Vehicle positioning and object avoidance

Information

  • Patent Grant
  • 10747227
  • Patent Number
    10,747,227
  • Date Filed
    Tuesday, May 22, 2018
    6 years ago
  • Date Issued
    Tuesday, August 18, 2020
    4 years ago
Abstract
A system is described for presenting information relating to lifting and moving a load object with a vehicle. Upon the lifting, a dimensioner determines a size and a shape of the load object, computes a corresponding spatial representation, and generates a corresponding video signal. During the moving, an imager observes a scene in front of the vehicle, relative to its forward motion direction, and generates a video signal corresponding to the observed scene. The imager has at least one element moveable vertically, relative to the lifting. A display renders a real time visual representation of the scene observed in front of the vehicle based on the corresponding video signal and superimposes a representation of the computed spatial representation of the load object.
Description
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims the benefit of U.S. patent application Ser. No. 15/007,522 for Vehicle Positioning and Object Avoidance filed Jan. 27, 2016 (and published Jul. 27, 2017 as U.S. Patent Application Publication No. 2017/0212517), now U.S. Pat. No. 9,983,588. Each of the foregoing patent application, patent publication, and patent is hereby incorporated by reference in its entirety.


TECHNOLOGY FIELD

The present invention relates generally to vehicles. More particularly, example embodiments of the present invention relate to controlling a vehicle.


BACKGROUND

Generally speaking, trucks and other vehicles are useful in handling and moving materials. Forklifts, for example, comprise driver-operated self-powered trucks used for lifting, transporting, and positioning material loads in various logistical and industrial environments. The loads may comprise various configurations. For example, the loads may comprise boxes, crates, packages, etc., machinery related items, and/or items secured in a palletized configuration. The environment may comprise a variety of use settings such as a warehouse, plant, factory, shipping center, etc.


Within the use setting, the forklifts are operable for moving the loads from a first location to a second location for storage, use, or subsequent transport elsewhere. At the first location, the driver positions, e.g., a pair of parallel fork components securely beneath the load to be moved. For example, the forks may be inserted within a pair of complimentary recesses within a pallet on which the load is disposed. The forks then lift the load to a height sufficient to allow its movement from the first location, over a deck, floor, or other driving surface to the second location, where it may then be repositioned.


The forklift may be engine-powered or driven by one or more electric motors. The engine, or an electrical storage battery for energizing lift and drive motors, may be positioned behind a control station from which a driver operates the forklift. Forklifts may be configured with the control station disposed behind the lifting forks, which are positioned at the front. As the forklift moves in a forward direction, the load is carried on the forks ahead of the driver. Depending on its height and the vertical level at which it is carried, the load may thus obstruct at least a portion of the driver's view.


As with vehicles generally, and particularly in view of the weight and other characteristics of a load, the weight and operating speed of the forklift, and characteristics of operational use environment, the safe operation of forklifts depends on the visibility level the drivers are presented while moving the loads. The obstruction of a driver's view by the size of a load presents a heightened risk of collision and related accidents. Higher levels of driver experience may become significant in mitigating the heightened collision risk presented by the load obstructing the driver's vision a demand.


Therefore, it could be useful to improve the view of operators in control of vehicles such as forklifts generally, and in particular, during the lifting and moving of loads therewith. It could also thus be useful to mitigate, or compensate for a blockage, obstruction, occlusion, or other compromise in the view of an operator in control of the vehicle, which may be presented by the load lifted therewith. It could be useful, further, to reduce the risk of possible collision with avoidable obstructions disposed in the path over which the vehicle is moving the load.


SUMMARY

Accordingly, in one aspect, an example embodiment of the present invention relates to improving the view of operators in control of vehicles such as forklifts generally, and in particular, during the lifting and moving of loads therewith. An example embodiment mitigates, and compensates for blockage, obstruction, occlusion, and other compromise over the view of an operator in control of the vehicle, as presented by the load lifted therewith. Example embodiments reduce the risk of possible collision with avoidable obstructions disposed in the path over which the vehicle is moving the load.


An example embodiment relates to a system for presenting information relating to lifting and moving a load object with a vehicle. The system comprises a dimensioner operable, upon the lifting, for determining a size and a shape of the load object, computing a corresponding spatial representation thereof, and generating a first video signal corresponding to the computed spatial representation. The system also comprises an imager operable, during the moving, for observing a scene disposed before a front of the vehicle, relative to a forward direction of motion, and generating a second video signal corresponding to the observed scene, the imager comprising at least one element moveable vertically in relation to the lifting. The system comprises, further, a display operable for rendering a real time visual representation of the observed scene disposed before the front of the vehicle based on the corresponding second video signal and superimposed therewith, a representation of the computed spatial representation of the load object based on the corresponding first video signal.


The foregoing illustrative summary, as well as other example features, functions and/or aspects or features of embodiments of the invention, and the manner in which the same may be implemented or accomplished, are further explained within the following detailed description of example embodiments and each figure (“FIG.”) of the accompanying drawings referred to therein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A depicts a typical vehicle approaching a load, with which an example embodiment of the present invention may be used;



FIG. 1B depicts a typical vehicle lifting a load, with which an example embodiment of the present invention may be used;



FIG. 1C depicts a possible situation occurrence, which may be avoided with use of an example embodiment of the present invention;



FIG. 1D depicts an example vehicle platform, operable for lifting and moving a load object, according to an embodiment of the present invention;



FIG. 2A depicts an example vehicle approach to a load, according to an embodiment of the present invention;



FIG. 2B depicts the example vehicle approach to a load from the perspective of an operator of the vehicle, according to an embodiment of the present invention;



FIG. 3A depicts the example vehicle lifting the load in the presence of a first avoidable object, according to an embodiment of the present invention;



FIG. 3B depicts the example vehicle lifting the load in the presence of the first avoidable object from the perspective of the vehicle operator of the vehicle, according to an embodiment of the present invention;



FIG. 4A depicts the example vehicle approaching the first avoidable object, according to an embodiment of the present invention;



FIG. 4B depicts the example vehicle approaching the first avoidable object from the perspective of the vehicle operator of the vehicle, according to an embodiment of the present invention;



FIG. 5A depicts the example vehicle lifting the load over the first avoidable object, according to an embodiment of the present invention;



FIG. 5B depicts the example vehicle lifting the load over the first avoidable object from the perspective of the vehicle operator of the vehicle, according to an embodiment of the present invention;



FIG. 6A depicts the example vehicle lifting the load in the presence of a second avoidable object, according to an embodiment of the present invention;



FIG. 6B depicts the example vehicle lifting the load in the presence of the second avoidable object from the perspective of the vehicle operator of the vehicle, according to an embodiment of the present invention;



FIG. 7A depicts the example vehicle approaching the second avoidable object, according to an embodiment of the present invention;



FIG. 7B depicts the example vehicle approaching the second avoidable object from the perspective of the vehicle operator of the vehicle, according to an embodiment of the present invention;



FIG. 8A depicts the example vehicle lifting the load over the second avoidable object, according to an embodiment of the present invention;



FIG. 8B depicts the example vehicle lifting the load over the second avoidable object from the perspective of the vehicle operator of the vehicle, according to an embodiment of the present invention;



FIG. 9 depicts an example system for presenting information relating to lifting and moving a load object with a vehicle, according to an embodiment of the present invention;



FIG. 10 depicts a flowchart for an example method for presenting information relating to lifting and moving a load object with a vehicle, according to an embodiment of the present invention;



FIG. 11 depicts an example computer and network platform, according to an embodiment of the present invention may be practiced; and



FIG. 12 depicts an example scenario, in which example embodiments of the present invention may be used.





DESCRIPTION OF EXAMPLE EMBODIMENTS

Example embodiments of the present invention are described in relation to a system for presenting information relating to lifting and moving a load object with a vehicle. Upon the lifting, a dimensioner determines a size and a shape of the load object, computes a corresponding spatial representation, and generates a corresponding video signal. During the moving, an imager observes a scene in front of the vehicle, relative to its forward motion direction, and generates a video signal corresponding to the observed scene. The imager has at least one element moveable vertically, relative to the lifting. A display renders a real time visual representation of the scene observed in front of the vehicle based on the corresponding video signal and superimposes a representation of the computed spatial representation of the load object.


Overview.


Example embodiments are described in relation to systems and methods for presenting information relating to lifting and moving a load object with a vehicle. The system comprises a dimensioner operable, upon the lifting, for determining a size and a shape of the load object, computing a corresponding spatial representation thereof, and generating a first video signal corresponding to the computed spatial representation. The system also comprises an imager operable, during the moving, for observing a scene disposed before a front of the vehicle, relative to a forward direction of motion, and generating a second video signal corresponding to the observed scene, the imager comprising at least one element moveable vertically in relation to the lifting. The system comprises, further, a display operable for rendering a real time visual representation of the observed scene disposed before the front of the vehicle based on the corresponding second video signal and superimposed therewith, a representation of the computed spatial representation of the load object based on the corresponding first video signal.


The vehicle may comprise a forklift. The forklift comprises a member, such as a movable pair of forks, operable in relation to the lifting of the load. The at least one element of the imager moveable vertically in relation to the lifting is positioned on a portion of the member disposed proximate to the front of the vehicle.


The observation of the scene comprises capturing a real time three-dimensional (3D) image of the scene disposed before the front of the vehicle. The rendering of the real time visual representation of the observed scene disposed before the front of the vehicle is presented at least in relation to a perspective corresponding to the at least one vertically moveable element.


