This application is a U.S. national stage application of International Application No. PCT/JP2017/031166, filed on Aug. 30, 2017.
The present disclosure relates to a method and device for correcting a position error of a drive-assisted vehicle, with which error arising between a position of a host vehicle and a target route during drive-assisted travel is corrected.
Conventionally, in situations where a steering override is detected and then the end of the steering override is detected during control of autonomous driving or other travel, the driver is presumed to have returned the host vehicle to a travel route set in the center of white lines. One known device for estimating a position of a host vehicle assumes that the position at which the steering override ends is inside a lane, and corrects the self-position of the host vehicle by an amount of GPS/map divergence (e.g., see Japanese Laid-Open Patent Application No. 2017-13586—Patent Document 1).
However, with this conventional device, the self-position of the host vehicle is corrected, and thus any correction applied must take into account all modules that use self-position information, and correction that focuses on vehicle behavior cannot be performed. In other words, because correcting the self-position of the host vehicle usually prioritizes “non-departing/non-colliding,” large corrections to vehicle behavior are sometimes unnecessarily performed, and “smoothness” is sacrificed.
The present disclosure focuses on the above problem, it being an object hereof to enable the selection of whether to prioritize smoothness or to prioritize non-departure, depending on the scenario, and to achieve vehicle behavior where it is possible to feel more at ease.
In order to achieve the above objective, in the present disclosure, a controller is provided that corrects error arising between a position of a host vehicle and a target route during drive-assisted travel.
In a method for correcting a position error of a drive-assisted vehicle, a lane boundary of a lane in which the host vehicle travels is detected.
Positional relationships between the lane boundary that was detected and a target route on a map are compared, and in situations where the target route is within a prescribed distance of the lane boundary, or in situations where the target route is on the opposite side of the lane boundary to the host vehicle, the target route is corrected with a sideways movement amount in a lateral direction.
By correcting a target route with sideways movement rather than correcting the self-position of the host vehicle, as described above, it is possible to select whether to prioritize smoothness or to prioritize non-departure, depending on the scenario, and vehicle behavior where it is possible to feel more at ease can be achieved.
A preferred embodiment for implementing a method and device for correcting a position error of a drive-assisted vehicle according to the present disclosure will be described below with reference to a first embodiment illustrated in the drawings.
First, the configuration will be described. The method and device for generating a target method and device for correcting a position error of the first embodiment are applied to an autonomous vehicle (one example of a drive-assisted vehicle) in which steering/drive/braking are automatically controlled according to an autonomous driving mode selection using target route information generated by a navigation control unit. The configuration of the first embodiment will be described under the headings “Overall system configuration,” “Detailed configuration of navigation control unit,” and “Overall configuration of target route corrector,” “Detailed configuration of road boundary information consolidation unit,” and “Detailed configuration of lateral correction amount calculation unit.”
Overall System Configuration
As illustrated in
The onboard sensors 1 are sensors that are mounted on an autonomous vehicle and acquire information about the surroundings of the host vehicle. The onboard sensors 1 include a forward recognition camera 11, a rear recognition camera 12, a right recognition camera 13, a left recognition camera 14, lidar 15, and radar 16. The onboard sensors 1 include, as sensors that acquire information required for autonomous driving control other than information about the surroundings of the host vehicle, a vehicle speed sensor, a yaw rate sensor, a turn signal switch, etc. (none of which are illustrated).
In combination, the forward recognition camera 11, the rear recognition camera 12, the right recognition camera 13, and the left recognition camera 14 configure a surroundings-recognizing camera (around view monitor (AVM)). This surroundings-recognizing camera detects objects in a travel path of the host vehicle, objects outside of the travel path of the host vehicle (road structures, leading vehicles, trailing vehicles, oncoming vehicles, neighboring vehicles, pedestrians, bicycles, motor bikes), the travel path of the host vehicle (white road lines, road boundaries, stop lines, pedestrian crossings), road signs (speed limits), etc.
As illustrated in
Right white line lateral position refers to a length to an inside edge position of a right white line WR from a position of a vehicle width direction center line CL of a host vehicle A. Left white line lateral position refers to a length to an inside edge position of a left white line WL from a position of the vehicle width direction center line CL of the host vehicle A.
The lidar 15 and the radar 16 are disposed at positions at the front end of the host vehicle with the output wave illumination axes thereof pointing in front of the vehicle. By receiving waves that are reflected back, the lidar 15 and the radar 16 detect presence of objects in front of the host vehicle and distances to objects in front of the host vehicle are detected. The lidar 15 and the radar 16, which are two types of ranging sensors, combine to configure lidar/radar, and, for example, a laser radar, a millimeter wave radar, an ultrasonic radar, a laser range finder, etc., can be employed therefor. The lidar 15 and the radar 16 detect positions of and distances to objects, including objects in the travel path of the host vehicle, and objects outside of the travel path of the host vehicle (road structures, leading vehicles, trailing vehicles, oncoming vehicles, neighboring vehicles, pedestrians, bicycles, motor bikes).
