched due to the load fluctuating corresponding to the small change in posture such as stretching and turning around. This is not preferable in precisely discriminating the occupant kind, so that when the occupant kind is discriminated on the basis of the discrimination conditions differing from a case, where the load measured by the load measuring means varies from the smaller side to the larger side, to a case where it varies from the larger side to the smaller side, such problem is preferably solved.
Preferably, the load measuring means measures the load applied to the rear side of the vehicle seat and the state detecting means detects a presence of an occupant body on the front side of the vehicle seat.
Also, preferably, when the state detecting means detects the presence of the occupant, the discriminating means discriminates the kind of the occupant on the basis of a first discrimination condition while discriminates the kind of the occupant on the basis of a second discrimination condition using a larger load than that in the first discrimination condition when the state detecting means detects no presence of the occupant.
When the load applied to the vehicle seat is detected, the total load may be calculated generally using four load sensors. However, the load is not necessarily applied uniformly on the four sensors. As described above, the vehicle seat may be constructed with the slightly raised front side and with the slightly sunk rear side so that an occupant may easily recline on the back. Therefore, the load due to an occupant sitting in a generally supposed posture is mainly applied to the rear side. Accordingly, when the load measuring means according to the present invention measures the load applied to the rear side of the vehicle seat, the load applied to the vehicle seat can be measured substantially precisely with a small number of load sensors. This Is postulated that the occupant is sitting in a generally supposed posture, and this is guaranteed by the result detected by the state detecting means. That is, when the occupant is sitting in a generally supposed posture, the body of the occupant, such as legs, must exist on the front side of the vehicle seat. Thus, when the state detecting means can detect the presence of the occupant body on the front side of the vehicle seat, the sitting posture of the occupant can be detected.
The discriminating means discriminates the occupant using any one of the first and second conditions on the basis of the result detected by the state detecting means, so that the occupant can be precisely discriminated. If the presence of the occupant body is not detected by the state detecting means, the standing child on the seat may be supposed, for example. In this case, in consideration that the load of the occupant (child) is measured to be larger than that in a normal posture, the discrimination condition (second discrimination condition) using a larger load is applied. Consequently, a vehicle occupant discrimination apparatus can be provided which is capable of precisely discriminating a vehicle occupant using load data detected by a small number of load sensors.
Preferably, the discriminating means includes discrimination state confirming means for confirming a former discrimination state, and wherein when the former discrimination state is an adult, the discriminating means discriminates the kind of the occupant on the basis of a third discrimination condition using a smaller load than that in the first discrimination condition while discriminates the kind of the occupant on the basis of the result detected by the state detecting means when the former discrimination state is a child.
Preferably, the discriminating means includes discrimination state confirming means for confirming a former discrimination state,
wherein when the former occupant kind is an adult and the presence of an occupant body is detected by the state detecting means, or when the former occupant kind is a child and the presence of an occupant body is not detected by the state detecting means, the discriminating means determines the former occupant to be the kind of the occupant, and
wherein when the former discrimination state is other than the states described above, the discriminating means discriminates the kind of the occupant on the basis of the result measured by the load measuring means.
Preferably, when the kind of the occupant discriminated on the basis of the discrimination condition changes to the kind different from that before load change in accordance with the load change due to change in sitting posture of the occupant, the discriminating means holds the kind before the load change for a predetermined time established on the basis of the kind before the load change and the result detected by the state detecting means.
In order to achieve the object described above, in a vehicle occupant discrimination apparatus for discriminating the kind of an occupant on a vehicle seat on the basis of the load applied to the vehicle seat according to another aspect of the present invention, the apparatus includes state detecting means for detecting the occupant state on the vehicle seat; load measuring means for measuring the load applied to the vehicle seat by the sitting of the occupant; and discriminating means for discriminating the kind of the occupant on the basis of a discrimination condition discriminating whether the occupant is an adult or a child and the result measured by the load measuring means, wherein when the kind of the occupant discriminated on the basis of the discrimination condition changes to the kind different from that before load change in accordance with the load change due to change in sitting posture of the occupant, the discriminating means holds the kind before the load change for a predetermined time established on the basis of the kind before the load change and the result detected by the state detecting means.