The spatial representation corresponding to the load object may comprise a wireframe computed based on a determination related to a size and a shape of the load object.


In an example embodiment, the dimensioner is operable, further, and prior to the lifting of the load item, for computing a distance between the front of the vehicle and the load item. The display is operable, further, for rendering a representation corresponding to the computed distance.


The imager may comprise a trajectory analyzer operable, upon a detection of one or more avoidable objects positioned over a range within the observed scene disposed before the front of the vehicle, for computing a trajectory relating to the forward motion of the vehicle in relation to each of the avoidable objects. A trajectory signal corresponding to each of the avoidable objects is generated.


Upon the detection of the one or more objects, the rendering of the real time visual representation of the observed scene disposed before the front of the vehicle may comprise presenting a visual representation of the one or more avoidable objects and data relating to the computed trajectory.


An example embodiment may be implemented in which, upon the computed trajectory comprising an imminent risk of a collision with at least one of the avoidable objects, the trajectory analyzer is operable, further, for performing at least one action related to avoiding or ameliorating the collision risk. For example, an alarm may be annunciated in relation to the avoidance and/or amelioration of the collision risk, an evasive action, such as defensive steering, may be initiated, and/or action may be implemented in relation to braking, slowing, and/or stopping the vehicle safely to avoid or ameliorate the collision risk.


In an example embodiment the system may further comprising a plurality of cameras. The multiple cameras are operable in relation to the dimensioner and/or the imager. The cameras comprise the at least one element moveable vertically in relation to the lifting. For example, one of the cameras may be disposed upon a portion of the lifting member disposed proximate to the front of the vehicle. The display is positioned to be observable to an operator, such as the driver, of the vehicle during the lifting and the moving.


The system may be disposed in a vehicle platform and/or operable with a computer and network platform. Example embodiments of the present invention relates to the vehicle platform and to the computer and network platform. The system may be operable for performing a computer related process for presenting information relating to lifting and moving a load object with a vehicle.


An example embodiment of the present invention relates to a method for presenting information relating to lifting and moving a load object with a vehicle. The method may be performed, executed, or implemented by a system, such as the system described herein. An example embodiment relates to a non-transitory computer-readable medium comprising instructions operable for causing, configuring, controlling, or programming one or more processor devices to perform or execute a method for presenting information relating to lifting and moving a load object with a vehicle, such as the method described herein.


Accordingly, in one aspect, an example embodiment of the present invention relates to improving the view of operators in control of vehicles such as forklifts generally, and in particular, during the lifting and moving of loads therewith. An example embodiment mitigates, and compensates for blockage, obstruction, occlusion, and other compromise over the view of an operator in control of the vehicle, as presented by the load lifted therewith. Example embodiments reduce the risk of possible collision with avoidable obstructions disposed in the path over which the vehicle is moving the load.


Example Use Setting.



FIG. 1A depicts a typical vehicle 11 approaching a load 12, with which an example embodiment of the present invention may be used. The vehicle 11 may comprise a forklift. The load 12 is disposed on a solid horizontal surface such as a deck, floor, platform, lot, or road. The vehicle 11 moves over the solid horizontal surface 19 as it approaches the load 12.


As the vehicle 11 approaches proximity with the load 12, the driver (also referred to herein as an “operator”) carefully positions a horizontal part of a lifting member beneath the load 12. The operator applies an upward mechanical force to the load 12 with the lifting member, which lifts the load 12 above a plane corresponding to the horizontal surface 19. FIG. 1B depicts a typical vehicle lifting a load, with which an example embodiment of the present invention may be used.


With the load 12 lifted, the operator may then move the load horizontally across the horizontal surface 19 by driving the vehicle 11 forward. However, if the load is tall enough to block or occlude the forward vision of the driver, the presence of an unseen obstruction 17 within the direction of motion of the vehicle 11 may present a risk of a possible collision 13.



FIG. 1C depicts such a possible situation occurrence, which may be avoided with use of example embodiments of the present invention. The risk of the possible collision 13 may be associated with concomitant safety and damage hazards. An example embodiment of the present invention relates to a system for presenting information relating to lifting and moving a load object with a vehicle.


Example Vehicle Platform.



FIG. 1D depicts an example vehicle platform 11, operable for lifting and moving a load object, according to an embodiment of the present invention. The vehicle 11 may comprise a forklift. The vehicle 11 comprises a structure 111 suspended on a movable frame 112. The vehicle also comprises a lift member 113. The lift member 113 is movably coupled to the structure 111 and operable for lifting the load object. The vehicle 11, further, comprises a drive 114 coupled to the moveable frame 112 and operable for providing a mechanical force for operating the lift member 113 and for moving the vehicle 11 and the lifted load object.


The drive 114 may comprise an engine and gear train coupled to wheels, on which the moveable frame 112 rolls across a horizontal surface, such as a deck, floor, etc. The drive may comprise, alternatively, one or more electrical motors and an electrical storage battery operable for energizing the motor(s). The electrical storage batteries may comprise electrodes, and plates comprising a conductive and electrochemically reactive metallic or metalloid material (e.g., lead) disposed in an array of parallel plates suspended within an electrolyte (e.g., sulfuric acid). Various control components may be associated with the engine related, or the motor related drive 114.


The driver operates the vehicle 11 from an operator station 118. The operator station 118 has an open or window (e.g., windshield) covered view forward, towards the front 119 of the vehicle 11. The forward direction faces a forward direction of motion, in which the vehicle 11 may move the load. The vehicle 11 also comprises a steering mechanism operable for turning at least one set of wheels and turning the direction of motion of the vehicle to the left or the right relative to the forward direction of motion. The vehicle 11 may also be moved and steered in reverse, opposite from the direction of forward motion.


The vehicle comprises, further, a system 90. The system 90 is operable for presenting information relating to the lifting and the moving of the load object and the vehicle. The system 90 comprises at least one element 925, such as a camera operable with an imager, which is moveable vertically in relation to the lifting, is positioned on a portion of the lift member disposed proximate to the front 119 of the vehicle 11. The system 90 may also comprise at least one element 922, such as a camera operable with the imager, which is vertically stationary in relation to the lifting. The system 90 comprises, further, a display 117.


An example embodiment may be implemented in which the display 117 comprises a ‘heads-up display’ (HUD). The HUD 117 is transparent and allows the driver to look forward, through it. However, the HUD 117 is operable for presenting visual information to the driver, within the forward field of view, without substantially occluding or blocking direct viewing there through.


Example System.


An example embodiment relates to a system for presenting information relating to lifting and moving a load object with a vehicle. FIG. 9 depicts an example system 900 for presenting information relating to lifting and moving a load object with a vehicle, according to an embodiment of the present invention.


The system 900 comprises a dimensioner 910. The dimensioner 910 may comprise a measurement and wireframe processor 911 and a signal generator 912. The dimensioner 910 is operable, upon the lifting, for determining a size and a shape of the load object, computing a corresponding spatial representation thereof, and generating a first video signal 918 corresponding to the computed spatial representation.


The computed spatial representation may comprise a wireframe corresponding to the size and shape of the load object. The size and shape of the load object may be computed based on image data 927 received from an imager. The first video signal 918 may be generated by a signal generator 912.


The system also comprises an imager 920. The imager 920 may comprise a plurality of real time image capture elements, such as 3D video cameras. The image capture elements comprise at least one vertically movable (relative to the lifting of the load object) element 925, which may be disposed with the lift member 113. The image capture elements may comprise, further, a vertically stationary element 926. The image capture elements are operable for capturing a visible scene disposed before the front 119 of the vehicle 11.


Thus, the imager 920 is operable, during the moving, for observing the scene disposed before a front 119 of the vehicle 11, relative to its forward direction of motion. The imager is operable, further, for generating a second video signal 928 corresponding to the observed scene before the front 119 of the vehicle 11.


The imager 920 may also comprise an image processor 921, operable for processing image data captured by the image capture elements. A signal generator 922 may be operable for generating the second video signal 928 based on image data processed by the image processor 921. Moreover, processed image data 927 may be provided from the image processor 921 to the dimensioner 910. The computation of the spatial representation of the load object may thus be based on the processed image data 911.


The system 900 comprises, further, a display 930. The display 930 may comprise the HUD component 117 (FIG. 1D). The display 930 is operable for rendering a real time visual representation 931 of the observed scene disposed before the front 119 of the vehicle 11 based on the corresponding second video signal 928. The display 930 is also operable for rendering, superimposed with the representation 931 of the scene in front of the vehicle 11, a representation 932 of the computed wireframe (or other spatial representation) of the load object based on the corresponding first video signal 918.


The imager may comprise a trajectory analyzer 923. Upon detection of one or more avoidable objects positioned over a range within the observed scene disposed before the front 119 of the vehicle 11, the trajectory analyzer is operable for computing a trajectory relating to the forward motion of the vehicle in relation to each of the avoidable objects. A trajectory signal corresponding to each of the avoidable objects is generated, which may comprise a component of the second video signal 928.


Upon the detection of the one or more objects, the rendering of the real time visual representation of the observed scene disposed before the front of the vehicle may comprise presenting a visual representation 933 of the one or more avoidable objects, and data 935 relating to the computed trajectory.