As illustrated in
The surrounding environment recognition unit 2 receives, as inputs, image data from the recognition cameras 11, 12, 13, 14 and object data from the lidar/radar 15, 16. The surrounding environment recognition unit 2 includes a calibration processing unit 21 that generates calibration data for image data and object data, and an object recognition processing unit 22 that performs object recognition processing on the basis of the calibration data.
The calibration processing unit 21 estimates a parameter for image data from the recognition cameras 11, 12, 13, 14 and a parameter for object data from the lidar/radar 15, 16, and uses these parameters to generate and output image data and object data calibration data. For example, in the case of image data from the recognition cameras 11, 12, 13, 14, the calibration processing unit 21 uses the parameters to perform the correction, etc., of optical axes and lens distortion.
The object recognition processing unit 22 receives, as input, calibration data from the calibration processing unit 21, performs object recognition processing on the basis of the calibration data, and outputs recognition result data. The object recognition processing unit 22, for example, performs processing comparing image data and object data, and when it has been confirmed, using the object data, that an object is present at a position for an object candidate that is based on the image data, the object recognition processing unit 22 recognizes that an object is present and recognizes what the object is.
The navigation control unit 3 receives, as input, host vehicle position information from a GNSS antenna 31, combines GPS (global positioning system) utilizing satellite communications with map data, including road information, and generates a target route to a destination from a current position using a route search. In addition to displaying the generated target routes on a map, and the navigation control unit 3 outputs the target route information.
“GNSS” is short for “global navigation satellite system,” and “GPS” is short for “global positioning system.” Detailed configuration of the navigation control unit 3 will be described below.
The autonomous driving control unit 4 receives, as inputs, recognition result data from the object recognition processing unit 22 of the surrounding environment recognition unit 2, and target route information from the navigation control unit 3. The autonomous driving control unit 4 generates target vehicle speeds, target rates of acceleration, and target rates of deceleration on the basis of the input information. The autonomous driving control unit 4 derives drive control command values using a target rate of acceleration that was generated, and outputs a result of this derivation to a drive actuator 51. The autonomous driving control unit 4 derives brake control command values using a target rate of deceleration that was generated, and outputs a result of this derivation to a brake actuator 52. The autonomous driving control unit 4 derives steering control command values using target route information inputted thereto, and outputs a result of this derivation to a steering actuator 53.
The actuators 5 include the drive actuator 51, the brake actuator 52, and the steering actuator 53.
The drive actuator 51 receives, as input, a drive control command value from the autonomous driving control unit 4 and controls the drive force of a drive source. In other words, in the case of a vehicle with an engine, the drive actuator 51 is an engine actuator. In the case of a hybrid vehicle, the drive actuator 51 is an engine actuator and a motor actuator. In the case of an electric vehicle, the drive actuator 51 is a motor actuator.
The brake actuator 52 receives, as input, a brake control command value from the autonomous driving control unit 4 and controls the braking force of brakes. A hydraulic booster, an electric booster, etc., is used as the brake actuator 52.
The steering actuator 53 receives, as input, a steering control command value from the autonomous driving control unit 4 and controls the steering angle of a steering wheel. A steering angle control motor, etc., is used as the steering angle actuator 53.
Detailed Configuration of Navigation Control Unit
Detailed configuration of the navigation control unit 3, which sets a destination, derives an optimal target route, and displays the target route for autonomous driving, will be described below with reference to
As illustrated in
The position information processing unit 32 performs processing for detecting the latitude and longitude of stopping positions of the host vehicle and travel positions of the host vehicle on the basis of satellite communication information inputted from the GNSS antenna 31. Host vehicle position information from the position information processing unit 32 is outputted to the route search processing unit 35.
A destination for the host vehicle is inputted into, and set in, the destination setting unit 33 via, inter alia, a touch panel operation on a display screen of the display device 37 by the driver. Destination information from the destination setting unit 33 is outputted to the route search processing unit 35.
The map data storage unit 34 is a storage unit for so-called digital map data in which latitude/longitude and map information are associated. The map data includes road information that has been associated with respective points. The road information is defined by nodes and links that connect nodes together. The road information includes information that specifies roads according to road position/area, and information indicating a type of each road, a width of each road, and road geometry. The position of intersections, the directions of approach of intersections, intersection type, and other information relating to intersections is stored in association with respective identification information for each road link in the road information. Road type, road width, road geometry, whether forward progress is permitted, right-of-way relationships, whether passing is permitted (whether entering an adjacent lane is permitted), speed limit, and other information relating to roads is also stored in association with respective identification information for each road link in the road information.