As described above, the result measured by the load measuring means may vary due to the load fluctuating corresponding to the small change in occupant posture such as stretching and turning around. The determined result on the basis of the detected result may also be switched due to the change in detected result. However, the occupant posture such as stretching and turning around is not generally permanent during traveling in a vehicle. In general, it is returned to a normal posture after the elapse of a predetermined time. Then, when the kind discriminated before the load change is held for a predetermined time as the configuration mentioned above, the meaningless switching of the discriminated result cannot preferably be generated. This predetermined time is established on the basis of the kind before the load change and the result detected by the state detecting means. Therefore, when the kind before the load change that is the former discriminated result is possibly different from the kind supposed from the result detected by the state detecting means, the predetermined time can be reduced. Inversely, when the discriminated result possibly agrees with the supposed kind, the predetermined time can be increased. That is, such flexible setting is possible. As a result, a vehicle occupant discrimination apparatus capable of precisely discriminating a vehicle occupant using load data can be provided.
Preferably, the load measuring means measures the load applied to the rear side of the vehicle seat and the state detecting means detects the presence of an occupant body on the front side of the vehicle seat.
As described above, the load due to an occupant sitting on a seat in a generally supposed posture is mainly applied to the rear portion of the seat. Accordingly, when the load measuring means according to the present invention measures the load applied to the rear side of the vehicle seat, the load applied to the vehicle seat can be measured substantially precisely with a small number of load sensors. This is postulated that the occupant is sitting in a generally supposed posture, and this is guaranteed by the result detected by the state detecting means. That is, when the occupant is sitting in a generally supposed posture, the body of the occupant, such as legs, must exist on the front side of the vehicle seat. Thus, when the state detecting means can detect the presence of the occupant body on the front side of the vehicle seat, the sitting posture of the occupant can be detected.
In order to achieve the object described above, in a vehicle occupant discrimination apparatus for discriminating the kind of an occupant on a vehicle seat on the basis of the load applied to the vehicle seat according to another aspect of the present invention, the apparatus includes state detecting means for detecting the occupant state on the vehicle seat; load measuring means for measuring the load applied to the vehicle seat by the sitting of the occupant; and discriminating means for discriminating the kind of the occupant on the basis of a discrimination condition discriminating whether the occupant is an adult or a child and the result measured by the load measuring means, wherein the discriminating means discriminates the kind of the occupant on the basis of the discrimination condition differing in accordance with the result detected by the state detecting means, and wherein when the kind of the occupant discriminated on the basis of the discrimination condition changes to the kind different from that before load change in accordance with the load change due to change in sitting posture of the occupant, the discriminating means holds the kind before the load change for a predetermined time established on the basis of the kind before the load change and the result detected by the state detecting means.
According to this featured configuration, the discriminating means discriminates the kind of the occupant on the basis of the discrimination condition differing in accordance with the result detected by the state detecting means and the result measured by the load measuring means. Furthermore, when the discriminated result changes to the kind different from that before load change in accordance with the load change due to change in sitting posture of the occupant, the discriminating means holds the kind before the load change that is the former discriminated result for a predetermined time established on the basis of the former discriminated result and the result detected by the state detecting means. Accordingly, as described above, a vehicle occupant discrimination apparatus can be provided which is capable of precisely discriminating a vehicle occupant even using load data detected by a small number of load sensors.
Preferred embodiments of the present invention will be described below with reference to the drawings.
The sensor power supply SW circuit 42 is for supplying power to the switch sensor 1a and the load sensors 2a and 2b. As is apparent from the drawing, the power supplying to these sensors is controlled by the CPU 3. For example, the CPU 3 supplies power to these sensors at predetermined time intervals, and receives detected and measured results. Details will be described later; the occupant is discriminated on the basis of the detected and measured results received.
The switch sensor 1a is for detecting the turning on/off according to the embodiment. It may be a mechanical switch which turns on when an occupant is sitting above the switch sensor 1a in the seat 11 or it may be a switch for detecting the occupant by changes in electrostatic capacitance. Alternatively, the state detecting means 1 may be achieved by an optical sensor for observing the front of the seat 11, or by a visual sensor with image processing. According to the embodiment, the switch sensor 1a will be described below as the state detecting means 1 for detecting the turning on/off, and in the drawings, it will be referred to as “the on/off sensor”.
The load sensors 2a and 2b are sensor units including a train gauge and a signal processing IC. Alternatively, in that only the strain gauge may be arranged in the lower portion of the seat 11 and the signal processing may be performed in the ECU 4. According to the embodiment, the load sensors 2a and 2b will be described as the load measuring means 2.