An example embodiment may be implemented in which, upon the computed trajectory comprising an imminent risk of a collision with at least one of the avoidable objects, the trajectory analyzer 923 is operable, further, for performing at least one action related to avoiding or ameliorating the collision risk. For example, an alarm may be annunciated in relation to the avoidance and/or amelioration of the collision risk, an evasive action, such as defensive steering, may be initiated, and/or action may be implemented in relation to braking, slowing, and/or stopping the vehicle 11 safely to avoid or ameliorate the collision risk.


The system 900 is operable for providing information to the operator of the vehicle 11 in relation to positioning the load object. The system 900 is also operable for providing information to the operator of the vehicle 11 in relation to avoiding collision with objects proximate to the vehicle 11, which may be disposed in front thereof.


Example Positioning and Collision Avoidance Uses.


An example embodiment of the present invention may be implemented for use in lifting, moving, and positioning a load object with a vehicle such as a forklift. FIG. 12 depicts an example scenario 1200, in which example embodiments of the present invention may be used. The example use scenario 1200, depicted in FIG. 12, is described in conjunction with a sequence described with reference to FIG. 2A through FIG. 8B, inclusive.


At scenario 1200 part 1201, an operator drives a vehicle 11, such as a forklift, to approach a load object 12, such as a package disposed on a pallet. FIG. 2A depicts an example vehicle 11 approach to a load object 12, according to an embodiment of the present invention. FIG. 2B depicts the example vehicle 11 approach to the load 12 from the perspective 22 of an operator of the vehicle 11, according to an embodiment of the present invention.


The load 12 is disposed on a solid horizontal surface 29. An avoidable obstruction 27 is disposed before the front 119 of the forklift 11, beyond the load object 12. As a forklift 11 is picking up the load object 12, the dimensioner 910 determines its size and shape.


At part 1202 of the scenario, the vertically movable camera element 925 captures images of the scene disposed before the front 119 of the vehicle 11, including the load object 12 and the foreground thereof. The system 900 transposes a view of the captured images of the scene to a perspective consistent with that of the driver's direct view, as it would appear without obstructions, occlusions, or blocked portions of the view. The system presents the transposed view to the driver visually on the HUD 117.


At part 1203 (and effectively at the same time as part 1202), the system 900 displays a spatial representation, such as a wireframe, outlining the load object 12 and data relating to its dimensions, a distance from the front 119 of the lifting member 113 forks to the nearest surface of the load item 12, and an alignment (e.g., including angular displacement data) to pick-up points disposed on the pallet, which comprise locations associated with the load object 12 at which it may be lifted securely, safely, and without damage. Based on the corresponding wireframe, computed by the dimensioner 910 based on the size and shape of the object 12, a transparent representation 33 thereof is presented. The transparent load representation 33 is superimposed by the display 930, e.g., on the HUD 117, in an overlay rendered over the rendered representation of the visual scene disposed before the front 119 of the vehicle 11.


At part 1204, the driver operates the vehicle 11 to lift the load item 12. FIG. 3A depicts the example vehicle 11 lifting the load 12 in the presence of a first avoidable object 27, according to an embodiment of the present invention. FIG. 3B depicts the example vehicle 11 lifting the load 12 in the presence of the first avoidable object 27 from the perspective of the vehicle operator of the vehicle, according to an embodiment of the present invention.


At part 1206, the driver operates the vehicle 11 to move the load, safely, across the horizontal surface 29, to a new location, which is separated translationally from a location of the original position, at which the load object 12 was lifted. Upon lifting the load item 12 on the fork lifting members 113, the system 900 transposes the transparent representation thereof rendered on the HUD 117 at part 1205 at part 1207.


At part 1208, the transposed representation of the load object 12 may comprise a first view of an avoidable obstruction 27, which is disposed within the scene 999 before the front 119 of the vehicle 11. Data may also be displayed in relation to a distance to the avoidable obstruction, and a height thereof. The scene 999 before the front 119 of the vehicle 11, at part 1205, is also transposed to the view corresponding to a clear, direct perspective of the operator. FIG. 4A depicts the example vehicle 11 approaching the first avoidable object, according to an embodiment of the present invention. FIG. 4B depicts the example vehicle approaching the first avoidable object from the perspective 44 of the vehicle operator of the vehicle, according to an embodiment of the present invention.


The representation of the avoidable object 27 may be highlighted, e.g., using color, brightness, contrast and other display control techniques, to call direct the operator's attention thereto. Data may also be displayed in relation to a distance to the avoidable obstruction, and a height thereof.



FIG. 5A depicts the example vehicle lifting the load over the first avoidable object, according to an embodiment of the present invention. FIG. 5B depicts the example vehicle lifting the load over the first avoidable object from the perspective 55 of the vehicle operator, according to an embodiment of the present invention. Thus, the driver may operate the lift member 113 to lift the load 12 to a height sufficient to avoid the avoidable object 27 and/or place the load object 12 securely and safely thereon, or proximate to.



FIG. 6A depicts the example vehicle lifting the load in the presence of a second avoidable object, according to an embodiment of the present invention. FIG. 6B depicts the example vehicle lifting the load in the presence of the second avoidable object from the perspective 66 of the vehicle operator of the vehicle, according to an embodiment of the present invention.



FIG. 7A depicts the example vehicle approaching the second avoidable object, according to an embodiment of the present invention. FIG. 7B depicts the example vehicle approaching the second avoidable object from the perspective 77 of the vehicle operator of the vehicle, according to an embodiment of the present invention.



FIG. 8A depicts the example vehicle lifting the load over the second avoidable object, according to an embodiment of the present invention. FIG. 8B depicts the example vehicle lifting the load over the second avoidable object from the perspective 88 of the vehicle operator of the vehicle, according to an embodiment of the present invention. Thus, example embodiments allow operators to reduce the risk of collision with avoidable objects disposed before the front 119 of the vehicle 11 as the load object is moved therewith.


The vertically movable camera 925 in the lifting member 113 (e.g., forks) captures a view of what is disposed forward of the front 119 of the forklift. A trajectory analysis is performed on the view, e.g., using the trajectory analyzer 923. The view of the scene before the front 119 of the forklift 11 available to the direct sight of the operator may be blocked or occluded by the load object 12 as it is carried by the forklift 11. In an example embodiment however, this view is overlaid on the HUD 117, which renders the object 12 that the forklift 11 is carrying, appear transparent in the representation thereof. Thus, the scene before the front 119 of the forklift is effectively cleared, as viewed on the HUD 117.


The 3D camera 925 associated with the dimensioner 910 and/or the imager 920 and disposed in the forks or other lifting members 113, identifies objects within a pre-specified range forward of the front 119 of the forklift 11. The display 930 is thus operable for overlaying a red (or other colored, or high-contrast) outline around the object on the HUD 117, which helps identify the avoidable objects visually to the driver. The dimensioner may also provide trajectory data 935 therewith such as a distance to the avoidable object 27. Using the vertically movable camera element 925, the system 900 thus accommodates moving and movable forks, and forks that are placed at different heights.


Upon placing the load object 12 in the new location, the system 900 may, at part 1209, stop or pause from presenting real time video of the scene 999 actively on the HUD 117. Effectively simultaneously at part 1210, the system 900 may pause or stop from presenting the transparent superimposition of the package 12 on the HUD 117. The attention of the driver may then be directed rearward at part 1211, and the vehicle 11 may be operated in a reverse direction relative to its front 119, and the system 900 may report, automatically, via a network to a remote computer (FIG. 11) and/or update therewith. The attention of the operator may then be directed to re-tasking.


Example Process.


An example embodiment of the present invention relates to a computer-implemented process. FIG. 10 depicts a flowchart for an example method 100 for presenting information relating to lifting and moving a load object with a vehicle, according to an embodiment of the present invention.


Step 101 comprises determining, upon the lifting, a size and a shape of the load object.


Step 102 comprises computing a spatial representation of the load object corresponding to the determined size and shape thereof. The step 102 of computing the spatial representation corresponding to the load object comprises computing a wireframe representation of the load item based on the determined size and shape thereof.


Step 103 comprises generating a first video signal corresponding to the computed spatial representation.


Step 104 comprises observing, during the moving and using at least one element moveable vertically in relation to the lifting, a scene disposed before a front of the vehicle, relative to a forward direction of motion. The observing the scene step 104 may comprise capturing a real time 3D image of the scene disposed before the front 119 of the vehicle 11.


Step 105 comprises generating a second video signal corresponding to the observed scene.


Step 106 comprises rendering a real time visual representation of the observed scene disposed before the front of the vehicle based on the corresponding second video signal.


Step 107 comprises rendering the computed spatial representation based on the corresponding first video signal, the rendered computed spatial representation of the load object superimposed in relation to the rendered real time visual representation of the observed scene disposed before the front of the vehicle.


The step 106 of rendering of the real time visual representation of the observed scene disposed before the front 119 of the vehicle 11 is presented at least in relation to a perspective corresponding to the at least one vertically moveable element 925.


In an example embodiment, the method 100 may also comprise computing, prior to the lifting of the load item, a distance between the front of the vehicle and the load item. A representation of data corresponding to the computed distance may be rendered by the display 930.


An example embodiment may be implemented in which the determining the size and a shape of the load object step 101, the observing the scene disposed before the front of the vehicle step 104, and/or the computation of the distance between the front of the vehicle and the load item may comprise processing image data captured with a plurality of cameras. The cameras comprise the at least one element 925, which is moveable vertically in relation to the lifting.