The route search processing unit 35 receives, as input, host vehicle position information from the position information processing unit 32, destination information from the destination setting unit 33, and road map information (road map data) from the map data storage unit 34. The route search processing unit 35 generates a target route by performing a route cost computation, etc., on the basis of the road map information. GPS and a map can be used to generate a target route. Alternatively, instead of using GPS and a map, when a leading vehicle is present, a travel trajectory of the leading vehicle can be used as a target route. In such case, when the positional accuracy of GPS is low, using this travel trajectory decreases a sideways movement amount by the target route corrector 36, described below, and vehicle behavior can be made smoother.
The target route corrector 36 receives, as inputs, recognition result data from the object recognition processing unit 22, and a target route from the route search processing unit 35. In addition to a target route, the target route corrector 36 receives, as inputs, (left and right) lateral direction distances to white lines, (left and right) lateral direction distances to stationary objects, (left and right) lateral direction distances to curbs, a direction indicator (turn signal) in-use-by-driver condition, a lane-change condition, and information such as vehicle speed. The target route corrector 36 detects lane boundaries of the lane in which the host vehicle travels on the basis of this input information. The target route corrector 36 compares positional relationships between lane boundaries that were detected and a target route on a map, and in situations where the target route is within a prescribed distance of a lane boundary, or in situations where the target route is on the opposite side of a lane boundary to the host vehicle, the target route is corrected with sideways movement in the lateral direction.
“Prescribed distance” refers to a distance at which a sense of unease would be imparted to the driver when the host vehicle approaches a lane boundary. For example, when the distance from the vehicle width direction center line of the host vehicle to a lane boundary is approximately 2 m (when the distance from a side of the host vehicle to a lane boundary is approximately 1 m). In situations where a target route is on the opposite side of a lane boundary to the host vehicle, the target route is corrected with sideways movement in the lateral direction no matter what the distance to the host vehicle.
The display device 37 receives, as inputs, map data information from the map data storage unit 34 and target route information from the target route corrector 36. The display device 37 displays a map, roads, a target route, a position of the host vehicle, and a destination on a display screen. In other words, during autonomous travel the display device 37 provides information visually representing the position of host vehicle on the map, such as for where the host vehicle is moving.
Overall Configuration of Target Route Corrector
The target route corrector 36 corrects navigational errors arising between a position of the host vehicle and a target route when the position of the host vehicle, detected using navigation information, is overlaid onto map information during autonomous travel. This correction is made with lateral/sideways movement of the target route. As illustrated in
The road boundary information consolidation unit 361 receives, as inputs, (left and right) lateral direction distances to white lines, (left and right) lateral direction distances to stationary objects, (left and right) lateral direction distances to curbs, a direction indicator (turn signal) in-use-by-driver condition, a lane-change condition, and information such as vehicle speed. The road boundary information consolidation unit 361 detects lane boundaries of the lane in which the host vehicle A travels, and outputs (left and right) lateral direction distances to the lane boundaries, with respect to the host vehicle A, to the lateral correction amount calculation unit 362.
The lateral correction amount calculation unit 362 receives, as inputs, a target route from the route search processing unit 35, (left and right) lateral direction distances to lane boundaries from the road boundary information consolidation unit 361, a direction indicator in-use-by-driver condition, a lane-change condition, and information such as vehicle speed. The lateral correction amount calculation unit 362 compares positional relationships between lane boundaries that have been detected and a target route on a map, and in situations where the target route is within a prescribed distance of a lane boundary, or in situations where the target route is on the opposite side of a lane boundary to the host vehicle A, calculates a lateral correction amount for the target route.
The lateral/sideways movement unit 363 receives, as inputs, a target route from the route search processing unit 35, and a lateral correction amount from the lateral correction amount calculation unit 362. As illustrated in bubble B in the lower right part of
Detailed Configuration of Road Boundary Information Consolidation Unit
As illustrated in
When the selector 361b does not receive, as an input, a direction indicator in-use-by-driver condition or a lane-change condition via the OR circuit 361a, the selector 361b selects a value of zero (fixed value) for an amount of lateral direction distance adjustment. When the selector 361b receives, as an input, a direction indicator in-use-by-driver condition or a lane-change condition via the OR circuit 361a, the selector 361b applies an amount of lateral direction distance adjustment that gradually reduces the sideways movement amount of the target route.
In other words, when moving the target route sideways in the lateral direction, if there is an intervening steering operation by the driver, the sideways movement amount of the target route is gradually reduced, and the assessment of a steering operation intervention by the driver is made using a turn signal operation by the driver.
The road boundary adjustment unit 361c receives, as input, vehicle speed, and the road boundary adjustment unit 361c applies an amount of lateral direction distance adjustment such that a lateral direction distance increases and the amount that the target route is corrected with sideways movement correspondingly decreases with respect to increases in the vehicle speed.