The output circuit 44 is for outputting a control signal to an airbag (A/B) ECU 52 on the basis of the discriminated result of an occupant by the CPU 3. For example, it outputs the control signal that the inflation is suppressed if the seat is vacant even in an emergency, and it is differentiated depending on the occupant being whether an adult or a child. Alternatively, while the CPU 3 may output only the discriminated result via the output circuit 44, the above-mentioned various controls may be executed by the airbag ECU 52 on the basis of the discriminated result.
The control circuit 43 is for determining whether the seatbelt is precisely worn or not, and the determined result is input in the CPU 3. This determination is performed on the basis of the result detected by the buckle switch (SW) 51. If the seatbelt is not precisely worn, if it is not worn, for example, it may occasionally be preferable not to inflate the airbag even in an emergency. In such a case, the CPU 3 feeds the control signal for suppressing the airbag inflation to the airbag ECU 52 via the output circuit 44. Alternatively, the information that the airbag is not worn is fed to the airbag ECU 52, and the control based on this information may be executed by the airbag ECU 52.
The communication circuit 45 is an interface for calibrating the load measuring means 2 and the state detecting means 1 in a factory, a dealer, and a repair shop. For precise occupant discrimination, accuracies in the load measuring means 2 and the state detecting means 1 are important. In particular, according to the embodiment, the load measuring means 2 utilizes a load sensor using a strain gauge, so that the reference load (so-called zero-point load) may vary. Thus, upon shipping, inspecting, or repairing of a vehicle, the adjustment or calibration is performed by connecting it to an inspection device 53. The communication circuit 45 is an interface circuit to the inspection device 53.
A first embodiment of the occupant discrimination will be described below with reference to
In such a manner, on the basis of the first and second discrimination conditions established corresponding to the result detected by the state detecting means 1, and the result measured by the load measuring means 2, an occupant is discriminated. When the result measured by the load measuring means (the detected value, the total value) fluctuates in the vicinity of the boundary between the discrimination conditions, the determination is frequently switched, so that the discriminated result is also switched. Thus, a threshold value C (third discrimination condition) is provided as shown in
A second embodiment of the occupant discrimination will be described below with reference to
Determined results used by the discriminated result output unit 32 are shown in
A case is supposed herein in that the kind determined by the determination unit 31 (the former discriminated result), i.e., “adult” changes to the different kind “child”.
By the supposition mentioned above, when the former discriminated result stored in the memory 33 (the determined result by the determination unit 31, i.e., the kind discriminated before the load change) is “adult” in “on” state of the switch sensor 1a (the state detecting means 1), the CPU 3 (discriminating means 3) discriminates the occupant as follows. Even if the result determined by the determination unit 31 is “child” corresponding to the change in measured result by the load sensors 2a and 2b (the load measuring means 2), this is not output as the discriminated result. That is, the discriminated result output unit 32 outputs the former discriminated result stored in the memory 33 (the kind discriminated before the load change) as the discriminated result (see
A case is supposed herein in that the kind determined (discriminated) by the determination unit 31 that is “child” changes to the different kind “adult”.
By the supposition mentioned above, when the former discriminated result stored in the memory 33 (the determined result by the determination unit 31) is “child” in “OFF” state of the switch sensor 1a (the state detecting means 1), the CPU 3 (discriminating means 3) discriminates the occupant as follows. Even if the result determined by the determination unit 31 is “adult” corresponding to the change in measured result by the load sensors 2a and 2b (the load measuring means 2), this is not output as the discriminated result. That is, the discriminated result output unit 32 outputs the former discriminated result stored in the memory 33 (the kind discriminated before the load change) as the discriminated result (see
A case is supposed herein in that the kind determined by the determination unit 31 that is “child” changes to the different kind “adult”.
By the supposition mentioned above, when the former discriminated result stored in the memory 33 (the determined result by the determination unit 31) is “child” in “ON” state of the switch sensor 1a (the state detecting means 1), the CPU 3 (discriminating means 3) discriminates the occupant as follows. If the result determined by the determination unit 31 is “adult” corresponding to the change in measured result by the load sensors 2a and 2b (the load measuring means 2), this is adopted as the precise discriminated result. That is, the discriminated result output unit 32 outputs the kind different from the former discriminated result stored in the memory 33 (the kind discriminated before the load change) as the discriminated result (see
A case is supposed herein in that the kind determined by the determination unit 31 that is “adult” changes to the different kind “child”.