An example embodiment may be implemented in which the method 100 further comprises analyzing the observed scene disposed before the front of the vehicle. Based on the analysis of the observed scene, a presence of one or more avoidable objects is detected, which are positioned over a range within the observed scene disposed before the front of the vehicle. A trajectory is computed relating to the forward motion of the vehicle in relation to each of the avoidable objects and a corresponding trajectory signal generated in relation to each of the avoidable objects. A visual representation of the one or more avoidable objects is rendered, along with data relating to the computed trajectory.


Upon the computed trajectory comprising a data indicative of an imminent risk of a collision with at least one of the avoidable objects, at least one action may be performed in relation to avoiding (or ameliorating) the collision. Example embodiments may be implemented in which the actions performed in avoidance (or amelioration) of the possible collision comprise annunciating an alarm related to the avoiding of the collision, initiating an evasive action such as careful evasive steering, and/or carefully braking, slowing, and/or stopping the vehicle.


Example Computer & Network Platform.


An example embodiment of the present invention relates to a computer and network platform. FIG. 11 depicts an example computer and network platform 1100, with which an embodiment of the present invention may be practiced.


An example embodiment may be implemented in which one or more components of the information presentation system 900 comprise (or are configured in) electronic or computer based hardware, firmware and software stored physically (e.g., electrically, electronically, optically, electromagnetically, magnetically) in non-transitory computer readable storage media such as dynamic memory, flash memory, drives, caches, buffers, registers, latches, memory cells, or the like.


In an example embodiment of the present invention, the system 900 comprises a control area network (CAN) bus 1153 and a controller interface 1197. The CAN bus 1153 is operable for exchanging data signals between a plurality of electronic components of the system 900.


For example, the CAN bus 1153 may be operable for allowing an exchange of signals between the dimensioner 910 and the imager 920 and display 930, and between the imager 920, the dimensioner 910, and the display 930. The CAN bus 1153 is also operable for exchanging signals between the dimensioner 910, the imager 920, the display 930, and the controller interface 1197.


The controller interface 1197 is operable for exchanging signals between the system 900 and a control computer (“controller”) 1110. The CAN bus 1153 is operable, further, for exchanging signals between the controller interface 1197 and a system interface 1117 of the controller 1110.


The controller 1110 is operable for exchanging data signals with the system 900. For example, the controller 1110 may transmit commands to the system 900, receive signals therefrom, and update software associated therewith.


The controller 1110 comprises a data bus 1111. The controller 1110 also comprises a central processor unit (CPU) 1112, a memory, such as a dynamically-operable random access memory (RAM) 1113, and a data storage unit 1114. The data bus 1111 is operable for exchanging signals between the components of the computer 1110. The data storage unit 1114, and the RAM 813, may comprise non-transitory computer-readable storage media.


The non-transitory computer-readable storage media may comprise instructions 1115. The instructions 1115 may be operable for causing, configuring, controlling, and/or programming operations of the system 900, and an information presentation process such as the method 100 (FIG. 10).


The controller 810 may also comprise a statically-operable memory such as a read-only memory (‘ROM’), and one or more additional processors, the operations of which may relate to image processing, graphic processing (‘GPU’), digital signal processing (‘DSP’), and/or mathematics (‘Math’) co-processing, which may each be performed with an associated, dedicated, and/or shared dynamic memory. The controller 1110 may also comprise input receiving devices, including electromechanically and/or electromagnetically-actuated switches, sensors, etc.


The controller 810 may comprise a liquid crystal display (LCD) device 1190. An example embodiment may be implemented in which the LCD 1190 comprises a graphical user interface (GUI) 1191, which is operable for receiving haptic user inputs applied over portions of a surface of a viewing area of the LCD 1190. The controller 810 may also comprise a network interface 815. An example embodiment may also (or alternatively) be implemented in which the LCD 1190 is associated, or operable in conjunction, with the HUD 117 and the display 930. The controller 1110 also comprises a network interface 1116.


The network interface 1116 is operable for coupling and exchanging data, communicatively, with a data and communication network 1155. One or more remote vehicles 1177 and/or remote computers 1188 may be coupled, communicatively, via the network 1155, and/or interact with the controller 1100, and/or with an operation of the system 900. Thus, the system 900 may be operable within a larger system, more generalized context, and wider use environments, such as may relate to logistics, commerce, shipping, storage, transport, material handling, etc.


To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:

  • U.S. Pat. Nos. 6,832,725; 7,128,266;
  • U.S. Pat. Nos. 7,159,783; 7,413,127;
  • U.S. Pat. Nos. 7,726,575; 8,294,969;
  • U.S. Pat. Nos. 8,317,105; 8,322,622;
  • U.S. Pat. Nos. 8,366,005; 8,371,507;
  • U.S. Pat. Nos. 8,376,233; 8,381,979;
  • U.S. Pat. Nos. 8,390,909; 8,408,464;
  • U.S. Pat. Nos. 8,408,468; 8,408,469;
  • U.S. Pat. Nos. 8,424,768; 8,448,863;
  • U.S. Pat. Nos. 8,457,013; 8,459,557;
  • U.S. Pat. Nos. 8,469,272; 8,474,712;
  • U.S. Pat. Nos. 8,479,992; 8,490,877;
  • U.S. Pat. Nos. 8,517,271; 8,523,076;
  • U.S. Pat. Nos. 8,528,818; 8,544,737;
  • U.S. Pat. Nos. 8,548,242; 8,548,420;
  • U.S. Pat. Nos. 8,550,335; 8,550,354;
  • U.S. Pat. Nos. 8,550,357; 8,556,174;
  • U.S. Pat. Nos. 8,556,176; 8,556,177;
  • U.S. Pat. Nos. 8,559,767; 8,599,957;
  • U.S. Pat. Nos. 8,561,895; 8,561,903;
  • U.S. Pat. Nos. 8,561,905; 8,565,107;
  • U.S. Pat. Nos. 8,571,307; 8,579,200;
  • U.S. Pat. Nos. 8,583,924; 8,584,945;
  • U.S. Pat. Nos. 8,587,595; 8,587,697;
  • U.S. Pat. Nos. 8,588,869; 8,590,789;
  • U.S. Pat. Nos. 8,596,539; 8,596,542;
  • U.S. Pat. Nos. 8,596,543; 8,599,271;
  • U.S. Pat. Nos. 8,599,957; 8,600,158;
  • U.S. Pat. Nos. 8,600,167; 8,602,309;
  • U.S. Pat. Nos. 8,608,053; 8,608,071;
  • U.S. Pat. Nos. 8,611,309; 8,615,487;
  • U.S. Pat. Nos. 8,616,454; 8,621,123;
  • U.S. Pat. Nos. 8,622,303; 8,628,013;
  • U.S. Pat. Nos. 8,628,015; 8,628,016;
  • U.S. Pat. Nos. 8,629,926; 8,630,491;
  • U.S. Pat. Nos. 8,635,309; 8,636,200;
  • U.S. Pat. Nos. 8,636,212; 8,636,215;
  • U.S. Pat. Nos. 8,636,224; 8,638,806;
  • U.S. Pat. Nos. 8,640,958; 8,640,960;
  • U.S. Pat. Nos. 8,643,717; 8,646,692;
  • U.S. Pat. Nos. 8,646,694; 8,657,200;
  • U.S. Pat. Nos. 8,659,397; 8,668,149;
  • U.S. Pat. Nos. 8,678,285; 8,678,286;
  • U.S. Pat. Nos. 8,682,077; 8,687,282;
  • U.S. Pat. Nos. 8,692,927; 8,695,880;
  • U.S. Pat. Nos. 8,698,949; 8,717,494;
  • U.S. Pat. Nos. 8,717,494; 8,720,783;
  • U.S. Pat. Nos. 8,723,804; 8,723,904;
  • U.S. Pat. Nos. 8,727,223; D702,237;
  • U.S. Pat. Nos. 8,740,082; 8,740,085;
  • U.S. Pat. Nos. 8,746,563; 8,750,445;
  • U.S. Pat. Nos. 8,752,766; 8,756,059;
  • U.S. Pat. Nos. 8,757,495; 8,760,563;
  • U.S. Pat. Nos. 8,763,909; 8,777,108;
  • U.S. Pat. Nos. 8,777,109; 8,779,898;
  • U.S. Pat. Nos. 8,781,520; 8,783,573;
  • U.S. Pat. Nos. 8,789,757; 8,789,758;
  • U.S. Pat. Nos. 8,789,759; 8,794,520;
  • U.S. Pat. Nos. 8,794,522; 8,794,525;
  • U.S. Pat. Nos. 8,794,526; 8,798,367;
  • U.S. Pat. Nos. 8,807,431; 8,807,432;
  • U.S. Pat. Nos. 8,820,630; 8,822,848;
  • U.S. Pat. Nos. 8,824,692; 8,824,696;
  • U.S. Pat. Nos. 8,842,849; 8,844,822;
  • U.S. Pat. Nos. 8,844,823; 8,849,019;
  • U.S. Pat. Nos. 8,851,383; 8,854,633;
  • U.S. Pat. Nos. 8,866,963; 8,868,421;
  • U.S. Pat. Nos. 8,868,519; 8,868,802;
  • U.S. Pat. Nos. 8,868,803; 8,870,074;
  • U.S. Pat. Nos. 8,879,639; 8,880,426;
  • U.S. Pat. Nos. 8,881,983; 8,881,987;
  • U.S. Pat. Nos. 8,903,172; 8,908,995;
  • U.S. Pat. Nos. 8,910,870; 8,910,875;
  • U.S. Pat. Nos. 8,914,290; 8,914,788;
  • U.S. Pat. Nos. 8,915,439; 8,915,444;
  • U.S. Pat. Nos. 8,916,789; 8,918,250;
  • U.S. Pat. Nos. 8,918,564; 8,925,818;
  • U.S. Pat. Nos. 8,939,374; 8,942,480;
  • U.S. Pat. Nos. 8,944,313; 8,944,327;
  • U.S. Pat. Nos. 8,944,332; 8,950,678;
  • U.S. Pat. Nos. 8,967,468; 8,971,346;
  • U.S. Pat. Nos. 8,976,030; 8,976,368;
  • U.S. Pat. Nos. 8,978,981; 8,978,983;
  • U.S. Pat. Nos. 8,978,984; 8,985,456;
  • U.S. Pat. Nos. 8,985,457; 8,985,459;
  • U.S. Pat. Nos. 8,985,461; 8,988,578;
  • U.S. Pat. Nos. 8,988,590; 8,991,704;
  • U.S. Pat. Nos. 8,996,194; 8,996,384;
  • U.S. Pat. Nos. 9,002,641; 9,007,368;
  • U.S. Pat. Nos. 9,010,641; 9,015,513;
  • U.S. Pat. Nos. 9,016,576; 9,022,288;
  • U.S. Pat. Nos. 9,030,964; 9,033,240;
  • U.S. Pat. Nos. 9,033,242; 9,036,054;
  • U.S. Pat. Nos. 9,037,344; 9,038,911;
  • U.S. Pat. Nos. 9,038,915; 9,047,098;
  • U.S. Pat. Nos. 9,047,359; 9,047,420;
  • U.S. Pat. Nos. 9,047,525; 9,047,531;
  • U.S. Pat. Nos. 9,053,055; 9,053,378;
  • U.S. Pat. Nos. 9,053,380; 9,058,526;
  • U.S. Pat. Nos. 9,064,165; 9,064,167;
  • U.S. Pat. Nos. 9,064,168; 9,064,254;
  • U.S. Pat. Nos. 9,066,032; 9,070,032;
  • U.S. Design Pat. No. D716,285;
  • U.S. Design Pat. No. D723,560;
  • U.S. Design Pat. No. D730,357;
  • U.S. Design Pat. No. D730,901;
  • U.S. Design Pat. No. D730,902;
  • U.S. Design Pat. No. D733,112;
  • U.S. Design Pat. No. D734,339;
  • International Publication No. 2013/163789;
  • International Publication No. 2013/173985;
  • International Publication No. 2014/019130;
  • International Publication No. 2014/110495;
  • U.S. Patent Application Publication No. 2008/0185432;
  • U.S. Patent Application Publication No. 2009/0134221;
  • U.S. Patent Application Publication No. 2010/0177080;
  • U.S. Patent Application Publication No. 2010/0177076;
  • U.S. Patent Application Publication No. 2010/0177707;
  • U.S. Patent Application Publication No. 2010/0177749;
  • U.S. Patent Application Publication No. 2010/0265880;
  • U.S. Patent Application Publication No. 2011/0202554;
  • U.S. Patent Application Publication No. 2012/0111946;
  • U.S. Patent Application Publication No. 2012/0168511;
  • U.S. Patent Application Publication No. 2012/0168512;
  • U.S. Patent Application Publication No. 2012/0193423;
  • U.S. Patent Application Publication No. 2012/0203647;
  • U.S. Patent Application Publication No. 2012/0223141;
  • U.S. Patent Application Publication No. 2012/0228382;
  • U.S. Patent Application Publication No. 2012/0248188;
  • U.S. Patent Application Publication No. 2013/0043312;
  • U.S. Patent Application Publication No. 2013/0082104;
  • U.S. Patent Application Publication No. 2013/0175341;
  • U.S. Patent Application Publication No. 2013/0175343;
  • U.S. Patent Application Publication No. 2013/0257744;
  • U.S. Patent Application Publication No. 2013/0257759;
  • U.S. Patent Application Publication No. 2013/0270346;
  • U.S. Patent Application Publication No. 2013/0287258;
  • U.S. Patent Application Publication No. 2013/0292475;
  • U.S. Patent Application Publication No. 2013/0292477;
  • U.S. Patent Application Publication No. 2013/0293539;
  • U.S. Patent Application Publication No. 2013/0293540;
  • U.S. Patent Application Publication No. 2013/0306728;
  • U.S. Patent Application Publication No. 2013/0306731;
  • U.S. Patent Application Publication No. 2013/0307964;
  • U.S. Patent Application Publication No. 2013/0308625;
  • U.S. Patent Application Publication No. 2013/0313324;
  • U.S. Patent Application Publication No. 2013/0313325;
  • U.S. Patent Application Publication No. 2013/0342717;
  • U.S. Patent Application Publication No. 2014/0001267;
  • U.S. Patent Application Publication No. 2014/0008439;
  • U.S. Patent Application Publication No. 2014/0025584;
  • U.S. Patent Application Publication No. 2014/0034734;
  • U.S. Patent Application Publication No. 2014/0036848;
  • U.S. Patent Application Publication No. 2014/0039693;
  • U.S. Patent Application Publication No. 2014/0042814;
  • U.S. Patent Application Publication No. 2014/0049120;
  • U.S. Patent Application Publication No. 2014/0049635;
  • U.S. Patent Application Publication No. 2014/0061306;
  • U.S. Patent Application Publication No. 2014/0063289;
  • U.S. Patent Application Publication No. 2014/0066136;
  • U.S. Patent Application Publication No. 2014/0067692;
  • U.S. Patent Application Publication No. 2014/0070005;
  • U.S. Patent Application Publication No. 2014/0071840;
  • U.S. Patent Application Publication No. 2014/0074746;
  • U.S. Patent Application Publication No. 2014/0076974;
  • U.S. Patent Application Publication No. 2014/0078341;
  • U.S. Patent Application Publication No. 2014/0078345;
  • U.S. Patent Application Publication No. 2014/0097249;
  • U.S. Patent Application Publication No. 2014/0098792;
  • U.S. Patent Application Publication No. 2014/0100813;
  • U.S. Patent Application Publication No. 2014/0103115;
  • U.S. Patent Application Publication No. 2014/0104413;
  • U.S. Patent Application Publication No. 2014/0104414;
  • U.S. Patent Application Publication No. 2014/0104416;
  • U.S. Patent Application Publication No. 2014/0104451;
  • U.S. Patent Application Publication No. 2014/0106594;
  • U.S. Patent Application Publication No. 2014/0106725;
  • U.S. Patent Application Publication No. 2014/0108010;
  • U.S. Patent Application Publication No. 2014/0108402;
  • U.S. Patent Application Publication No. 2014/0110485;
  • U.S. Patent Application Publication No. 2014/0114530;
  • U.S. Patent Application Publication No. 2014/0124577;
  • U.S. Patent Application Publication No. 2014/0124579;
  • U.S. Patent Application Publication No. 2014/0125842;
  • U.S. Patent Application Publication No. 2014/0125853;
  • U.S. Patent Application Publication No. 2014/0125999;
  • U.S. Patent Application Publication No. 2014/0129378;
  • U.S. Patent Application Publication No. 2014/0131438;
  • U.S. Patent Application Publication No. 2014/0131441;
  • U.S. Patent Application Publication No. 2014/0131443;
  • U.S. Patent Application Publication No. 2014/0131444;
  • U.S. Patent Application Publication No. 2014/0131445;
  • U.S. Patent Application Publication No. 2014/0131448;
  • U.S. Patent Application Publication No. 2014/0133379;
  • U.S. Patent Application Publication No. 2014/0136208;
  • U.S. Patent Application Publication No. 2014/0140585;
  • U.S. Patent Application Publication No. 2014/0151453;
  • U.S. Patent Application Publication No. 2014/0152882;
  • U.S. Patent Application Publication No. 2014/0158770;
  • U.S. Patent Application Publication No. 2014/0159869;
  • U.S. Patent Application Publication No. 2014/0166755;
  • U.S. Patent Application Publication No. 2014/0166759;
  • U.S. Patent Application Publication No. 2014/0168787;
  • U.S. Patent Application Publication No. 2014/0175165;
  • U.S. Patent Application Publication No. 2014/0175172;