The adjustment amount adder 361d adds an amount of lateral direction distance adjustment from the selector 361b and an amount of lateral direction distance adjustment from the road boundary adjustment unit 361c together, and this sum is used as an amount of adjustment in the mediation unit 361e.
The mediation unit 361e receives, as inputs, (left and right) lateral direction distances to white lines, (left and right) lateral direction distances to stationary objects, (left and right) lateral direction distances to curbs, and an amount of lateral direction distance adjustment from the adjustment amount adder 361d. The mediation unit 361e outputs mediated leftward distances to road boundaries and mediated rightward distances to road boundaries. The mediation unit 361e will be described in detail below.
The one-side-loss supplementing unit 361f receives, as inputs, mediated leftward distances to road boundaries, mediated rightward distances to road boundaries, and vehicle speed. Of the mediated leftward distances to road boundaries and mediated rightward distances to road boundaries, when a portion of lateral direction distance information on one side has been lost, the one-side-loss supplementing unit 361f supplements the lateral direction distance information on the side of loss with the vehicle speed, and outputs (left and right) lateral direction distances to lane boundaries.
When a portion of lateral direction distance information is lost in situations where the shape of a road edge is not parallel to the road, of road edges detected within bounds corresponding to a prescribed distance that varies depending on the vehicle speed of the host vehicle, a detection value based on the road edge closest to the host vehicle is used as lane boundary information. Lateral direction distance information on the side of loss is supplemented thereby.
As illustrated in
The (left and right) lateral direction distances to white lines adder 361e1 and subtractor 361e4 take a value of zero (fixed value) as an amount to adjust lateral direction distances to white lines.
In other words, “white lines” are recognized as lane edges for the target route of the host vehicle, and a lateral direction distance adjustment is not performed therefor.
The (left and right) lateral direction distances to stationary objects adder 361e2 and subtractor 361e5 take a prescribed value (fixed value) as an amount to adjust lateral direction distances to stationary objects.
In other words, “stationary objects” are recognized as ends of the road in which the host vehicle travels, and a lateral direction distance adjustment is performed in order to acquire lane edge information from road edges. Stated differently, when detecting the lane boundaries of a lane in which the host vehicle travels, if a position of a road edge (stationary object) is detected, an inside position corresponding to a prescribed width from a detected road edge (stationary object) is used as lane boundary information.
The (left and right) lateral direction distances to curbs adder 361e3 and subtractor 361e6 take a prescribed value (fixed value) as an amount to adjust lateral direction distances to curbs.
In other words, “curbs” are recognized as ends of the road in which the host vehicle travels, and a lateral direction distance adjustment is performed in order to acquire lane edge information from road edges. Stated differently, when detecting the lane boundaries of a lane in which the host vehicle travels, if a position of a road edge (curb) is detected, an inside position corresponding to a prescribed width from a detected road edge (curb) is used as lane boundary information.
The minimum value selector 361e7 receives, as inputs, (left) lateral direction distances to white lines that have passed through the subtractor 361e1, (left) lateral direction distances to stationary objects that have passed through the subtractor 361e2, and (left) lateral direction distances to curbs that have passed through the subtractor 361e3, selects a minimum value, and uses this value as a leftward direction distance to a road boundary. In other words, when detecting the lane boundaries of a lane in which the host vehicle travels, if both a position of a lane boundary (a white line position) and a position of road edge (a stationary object position or a curb position) are detected, a detection value of an inside position closer to the host vehicle is used as lane boundary information.
The maximum value selector 361e8 receives, as inputs, (right) lateral direction distances to white lines that have passed through the adder 361e4, (right) lateral direction distances to stationary objects that have passed through the adder 361e5, and (right) lateral direction distances to curbs that have passed through the adder 361e6, selects a maximum value, and uses this value as a rightward direction distance to a road boundary.
The last-stage subtractor 361e9 subtracts an amount of adjustment from the adjustment amount adder 361d from a leftward direction distance to a road boundary from the minimum value selector 361e7 yielding an adjusted leftward direction distance to a road boundary.
The last-stage adder 361e10 adds an amount of adjustment from the adjustment amount adder 361d to a rightward direction distance from the maximum value selector 361e8, resulting in an adjusted rightward direction distance to a road boundary.
Detailed Configuration of Lateral Correction Amount Calculation Unit 362
As illustrated in
The lateral deviation calculation unit 362a, receives, as input, a target route from the route search processing unit 35, and calculates a lateral deviation Y0 between the target route and the host vehicle.