By the supposition mentioned above, when the former discriminated result stored in the memory 33 (the determined result by the determination unit 31) is “adult” in “OFF” state of the switch sensor 1a (the state detecting means 1), the CPU 3 (discriminating means 3) discriminates the occupant as follows. If the result determined by the determination unit 31 is “child” corresponding to the change in measured result by the load sensors 2a and 2b (the load measuring means 2), this is adopted as the precise discriminated result. That is, the discriminated result output unit 32 outputs the kind different from the former discriminated result stored in the memory 33 (the kind discriminated before the load change) as the discriminated result (see
With reference to
In the above-description, “being held” means that the former discriminated result (the kind before load change) is continuously held in the memory 33 while “being maintained” means that the output of the discriminated result output unit 32 follows the former discriminated result (the kind before load change). Hence, the difference between “being held” and “being maintained” is that of the action extent in the interior of the discriminating means 3, and there is no large difference in the vehicle occupant discriminating apparatus. This is similar to between “determination” and discrimination”. For expressing the difference of the action extent in the interior of the discriminating means 3, “determination” is used for the action of the determination unit 31 in the discriminating means 3 and “discrimination” is used for the action in the entire discriminating means 3. However, there is no large difference in the vehicle occupant discriminating apparatus.
In the above-description with reference to
With reference to
A case is supposed herein in that the kind determined by the determination unit 31 that is “adult” changes to the different kind “child” by recognizing the load change detected by the load measuring means 2 (the load change corresponding to the change in occupant posture). The solid line of the graph in
When the former discriminated result stored in the memory 33 (the determined result by the determination unit 31) is “adult” in “ON” state of the switch sensor 1a (the state detecting means 1), the CPU 3 (discriminating means 3) discriminates the occupant as follows. Although if the result determined by the determination unit 31 is “child” corresponding to the change in measured result by the load sensors 2a and 2b (the load measuring means 2), the CPU 3 does not output this instantly as the discriminated result. That is, the discriminated result output unit 32 maintains the former discriminated result stored in the memory 33 (the kind discriminated before the load change) for a predetermined time t1. After the elapse of time t1, the determination is again performed by the determination unit 31, and the CPU 3 outputs the discrimination result on the basis of this result. After the elapse of time t1, if the occupant returns to the normal posture and the measured load is returned as the dotted line of
In the same way as in
When the discrimination state is confirmed that the occupant is “adult” at #30, the on- or off-signal is determined at #31a. If it is the on-signal, the load calculated at #1 is not estimated and the process proceeds to #42 so as to maintain the discrimination result that is “adult” (corresponding to the case shown in
When the discrimination state is confirmed that the occupant is “child” at #30, the on- or off-signal is determined at #31b. If it is the off-signal, the load calculated at #1 is not estimated and the process proceeds to #43 so as to maintain the discrimination result that is “child” (corresponding to the case shown in
When the discrimination state is confirmed that the occupant is “adult” at #30, the on- or off-signal is determined at #31a. If it is the on-signal, a time t1 is set as a predetermined time T (#35a). Then, the load calculated at #1 is estimated on the basis of the threshold value X (#41). If the load is more than the threshold value X, the occupant is determined to be “adult” (#42). Since this determined result is the same as the stored former discrimination result, the former discrimination result is maintained.
In the same way as in
On the other hand, if the load is less than the threshold value X, the occupant is determined to be “child” (#43). Since the kind is different from the former discriminated result in this case, the discrimination result is not renewed before the elapse of the predetermined time T (=t1) established previously at #37 so as to maintain the former discriminated result. For this duration, if a programmed interruption, such as switching of the input from the switch sensor 1a, is generated (#36), the process proceeds to the next one (#1B) before the elapse of the predetermined time T.
After the elapse of the predetermined time T (=t1) (#37), or after the interruption processing (#36), the load is freshly calculated (#1B). Under the apprehension that the determination result at #41 of the load calculated at #1 is used for discriminating the occupant, the elapse of the predetermined time T has been waited. Thus, the load after the elapse of the predetermined time T is freshly determined at #42 of #4B. These series of processing correspond to the case shown in
On the other hand, in the determination whether the signal is on or off at #31a, if it is the off-signal, a time t4 is set as a predetermined time T (#35d). Then, the load calculated at #1 is estimated on the basis of the threshold value X (#41). If the load is less than the threshold value X, the occupant is determined to be a child (#42). Since the kind is different from the former discriminated result, after waiting the elapse of the predetermined time T previously set at #37 (T=t4, in this case), the load is estimated at #4B. In addition, the former discriminated result in this case might be preferably renewed promptly if it would be determined to be the different kind by the combination of the occupant kind with the result detected by the switch sensor 1a. Hence, the predetermined time t4 is reduced shorter than the above predetermined time t1 so as to put the re-estimation forward. The processing about the interruption generation (#36) is the same as described above.