  • U.S. Patent Application Publication No. 2014/0191644;
  • U.S. Patent Application Publication No. 2014/0191913;
  • U.S. Patent Application Publication No. 2014/0197238;
  • U.S. Patent Application Publication No. 2014/0197239;
  • U.S. Patent Application Publication No. 2014/0197304;
  • U.S. Patent Application Publication No. 2014/0214631;
  • U.S. Patent Application Publication No. 2014/0217166;
  • U.S. Patent Application Publication No. 2014/0217180;
  • U.S. Patent Application Publication No. 2014/0231500;
  • U.S. Patent Application Publication No. 2014/0232930;
  • U.S. Patent Application Publication No. 2014/0247315;
  • U.S. Patent Application Publication No. 2014/0263493;
  • U.S. Patent Application Publication No. 2014/0263645;
  • U.S. Patent Application Publication No. 2014/0267609;
  • U.S. Patent Application Publication No. 2014/0270196;
  • U.S. Patent Application Publication No. 2014/0270229;
  • U.S. Patent Application Publication No. 2014/0278387;
  • U.S. Patent Application Publication No. 2014/0278391;
  • U.S. Patent Application Publication No. 2014/0282210;
  • U.S. Patent Application Publication No. 2014/0284384;
  • U.S. Patent Application Publication No. 2014/0288933;
  • U.S. Patent Application Publication No. 2014/0297058;
  • U.S. Patent Application Publication No. 2014/0299665;
  • U.S. Patent Application Publication No. 2014/0312121;
  • U.S. Patent Application Publication No. 2014/0319220;
  • U.S. Patent Application Publication No. 2014/0319221;
  • U.S. Patent Application Publication No. 2014/0326787;
  • U.S. Patent Application Publication No. 2014/0332590;
  • U.S. Patent Application Publication No. 2014/0344943;
  • U.S. Patent Application Publication No. 2014/0346233;
  • U.S. Patent Application Publication No. 2014/0351317;
  • U.S. Patent Application Publication No. 2014/0353373;
  • U.S. Patent Application Publication No. 2014/0361073;
  • U.S. Patent Application Publication No. 2014/0361082;
  • U.S. Patent Application Publication No. 2014/0362184;
  • U.S. Patent Application Publication No. 2014/0363015;
  • U.S. Patent Application Publication No. 2014/0369511;
  • U.S. Patent Application Publication No. 2014/0374483;
  • U.S. Patent Application Publication No. 2014/0374485;
  • U.S. Patent Application Publication No. 2015/0001301;
  • U.S. Patent Application Publication No. 2015/0001304;
  • U.S. Patent Application Publication No. 2015/0003673;
  • U.S. Patent Application Publication No. 2015/0009338;
  • U.S. Patent Application Publication No. 2015/0009610;
  • U.S. Patent Application Publication No. 2015/0014416;
  • U.S. Patent Application Publication No. 2015/0021397;
  • U.S. Patent Application Publication No. 2015/0028102;
  • U.S. Patent Application Publication No. 2015/0028103;
  • U.S. Patent Application Publication No. 2015/0028104;
  • U.S. Patent Application Publication No. 2015/0029002;
  • U.S. Patent Application Publication No. 2015/0032709;
  • U.S. Patent Application Publication No. 2015/0039309;
  • U.S. Patent Application Publication No. 2015/0039878;
  • U.S. Patent Application Publication No. 2015/0040378;
  • U.S. Patent Application Publication No. 2015/0048168;
  • U.S. Patent Application Publication No. 2015/0049347;
  • U.S. Patent Application Publication No. 2015/0051992;
  • U.S. Patent Application Publication No. 2015/0053766;
  • U.S. Patent Application Publication No. 2015/0053768;
  • U.S. Patent Application Publication No. 2015/0053769;
  • U.S. Patent Application Publication No. 2015/0060544;
  • U.S. Patent Application Publication No. 2015/0062366;
  • U.S. Patent Application Publication No. 2015/0063215;
  • U.S. Patent Application Publication No. 2015/0063676;
  • U.S. Patent Application Publication No. 2015/0069130;
  • U.S. Patent Application Publication No. 2015/0071819;
  • U.S. Patent Application Publication No. 2015/0083800;
  • U.S. Patent Application Publication No. 2015/0086114;
  • U.S. Patent Application Publication No. 2015/0088522;
  • U.S. Patent Application Publication No. 2015/0096872;
  • U.S. Patent Application Publication No. 2015/0099557;
  • U.S. Patent Application Publication No. 2015/0100196;
  • U.S. Patent Application Publication No. 2015/0102109;
  • U.S. Patent Application Publication No. 2015/0115035;
  • U.S. Patent Application Publication No. 2015/0127791;
  • U.S. Patent Application Publication No. 2015/0128116;
  • U.S. Patent Application Publication No. 2015/0129659;
  • U.S. Patent Application Publication No. 2015/0133047;
  • U.S. Patent Application Publication No. 2015/0134470;
  • U.S. Patent Application Publication No. 2015/0136851;
  • U.S. Patent Application Publication No. 2015/0136854;
  • U.S. Patent Application Publication No. 2015/0142492;
  • U.S. Patent Application Publication No. 2015/0144692;
  • U.S. Patent Application Publication No. 2015/0144698;
  • U.S. Patent Application Publication No. 2015/0144701;
  • U.S. Patent Application Publication No. 2015/0149946;
  • U.S. Patent Application Publication No. 2015/0161429;
  • U.S. Patent Application Publication No. 2015/0169925;
  • U.S. Patent Application Publication No. 2015/0169929;
  • U.S. Patent Application Publication No. 2015/0178523;
  • U.S. Patent Application Publication No. 2015/0178534;
  • U.S. Patent Application Publication No. 2015/0178535;
  • U.S. Patent Application Publication No. 2015/0178536;
  • U.S. Patent Application Publication No. 2015/0178537;
  • U.S. Patent Application Publication No. 2015/0181093;
  • U.S. Patent Application Publication No. 2015/0181109;
  • U.S. patent application Ser. No. 13/367,978 for a Laser Scanning Module Employing an Elastomeric U-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.);
  • U.S. patent application Ser. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.);
  • U.S. patent application Ser. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.);
  • U.S. patent application Ser. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.);
  • U.S. patent application Ser. No. 14/150,393 for Indicia-reader Having Unitary Construction Scanner, filed Jan. 8, 2014 (Colavito et al.);
  • U.S. patent application Ser. No. 14/200,405 for Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (Feng et al.);
  • U.S. patent application Ser. No. 14/231,898 for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.);
  • U.S. patent application Ser. No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.);
  • U.S. patent application Ser. No. 14/257,364 for Docking System and Method Using Near Field Communication filed Apr. 21, 2014 (Showering);
  • U.S. patent application Ser. No. 14/264,173 for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014 (Ackley et al.);
  • U.S. patent application Ser. No. 14/277,337 for MULTIPURPOSE OPTICAL READER, filed May 14, 2014 (Jovanovski et al.);
  • U.S. patent application Ser. No. 14/283,282 for TERMINAL HAVING ILLUMINATION AND FOCUS CONTROL filed May 21, 2014 (Liu et al.);
  • U.S. patent application Ser. No. 14/327,827 for a MOBILE-PHONE ADAPTER FOR ELECTRONIC TRANSACTIONS, filed Jul. 10, 2014 (Hejl);
  • U.S. patent application Ser. No. 14/334,934 for a SYSTEM AND METHOD FOR INDICIA VERIFICATION, filed Jul. 18, 2014 (Hejl);
  • U.S. patent application Ser. No. 14/339,708 for LASER SCANNING CODE SYMBOL READING SYSTEM, filed Jul. 24, 2014 (Xian et al.);
  • U.S. patent application Ser. No. 14/340,627 for an AXIALLY REINFORCED FLEXIBLE SCAN ELEMENT, filed Jul. 25, 2014 (Rueblinger et al.);
  • U.S. patent application Ser. No. 14/446,391 for MULTIFUNCTION POINT OF SALE APPARATUS WITH OPTICAL SIGNATURE CAPTURE filed Jul. 30, 2014 (Good et al.);
  • U.S. patent application Ser. No. 14/452,697 for INTERACTIVE INDICIA READER, filed Aug. 6, 2014 (Todeschini);
  • U.S. patent application Ser. No. 14/453,019 for DIMENSIONING SYSTEM WITH GUIDED ALIGNMENT, filed Aug. 6, 2014 (Li et al.);
  • U.S. patent application Ser. No. 14/462,801 for MOBILE COMPUTING DEVICE WITH DATA COGNITION SOFTWARE, filed on Aug. 19, 2014 (Todeschini et al.);
  • U.S. patent application Ser. No. 14/483,056 for VARIABLE DEPTH OF FIELD BARCODE SCANNER filed Sep. 10, 2014 (McCloskey et al.);
  • U.S. patent application Ser. No. 14/513,808 for IDENTIFYING INVENTORY ITEMS IN A STORAGE FACILITY filed Oct. 14, 2014 (Singel et al.);
  • U.S. patent application Ser. No. 14/519,195 for HANDHELD DIMENSIONING SYSTEM WITH FEEDBACK filed Oct. 21, 2014 (Laffargue et al.);
  • U.S. patent application Ser. No. 14/519,179 for DIMENSIONING SYSTEM WITH MULTIPATH INTERFERENCE MITIGATION filed Oct. 21, 2014 (Thuries et al.);
  • U.S. patent application Ser. No. 14/519,211 for SYSTEM AND METHOD FOR DIMENSIONING filed Oct. 21, 2014 (Ackley et al.);
  • U.S. patent application Ser. No. 14/519,233 for HANDHELD DIMENSIONER WITH DATA-QUALITY INDICATION filed Oct. 21, 2014 (Laffargue et al.);
  • U.S. patent application Ser. No. 14/519,249 for HANDHELD DIMENSIONING SYSTEM WITH MEASUREMENT-CONFORMANCE FEEDBACK filed Oct. 21, 2014 (Ackley et al.);
  • U.S. patent application Ser. No. 14/527,191 for METHOD AND SYSTEM FOR RECOGNIZING SPEECH USING WILDCARDS IN AN EXPECTED RESPONSE filed Oct. 29, 2014 (Braho et al.);
  • U.S. patent application Ser. No. 14/529,563 for ADAPTABLE INTERFACE FOR A MOBILE COMPUTING DEVICE filed Oct. 31, 2014 (Schoon et al.);
  • U.S. patent application Ser. No. 14/529,857 for BARCODE READER WITH SECURITY FEATURES filed Oct. 31, 2014 (Todeschini et al.);
  • U.S. patent application Ser. No. 14/398,542 for PORTABLE ELECTRONIC DEVICES HAVING A SEPARATE LOCATION TRIGGER UNIT FOR USE IN CONTROLLING AN APPLICATION UNIT filed Nov. 3, 2014 (Bian et al.);
  • U.S. patent application Ser. No. 14/531,154 for DIRECTING AN INSPECTOR THROUGH AN INSPECTION filed Nov. 3, 2014 (Miller et al.);
  • U.S. patent application Ser. No. 14/533,319 for BARCODE SCANNING SYSTEM USING WEARABLE DEVICE WITH EMBEDDED CAMERA filed Nov. 5, 2014 (Todeschini);