The positional relationship ascertainment unit 362b receives, as inputs, a lateral deviation Y0 from the lateral deviation calculation unit 362a, and (left and right) lateral direction distances to lane boundaries from the road boundary information consolidation unit 361. By comparing positional relationships between a target route and lane edges, the positional relationship ascertainment unit 362b comes to ascertain (grasp) the positional relationships between the target route and lane boundaries. In situations where the target route is within a prescribed distance of a (left) lane boundary, or in situations where the target route is on the opposite side of a (left) lane boundary to the host vehicle, the positional relationship ascertainment unit 362b outputs a left-boundary-detected condition (flag). In situations where the target route is within a prescribed distance of a (right) lane boundary, or in situations where the target route is on the opposite side of a (right) lane boundary to the host vehicle, the positional relationship ascertainment unit 362b outputs a right-boundary-detected condition (flag).
The lateral correction amount computation unit 362c receives, as inputs, a left-boundary-detected condition (flag) and a right-boundary-detected condition (flag) from the positional relationship ascertainment unit 362b, and (left and right) lateral direction distances to lane boundaries from the road boundary information consolidation unit 361. The lateral correction amount computation unit 362c computes a lateral correction amount so that a position of a target route and a position of the host vehicle are aligned, and then outputs a result of this computation as a target value for a lateral correction amount.
The maximum rate of change determination unit 362d receives, as inputs, a direction indicator in-use-by-driver condition, a lane-change condition, vehicle speed, a left-boundary-detected condition (flag), and a right-boundary-detected condition (flag). The maximum rate of change determination unit 362d determines a lower limit value and an upper limit value for a rate of change of the lateral correction amount (speed of movement of a target route). In other words, when correcting a target route with sideways movement in the lateral direction, the maximum rate of change determination unit 362d has functionality that not only restricts the speed of movement (rate of change of the lateral correction amount) at which the target route is moved sideways in the lateral direction to a prescribed speed, but also restricts the speed of movement in a manner that varies in accordance with circumstances. Detailed configuration of the maximum rate of change determination unit 362d will be described below.
The rate limiter 362e receives, as inputs, a target value for a lateral correction amount from the rate of change maximum value determination unit 362d, and a lower limit value for the rate of change of the lateral correction amount and an upper limit value for the rate of change of the lateral correction amount from the maximum rate of change determination unit 362d. The rate of change of the lateral correction amount (speed of movement of a target route) is used to apply a limit on the target value for a lateral correction amount, yielding a lateral correction amount.
The maximum rate of change determination unit 362d includes a low-vehicle-speed change inhibitor 362d1, a first rate-switching unit 362d2, a second rate-switching unit 362d3, a third rate-switching unit 362d4, a fourth rate-switching unit 362d5, a first rate-summing unit 362d6, and a second rate-summing unit 362d7.
The low-vehicle-speed change inhibitor 362d1 receives, as input, vehicle speed, and, if the vehicle speed of the host vehicle drops, chooses a vehicle-speed-contingent rate of change so that the speed of movement of a target route decreases in accordance with the drop in vehicle speed. If the host vehicle stops, the low-vehicle-speed change inhibitor 362d1 sets the vehicle-speed-contingent rate of change to zero.
Using the lane-change condition as a trigger, the first rate-switching unit 362d2 selects a vehicle-speed-contingent rate of change in normal travel scenarios not involving a lane change, and switches the rate of change to zero when input with a lane-change condition.
Using the direction indicator in-use-by-driver condition, the second rate-switching unit 362d3 switches to the rate of change from the first rate-switching unit 362d2 when the direction indicator is not in use, and switches the rate of change to infinity when input with a direction indicator in-use condition.
Using a right-boundary-detected condition (flag) as a trigger, the third rate-switching unit 362d4 switches between a rate increase (fixed value) and a rate decrease (fixed value).
Using a left-boundary-detected condition (flag) as a trigger, the fourth rate-switching unit 362d5 switches between a rate increase (fixed value) and a rate decrease (fixed value).
The first rate-summing unit 362d6 receives, as inputs, a rate of change from the second rate-switching unit 362d3 and a rate of change from the third rate-switching unit 362d4, and sums both rates of change to calculate an upper limit value for the rate of change of the lateral correction amount.
The second rate-summing unit 362d7 receives, as inputs, a rate of change from the second rate-switching unit 362d3 and a rate of change from the fourth rate-switching unit 362d5, and sums both rates of change to calculate an upper limit value for the rate of change of the lateral correction amount.
In the maximum rate of change determination unit 362d, the speed of movement (rate of change) of a target route is controlled as given below.
(a) When moving a target route sideways in the lateral direction, if the host vehicle performs a lane change, the speed of movement of the target route is set to zero and a sideways movement amount is held during the lane change (first rate-switching unit 362d2).