After the elapse of the predetermined time T (=t4) (#37), or after the interruption processing (#36), the load is freshly calculated (#1B). Since the predetermined time T (=t4) is very short in this case, the using the load calculated at #1 is not so noticed. However, for eliminating noise effect, the load again calculated at #1B may be preferably used. Then, at #4B, the load calculated at #1 is estimated on the basis of the threshold value X (#41). When the load is larger than the threshold value X, the occupant is determined to be an adult (#42); and when the load is less than the threshold value X at #41, the occupant is determined to be a child (#43). These series of processing correspond to the case shown in
When the discrimination state is confirmed that the occupant is “child” at #30, whether the signal is on or off is determined at #31b. If it is the off-signal, a time t2 is set as a predetermined time T (#35b). Then, the load calculated at #1 is estimated on the basis of the threshold value X (#41). If the load is less than the threshold value X, the occupant is determined to be a child (#43). Since this determined result is the same as the former discrimination result, the result is output as it is.
On the other hand, when the load is larger than the threshold value X at #41, the occupant is determined to be an adult (#42). Since the kind is different from the former discriminated result in this case, the discrimination result is not renewed before the elapse of the predetermined time T (=t2) established previously at #37 so as to maintain the former discriminated result. For this duration, if an interruption is generated (#36), the process proceeds to the next one (#1B) before the elapse of the predetermined time T.
After the elapse of the predetermined time T (=t2) (#37), or after the interruption processing (#36), the load is freshly calculated (#1B). Under the apprehension that the determination result at #41 of the load calculated at #1 is used for discriminating the occupant, the elapse of the predetermined time T has been waited. Thus, the load after the elapse of the predetermined time T is freshly determined at #41 of #4B. These series of processing correspond to the case shown in
On the other hand, in the determination whether the signal is on or off at #31b, if it is the on-signal, a time t3 is set as a predetermined time T (#35c). Then, the load calculated at #1 is estimated on the basis of the threshold value X (#41). When the load is larger than the threshold value X, the occupant is determined to be an adult (#42). Since the kind is different from the former discriminated result in this case, after waiting the elapse of the predetermined time T previously set at #37 (T=t3, in this case), the load is estimated at #4B. In addition, the former discriminated result in this case might be preferably renewed promptly if it would be determined to be the different kind by the combination of the occupant kind with the result detected by the switch sensor 1a. Hence, the predetermined time t3 is reduced shorter than the above predetermined time t1 so as to put the re-estimation forward. In addition, the predetermined time t3 is shorter than the above-predetermined time t2 and is similar to the predetermined time t4. The processing about the interruption generation (#36) is also the same as described above.
After the elapse of the predetermined time T (=t3) (#37), or after the interruption processing (#36), the load is freshly calculated (#1B). Since the predetermined time T (=t3) is very short in the same way as in the predetermined time t4, the using the load calculated at #1 is not so noticed. However, for eliminating noise effect, the load again calculated at #1B may be preferably used. Then, at #4B, the load calculated at #1 is estimated on the basis of the threshold value X (#41). When the load is larger than the threshold value X, the occupant is determined to be an adult (#42); and when the load is less than the threshold value X at #41, the occupant is determined to be a child (#43). These series of processing correspond to the case shown in
In addition, in the flowchart of
The embodiment of the present invention has been described by dividing it into the first and second embodiments; alternatively, these embodiments may of course be integrated together. As for the system configuration, the first embodiment shown in
The processes at #1 to #31a and #31b are the same as described above, so that the description thereof is omitted.
When the signal is determined to be *on” at #31b, it may be supposed that the occupant is a child sitting in a normal posture or a stooping adult as shown in
When the signal is determined to be “off” at #31b, it may be supposed that the occupant is a standing child as shown in
When the signal is determined to be “on” at #31a, it may be possibly discriminated that the occupant is an adult as shown in
When the signal is determined to be “off” at #31a, it might be possibly discriminated to be “adult” although the occupant is a standing child as shown in
The processes subsequent to steps #4a and #4b are the same as described above with reference to
For example, in
As described above, the present invention can provide a vehicle occupant discrimination apparatus capable of precisely discriminating a vehicle occupant using load data detected by a small number of load sensors for detecting a load applied to a vehicle seat.
Number | Date | Country | Kind |
---|---|---|---|
2005-081334 | Mar 2005 | JP | national |