  • U.S. patent application Ser. No. 14/535,764 for CONCATENATED EXPECTED RESPONSES FOR SPEECH RECOGNITION filed Nov. 7, 2014 (Braho et al.);
  • U.S. patent application Ser. No. 14/568,305 for AUTO-CONTRAST VIEWFINDER FOR AN INDICIA READER filed Dec. 12, 2014 (Todeschini);
  • U.S. patent application Ser. No. 14/573,022 for DYNAMIC DIAGNOSTIC INDICATOR GENERATION filed Dec. 17, 2014 (Goldsmith);
  • U.S. patent application Ser. No. 14/578,627 for SAFETY SYSTEM AND METHOD filed Dec. 22, 2014 (Ackley et al.);
  • U.S. patent application Ser. No. 14/580,262 for MEDIA GATE FOR THERMAL TRANSFER PRINTERS filed Dec. 23, 2014 (Bowles);
  • U.S. patent application Ser. No. 14/590,024 for SHELVING AND PACKAGE LOCATING SYSTEMS FOR DELIVERY VEHICLES filed Jan. 6, 2015 (Payne);
  • U.S. patent application Ser. No. 14/596,757 for SYSTEM AND METHOD FOR DETECTING BARCODE PRINTING ERRORS filed Jan. 14, 2015 (Ackley);
  • U.S. patent application Ser. No. 14/416,147 for OPTICAL READING APPARATUS HAVING VARIABLE SETTINGS filed Jan. 21, 2015 (Chen et al.);
  • U.S. patent application Ser. No. 14/614,706 for DEVICE FOR SUPPORTING AN ELECTRONIC TOOL ON A USER'S HAND filed Feb. 5, 2015 (Oberpriller et al.);
  • U.S. patent application Ser. No. 14/614,796 for CARGO APPORTIONMENT TECHNIQUES filed Feb. 5, 2015 (Morton et al.);
  • U.S. patent application Ser. No. 29/516,892 for TABLE COMPUTER filed Feb. 6, 2015 (Bidwell et al.);
  • U.S. patent application Ser. No. 14/619,093 for METHODS FOR TRAINING A SPEECH RECOGNITION SYSTEM filed Feb. 11, 2015 (Pecorari);
  • U.S. patent application Ser. No. 14/628,708 for DEVICE, SYSTEM, AND METHOD FOR DETERMINING THE STATUS OF CHECKOUT LANES filed Feb. 23, 2015 (Todeschini);
  • U.S. patent application Ser. No. 14/630,841 for TERMINAL INCLUDING IMAGING ASSEMBLY filed Feb. 25, 2015 (Gomez et al.);
  • U.S. patent application Ser. No. 14/635,346 for SYSTEM AND METHOD FOR RELIABLE STORE-AND-FORWARD DATA HANDLING BY ENCODED INFORMATION READING TERMINALS filed Mar. 2, 2015 (Sevier);
  • U.S. patent application Ser. No. 29/519,017 for SCANNER filed Mar. 2, 2015 (Zhou et al.);
  • U.S. patent application Ser. No. 14/405,278 for DESIGN PATTERN FOR SECURE STORE filed Mar. 9, 2015 (Zhu et al.);
  • U.S. patent application Ser. No. 14/660,970 for DECODABLE INDICIA READING TERMINAL WITH COMBINED ILLUMINATION filed Mar. 18, 2015 (Kearney et al.);
  • U.S. patent application Ser. No. 14/661,013 for REPROGRAMMING SYSTEM AND METHOD FOR DEVICES INCLUDING PROGRAMMING SYMBOL filed Mar. 18, 2015 (Soule et al.);
  • U.S. patent application Ser. No. 14/662,922 for MULTIFUNCTION POINT OF SALE SYSTEM filed Mar. 19, 2015 (Van Horn et al.);
  • U.S. patent application Ser. No. 14/663,638 for VEHICLE MOUNT COMPUTER WITH CONFIGURABLE IGNITION SWITCH BEHAVIOR filed Mar. 20, 2015 (Davis et al.);
  • U.S. patent application Ser. No. 14/664,063 for METHOD AND APPLICATION FOR SCANNING A BARCODE WITH A SMART DEVICE WHILE CONTINUOUSLY RUNNING AND DISPLAYING AN APPLICATION ON THE SMART DEVICE DISPLAY filed Mar. 20, 2015 (Todeschini);
  • U.S. patent application Ser. No. 14/669,280 for TRANSFORMING COMPONENTS OF A WEB PAGE TO VOICE PROMPTS filed Mar. 26, 2015 (Funyak et al.);
  • U.S. patent application Ser. No. 14/674,329 for AIMER FOR BARCODE SCANNING filed Mar. 31, 2015 (Bidwell);
  • U.S. patent application Ser. No. 14/676,109 for INDICIA READER filed Apr. 1, 2015 (Huck);
  • U.S. patent application Ser. No. 14/676,327 for DEVICE MANAGEMENT PROXY FOR SECURE DEVICES filed Apr. 1, 2015 (Yeakley et al.);
  • U.S. patent application Ser. No. 14/676,898 for NAVIGATION SYSTEM CONFIGURED TO INTEGRATE MOTION SENSING DEVICE INPUTS filed Apr. 2, 2015 (Showering);
  • U.S. patent application Ser. No. 14/679,275 for DIMENSIONING SYSTEM CALIBRATION SYSTEMS AND METHODS filed Apr. 6, 2015 (Laffargue et al.);
  • U.S. patent application Ser. No. 29/523,098 for HANDLE FOR A TABLET COMPUTER filed Apr. 7, 2015 (Bidwell et al.);
  • U.S. patent application Ser. No. 14/682,615 for SYSTEM AND METHOD FOR POWER MANAGEMENT OF MOBILE DEVICES filed Apr. 9, 2015 (Murawski et al.);
  • U.S. patent application Ser. No. 14/686,822 for MULTIPLE PLATFORM SUPPORT SYSTEM AND METHOD filed Apr. 15, 2015 (Qu et al.);
  • U.S. patent application Ser. No. 14/687,289 for SYSTEM FOR COMMUNICATION VIA A PERIPHERAL HUB filed Apr. 15, 2015 (Kohtz et al.);
  • U.S. patent application Ser. No. 29/524,186 for SCANNER filed Apr. 17, 2015 (Zhou et al.);
  • U.S. patent application Ser. No. 14/695,364 for MEDICATION MANAGEMENT SYSTEM filed Apr. 24, 2015 (Sewell et al.);
  • U.S. patent application Ser. No. 14/695,923 for SECURE UNATTENDED NETWORK AUTHENTICATION filed Apr. 24, 2015 (Kubler et al.);
  • U.S. patent application Ser. No. 29/525,068 for TABLET COMPUTER WITH REMOVABLE SCANNING DEVICE filed Apr. 27, 2015 (Schulte et al.);
  • U.S. patent application Ser. No. 14/699,436 for SYMBOL READING SYSTEM HAVING PREDICTIVE DIAGNOSTICS filed Apr. 29, 2015 (Nahill et al.);
  • U.S. patent application Ser. No. 14/702,110 for SYSTEM AND METHOD FOR REGULATING BARCODE DATA INJECTION INTO A RUNNING APPLICATION ON A SMART DEVICE filed May 1, 2015 (Todeschini et al.);
  • U.S. patent application Ser. No. 14/702,979 for TRACKING BATTERY CONDITIONS filed May 4, 2015 (Young et al.);
  • U.S. patent application Ser. No. 14/704,050 for INTERMEDIATE LINEAR POSITIONING filed May 5, 2015 (Charpentier et al.);
  • U.S. patent application Ser. No. 14/705,012 for HANDS-FREE HUMAN MACHINE INTERFACE RESPONSIVE TO A DRIVER OF A VEHICLE filed May 6, 2015 (Fitch et al.);
  • U.S. patent application Ser. No. 14/705,407 for METHOD AND SYSTEM TO PROTECT SOFTWARE-BASED NETWORK-CONNECTED DEVICES FROM ADVANCED PERSISTENT THREAT filed May 6, 2015 (Hussey et al.);
  • U.S. patent application Ser. No. 14/707,037 for SYSTEM AND METHOD FOR DISPLAY OF INFORMATION USING A VEHICLE-MOUNT COMPUTER filed May 8, 2015 (Chamberlin);
  • U.S. patent application Ser. No. 14/707,123 for APPLICATION INDEPENDENT DEX/UCS INTERFACE filed May 8, 2015 (Pape);
  • U.S. patent application Ser. No. 14/707,492 for METHOD AND APPARATUS FOR READING OPTICAL INDICIA USING A PLURALITY OF DATA SOURCES filed May 8, 2015 (Smith et al.);
  • U.S. patent application Ser. No. 14/710,666 for PRE-PAID USAGE SYSTEM FOR ENCODED INFORMATION READING TERMINALS filed May 13, 2015 (Smith);
  • U.S. patent application Ser. No. 29/526,918 for CHARGING BASE filed May 14, 2015 (Fitch et al.);
  • U.S. patent application Ser. No. 14/715,672 for AUGMENTED REALITY ENABLED HAZARD DISPLAY filed May 19, 2015 (Venkatesha et al.);
  • U.S. patent application Ser. No. 14/715,916 for EVALUATING IMAGE VALUES filed May 19, 2015 (Ackley);
  • U.S. patent application Ser. No. 14/722,608 for INTERACTIVE USER INTERFACE FOR CAPTURING A DOCUMENT IN AN IMAGE SIGNAL filed May 27, 2015 (Showering et al.);
  • U.S. patent application Ser. No. 29/528,165 for IN-COUNTER BARCODE SCANNER filed May 27, 2015 (Oberpriller et al.);
  • U.S. patent application Ser. No. 14/724,134 for ELECTRONIC DEVICE WITH WIRELESS PATH SELECTION CAPABILITY filed May 28, 2015 (Wang et al.);
  • U.S. patent application Ser. No. 14/724,849 for METHOD OF PROGRAMMING THE DEFAULT CABLE INTERFACE SOFTWARE IN AN INDICIA READING DEVICE filed May 29, 2015 (Barten);
  • U.S. patent application Ser. No. 14/724,908 for IMAGING APPARATUS HAVING IMAGING ASSEMBLY filed May 29, 2015 (Barber et al.);
  • U.S. patent application Ser. No. 14/725,352 for APPARATUS AND METHODS FOR MONITORING ONE OR MORE PORTABLE DATA TERMINALS (Caballero et al.);
  • U.S. patent application Ser. No. 29/528,590 for ELECTRONIC DEVICE filed May 29, 2015 (Fitch et al.);
  • U.S. patent application Ser. No. 29/528,890 for MOBILE COMPUTER HOUSING filed Jun. 2, 2015 (Fitch et al.);
  • U.S. patent application Ser. No. 14/728,397 for DEVICE MANAGEMENT USING VIRTUAL INTERFACES CROSS-REFERENCE TO RELATED APPLICATIONS filed Jun. 2, 2015 (Caballero);
  • U.S. patent application Ser. No. 14/732,870 for DATA COLLECTION MODULE AND SYSTEM filed Jun. 8, 2015 (Powilleit);
  • U.S. patent application Ser. No. 29/529,441 for INDICIA READING DEVICE filed Jun. 8, 2015 (Zhou et al.);
  • U.S. patent application Ser. No. 14/735,717 for INDICIA-READING SYSTEMS HAVING AN INTERFACE WITH A USER'S NERVOUS SYSTEM filed Jun. 10, 2015 (Todeschini);
  • U.S. patent application Ser. No. 14/738,038 for METHOD OF AND SYSTEM FOR DETECTING OBJECT WEIGHING INTERFERENCES filed Jun. 12, 2015 (Amundsen et al.);
  • U.S. patent application Ser. No. 14/740,320 for TACTILE SWITCH FOR A MOBILE ELECTRONIC DEVICE filed Jun. 16, 2015 (Bandringa);
  • U.S. patent application Ser. No. 14/740,373 for CALIBRATING A VOLUME DIMENSIONER filed Jun. 16, 2015 (Ackley et al.);
  • U.S. patent application Ser. No. 14/742,818 for INDICIA READING SYSTEM EMPLOYING DIGITAL GAIN CONTROL filed Jun. 18, 2015 (Xian et al.);
  • U.S. patent application Ser. No. 14/743,257 for WIRELESS MESH POINT PORTABLE DATA TERMINAL filed Jun. 18, 2015 (Wang et al.);
  • U.S. patent application Ser. No. 29/530,600 for CYCLONE filed Jun. 18, 2015 (Vargo et al);
  • U.S. patent application Ser. No. 14/744,633 for IMAGING APPARATUS COMPRISING IMAGE SENSOR ARRAY HAVING SHARED GLOBAL SHUTTER CIRCUITRY filed Jun. 19, 2015 (Wang);
  • U.S. patent application Ser. No. 14/744,836 for CLOUD-BASED SYSTEM FOR READING OF DECODABLE INDICIA filed Jun. 19, 2015 (Todeschini et al.);
  • U.S. patent application Ser. No. 14/745,006 for SELECTIVE OUTPUT OF DECODED MESSAGE DATA filed Jun. 19, 2015 (Todeschini et al.);
  • U.S. patent application Ser. No. 14/747,197 for OPTICAL PATTERN PROJECTOR filed Jun. 23, 2015 (Thuries et al.);
  • U.S. patent application Ser. No. 14/747,490 for DUAL-PROJECTOR THREE-DIMENSIONAL SCANNER filed Jun. 23, 2015 (Jovanovski et al.); and
  • U.S. patent application Ser. No. 14/748,446 for CORDLESS INDICIA READER WITH A MULTIFUNCTION COIL FOR WIRELESS CHARGING AND EAS DEACTIVATION, filed Jun. 24, 2015 (Xie et al.).