(b) When moving a target route sideways in the lateral direction, if the vehicle speed of the host vehicle drops, the speed of movement of the target route is decreased in accordance with the drop in vehicle speed (low-vehicle-speed change inhibitor 362d1).
(c) When moving a target route sideways in the lateral direction, if the host vehicle stops, the speed of movement of the target route is set to zero and a sideways movement amount is held (low-vehicle-speed change inhibitor 362d1).
(d) When moving a target route sideways in the lateral direction, if left and right lane edges are not detected near the host vehicle, the speed of movement of the target route to the left and right is decreased (third and fourth rate-switching units 362d4, 362d5).
(e) When moving a target route sideways in the lateral direction, if a lane edge is detected near the host vehicle on only the left side, the speed of movement of the target route to the left is decreased and the speed of movement of the target route to the right is increased (third and fourth rate-switching units 362d4, 362d5).
(f) When moving a target route sideways in the lateral direction, if a lane edge is detected near the host vehicle on only the right side, the speed of movement of the target route to the left is increased and the speed of movement of the target route to the right is decreased (third and fourth rate-switching units 362d4, 362d5).
(g) When moving a target route sideways in the lateral direction, if left and right lane edges are detected near the host vehicle, the speed of movement of the target route to the left and right is increased (third and fourth rate-switching units 362d4, 362d5).
Next, the operation will be described.
The operation of the first embodiment will be described under the headings “Operation for correcting a target route,” “Operation of contrasting vehicle behavior when entering a narrow lane,” and “Operation of contrasting vehicle behavior when entering a wide lane.”
Operation for Correcting a Target Route
In the first embodiment, the navigation control unit 3 is provided. The navigation control unit 3 corrects errors arising between a position of a host vehicle and a target route when a position of the host vehicle detected using navigation information is overlaid on map information during autonomous travel. The navigation control unit 3 includes the target route corrector 36, which corrects target routes. The target route corrector 36 includes the road boundary information consolidation unit 361, the lateral correction amount calculation unit 362, and the lateral/sideways movement unit 363.
Lane boundaries of the lane in which the host vehicle A travels are detected in the road boundary information consolidation unit 361. That is, as illustrated in
Next, the positional relationships between a target route TL on a map and the left lane boundary and right lane boundary that were detected are compared in the lateral correction amount calculation unit 362. In the situation illustrated in
Upon the lateral correction amount LO being calculated by the lateral correction amount calculation unit 362, the target route TL is moved sideways in the lateral direction by the lateral correction amount LO to correct the target route TL in the lateral/sideways movement unit 363, thereby generating a new target route TL′. Accordingly, the host vehicle A performs autonomous travel using line trace control LTC so that the host vehicle A draws closer to the new target route TL′ from the current position.
Thus, because the target route LT is moved sideways so that the host vehicle A stays within the lane of travel rather than correcting the self-position of the host vehicle, it is possible to make corrections that only consider vehicle behavior (selecting “smoothness” or “non-departing/non-colliding” according to the scenario).
Operation of Contrasting Vehicle Behavior when Entering a Narrow Lane
Here, the comparative example is defined as that in which navigational error arising between a position of a host vehicle and a target route is corrected by correcting the self-position of the host vehicle.
As illustrated in
In contrast, in a scenario in which a narrow lane is entered, in the first embodiment, when the host vehicle A reaches position C and the left white line WL is detected to be at a position overlapping with the host vehicle A, correction that moves the target route sideways in the lateral direction is performed with a speed of sideways movement that quickly returns the target route toward the lane center. Accordingly, in the first embodiment, the host vehicle A travels along travel line E, which is almost the same as travel line D.
Thus, entering a narrow lane is a scenario in which, of “smoothness” and “non-departing/non-colliding,” “non-departing/non-colliding” is to be prioritized. To this, in the first embodiment, a target route correction with a high speed of sideways movement that prioritizes “non-departing/non-colliding” can be selected in a scenario in which a narrow lane is entered.
Operation of Contrasting Vehicle Behavior when Entering a Wide Lane
As illustrated in
In contrast, in a scenario in which a wide lane is entered, in the first embodiment, when the host vehicle A reaches position C and the left white line WL is detected to be at a position a prescribed distance away from the host vehicle A, correction that moves the target route sideways in the lateral direction is performed with a speed of sideways movement that slowly returns the target route toward the lane center. Accordingly, in the first embodiment, the host vehicle A travels along travel line E′, which, in contrast to travel line D, keeps a vehicle lateral G to a minimum.
Thus, entering a wide lane is a scenario in which, of “smoothness” and “non-departing/non-colliding,” “smoothness” is to be prioritized. To this, in the first embodiment, a target route correction with a low speed of sideways movement that prioritizes “smoothness” can be selected in a scenario in which a wide lane is entered.
Next, the effects of the present disclosure will be described. The effects given below by way of example are achieved with the method and device for correcting a position error of an autonomous vehicle of the first embodiment.
(1) A controller (the navigation control unit 3) is provided that corrects error arising between a position of a host vehicle and a target route during drive-assisted travel (during autonomous travel). In a method for correcting a position error of a drive-assisted vehicle (the autonomous vehicle), a lane boundary of a lane in which the host vehicle travels is detected. Positional relationships between the lane boundary that was detected and a target route on a map are compared, and in situations where the target route is within a prescribed distance of the lane boundary, or in situations where the target route is on the opposite side of the lane boundary to the host vehicle, the target route is corrected with sideways movement in a lateral direction (
(2) When detecting the lane boundary of the lane in which the host vehicle travels, if a position of a road edge is detected, an inside position corresponding to a prescribed width from the detected road edge is used as lane boundary information (
(3) When detecting the lane boundary of the lane in which the host vehicle travels, if both a position of a lane boundary and a position of road edge are detected, a detection value of an inside position closer to the host vehicle is used as lane boundary information (
(4) When detecting the lane boundary of the lane in which the host vehicle travels, of road edges detected within bounds corresponding to a prescribed distance that varies depending on the vehicle speed of the host vehicle, a detection value based on the road edge closest to the host vehicle is used as lane boundary information (
(5) When correcting the target route with sideways movement in the lateral direction, a speed of movement at which the target route is moved sideways in the lateral direction is restricted to a prescribed speed (
(6) When correcting the target route with sideways movement in the lateral direction, the speed of movement at which the target route is moved sideways in the lateral direction is restricted in a manner that varies in accordance with circumstances (
(7) When moving the target route sideways in the lateral direction: if left and right lane edges are not detected near the host vehicle, the speed of movement of the target route to the left and right is decreased; if a lane edge is detected near the host vehicle on only the left side, the speed of movement of the target route to the left is decreased and the speed of movement of the target route to the right is increased; if a lane edge is detected near the host vehicle on only the right side, the speed of movement of the target route to the left is increased and the speed of movement of the target route to the right is decreased; and if left and right lane edges are detected near the host vehicle, the speed of movement of the target route to the left and right is increased (
(8) When moving the target route sideways in the lateral direction, if the host vehicle performs a lane change, the speed of movement of the target route is set to zero and a sideways movement amount is held during the lane change (
(9) When moving the target route sideways in the lateral direction, if the vehicle speed of the host vehicle drops, the speed of movement of the target route is decreased in accordance with the drop in vehicle speed (
(10) When moving the target route sideways in the lateral direction, if the host vehicle stops, the speed of movement of the target route is set to zero and an sideways movement amount is held (
(11) When moving the target route sideways in the lateral direction, if there is an intervening steering operation by a driver, a sideways movement amount of the target route is gradually reduced (
(12) An assessment of a steering operation intervention by the driver is made using a turn signal operation by the driver (
(13) A controller (navigation control unit 3) is provided that corrects error arising between a position of a host vehicle and a target route during drive-assisted travel (during autonomous travel). In a device for correcting a position error of a drive-assisted vehicle (autonomous vehicle), a controller (navigation control unit 3) includes a target route corrector 36 that corrects the target route. The target route corrector 36 includes a lane boundary detection unit (road boundary information consolidation unit 361), a lateral correction amount calculation unit 362, and a lateral/sideways movement unit 363. The lane boundary detection unit (road boundary information consolidation unit 361) detects a lane boundary of a lane in which the host vehicle travels. The lateral correction amount calculation unit 362 compares positional relationships between a lane boundary that was detected and a target route on a map, and in situations where the target route is within a prescribed distance of the lane boundary, or in situations where the target route is on the opposite side of the lane boundary to the host vehicle, calculates a lateral correction amount for the target route. The lateral/sideways movement unit 363, upon the calculation of the lateral correction amount, moves the target route sideways in a lateral direction by the lateral correction amount to correct the target route (
In the foregoing, a method and device for correcting a position error of a drive-assisted vehicle of the present disclosure was described with reference to the first embodiment. However, the specific configuration thereof is not limited to that of the first embodiment, and design modifications, additions, etc., are possible without departing from the spirit of the invention as set forth in the accompanying claims.
In the first embodiment, an example was presented in which the navigation control unit 3 is used as a controller that generates a target route to a destination from the current position of a host vehicle. However, an autonomous driving control unit could be used as a controller that generates a target route to a destination from the current position of a host vehicle. The target route generation functionality can also be split into two, whereby part of this functionality is assigned to a navigation control unit, with the remainder being assigned to an autonomous driving control unit.
In the first embodiment, an example was presented in which the method and device for correcting a position error of the present disclosure are applied to an autonomous vehicle in which steering/drive/braking are automatically controlled according to an autonomous driving mode selection. However, the method and device for correcting a position error of the present disclosure can be applied to any drive-assisted vehicle that assists any part of a steering operation/drive operation/braking operation by a driver. In short, the method and device for correcting a position error of the present disclosure can be applied to any vehicle that assists the driving of a driver by correcting error arising between a position of the host vehicle and a target route.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/031166 | 8/30/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/043831 | 3/7/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6038496 | Dobler et al. | Mar 2000 | A |
7808523 | Nishida | Oct 2010 | B2 |
8433467 | Ross-Martin | Apr 2013 | B2 |
8831876 | Hayashi | Sep 2014 | B2 |
9731755 | Moshchuk | Aug 2017 | B1 |
10384672 | Katzourakis | Aug 2019 | B1 |
10518776 | Kang | Dec 2019 | B2 |
20070048084 | Jung | Mar 2007 | A1 |
20080288163 | Asano | Nov 2008 | A1 |
20090284360 | Litkouhi | Nov 2009 | A1 |
20100082195 | Lee | Apr 2010 | A1 |
20110044507 | Strauss | Feb 2011 | A1 |
20110098919 | Irie | Apr 2011 | A1 |
20110106420 | Nishibashi | May 2011 | A1 |
20110178689 | Yasui | Jul 2011 | A1 |
20130103304 | Nishibashi | Apr 2013 | A1 |
20150145664 | You | May 2015 | A1 |
20150149036 | You | May 2015 | A1 |
20150355641 | Choi | Dec 2015 | A1 |
20150375784 | Ogawa | Dec 2015 | A1 |
20160107682 | Tan | Apr 2016 | A1 |
20160107687 | Yamaoka | Apr 2016 | A1 |
20160114832 | Taniguchi | Apr 2016 | A1 |
20160221604 | Yamaoka | Aug 2016 | A1 |
20160272203 | Otake | Sep 2016 | A1 |
20160318512 | Yamaoka | Nov 2016 | A1 |
20160375901 | Cairano | Dec 2016 | A1 |
20170018189 | Ishikawa | Jan 2017 | A1 |
20170066445 | Habu | Mar 2017 | A1 |
20170088168 | Oyama | Mar 2017 | A1 |
20170123434 | Urano | May 2017 | A1 |
20170136842 | Anderson | May 2017 | A1 |
20170203770 | Kondo | Jul 2017 | A1 |
20170240186 | Hatano | Aug 2017 | A1 |
20170248959 | Matsubara | Aug 2017 | A1 |
20170259819 | Takeda | Sep 2017 | A1 |
20170261989 | Ishioka | Sep 2017 | A1 |
20170274898 | Nakamura | Sep 2017 | A1 |
20170291603 | Nakamura | Oct 2017 | A1 |
20170329338 | Wei | Nov 2017 | A1 |
20170336788 | Iagnemma | Nov 2017 | A1 |
20170349172 | Kubota | Dec 2017 | A1 |
20180037216 | Otake | Feb 2018 | A1 |
20180037260 | Otake | Feb 2018 | A1 |
20180126986 | Kim | May 2018 | A1 |
20180188031 | Samper | Jul 2018 | A1 |
20180190123 | Oka | Jul 2018 | A1 |
20180237007 | Adam | Aug 2018 | A1 |
20180237008 | Matsumura | Aug 2018 | A1 |
20180297640 | Fujii | Oct 2018 | A1 |
20180339708 | Geller | Nov 2018 | A1 |
20190084571 | Zhu | Mar 2019 | A1 |
20190096258 | Ide | Mar 2019 | A1 |
20190266890 | Lei | Aug 2019 | A1 |
20190315348 | Mimura | Oct 2019 | A1 |
20190315365 | Kim | Oct 2019 | A1 |
20190318174 | Miklos | Oct 2019 | A1 |
20200050195 | Gross | Feb 2020 | A1 |
20200094837 | Kato | Mar 2020 | A1 |
20200180619 | Lee | Jun 2020 | A1 |
20200180634 | Hammoud | Jun 2020 | A1 |
20200189582 | Fukushige | Jun 2020 | A1 |
20200219392 | Pogel | Jul 2020 | A1 |
20200240806 | Daikoku | Jul 2020 | A1 |
20200284610 | Hatayama | Sep 2020 | A1 |
20200307589 | Li | Oct 2020 | A1 |
20200377089 | Fukushige | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
101443831 | May 2009 | CN |
103954275 | Jul 2014 | CN |
105022985 | Nov 2015 | CN |
10 2005 025 387 | May 2006 | DE |
2015-205635 | Nov 2015 | JP |
2016-151864 | Aug 2016 | JP |
2017-13586 | Jan 2017 | JP |
Number | Date | Country | |
---|---|---|---|
20200377088 A1 | Dec 2020 | US |