Example embodiments of the present invention are thus described in relation to presenting information relating to lifting and moving a load object with a vehicle. Upon the lifting, a dimensioner determines a size and a shape of the load object, computes a corresponding spatial representation, and generates a corresponding video signal. During the moving, an imager observes a scene in front of the vehicle, relative to its forward motion direction, and generates a video signal corresponding to the observed scene. The imager has at least one element moveable vertically, relative to the lifting. A display renders a real time visual representation of the scene observed in front of the vehicle based on the corresponding video signal and superimposes a representation of the computed spatial representation of the load object.


Example embodiments of the present invention are thus useful for improving the view of operators in control of vehicles such as forklifts generally, and in particular, during the lifting and moving of loads therewith. Example embodiments mitigate, and compensate for blockage, obstruction, occlusion, and other compromise over the view of an operator in control of the vehicle, as presented by the load lifted therewith. Example embodiments reduce the risk of possible collision with avoidable obstructions disposed in the path over which the vehicle is moving the load.


For clarity and brevity, as well as to avoid unnecessary or unhelpful obfuscating, obscuring, obstructing, or occluding features of an example embodiment, certain intricacies and details, which are known generally to artisans of ordinary skill in related technologies, may have been omitted or discussed in less than exhaustive detail. Any such omissions or discussions are neither necessary for describing example embodiments of the invention, nor particularly relevant to understanding of significant elements, features, functions, and aspects of the example embodiments described herein.


In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such example embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items, and the term “or” is used in an inclusive (and not exclusive) sense. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.

Claims
  • 1. A system, comprising: a dimensioner operable for determining dimensions of a load object, computing a spatial representation of the load object, and generating a first video signal corresponding to the computed spatial representation;an imager operable for observing a scene in front of a vehicle and generating a second video signal corresponding to the observed scene, the imager comprising at least one element moveable vertically; anda display operable for: rendering a real time visual representation of the observed scene based on the second video signal, the visual representation transposed to a perspective consistent with a direct view of an operator of the vehicle; andrendering a transparent representation of the computed spatial representation of the load object based on the corresponding first video signal superimposed with the visual representation of the observed scene.
  • 2. The system as described in claim 1, wherein: the vehicle comprises a forklift;the forklift comprises a member for lifting a load; andthe imager's at least one element moveable vertically is positioned on a portion of the member disposed proximate to the front of the vehicle.
  • 3. The system as described in claim 1, wherein: observing a scene comprises capturing a real time three dimensional (3D) image of the scene; andrendering the real time visual representation of the observed scene comprises rendering a real time visual representation of the observed scene based on a perspective corresponding to the at least one vertically moveable element.
  • 4. The system as described in claim 1, wherein the computed spatial representation of the load object comprises a wireframe computed based on the determined dimensions of the load object.
  • 5. The system as described in claim 1, wherein: the dimensioner is operable for computing a distance between the front of the vehicle and the load object; andthe display is operable for rendering a representation corresponding to the computed distance.
  • 6. The system as described in claim 1, wherein the imager comprises a trajectory analyzer operable, upon a detection of one or more objects positioned over a range within the observed scene disposed before the front of the vehicle, for computing a trajectory relating to the forward motion of the vehicle in relation to each of the objects and generating a trajectory signal corresponding to each of the avoidable objects.
  • 7. The system as described in claim 6, wherein, upon the detection of the one or more objects, rendering the real time visual representation of the observed scene comprises rendering a visual representation of the one or more objects and data relating to the computed trajectory.
  • 8. The system as described in claim 7, wherein, upon the computed trajectory comprising an imminent risk of a collision with at least one of the objects, the trajectory analyzer is operable for performing at least one action related to avoiding the collision.
  • 9. The system as described in claim 1, comprising a plurality of cameras.
  • 10. The system as described in claim 1, wherein the display is observable to an operator of the vehicle during operation of the vehicle.
  • 11. A method of providing a driver of a vehicle an unobstructed view, the method comprising: capturing images of a scene disposed before a vehicle using one or more imagers, wherein an object obstructs at least a portion of the scene disposed before the vehicle when viewed from a perspective consistent with a direct view of a driver of the vehicle, the one or more cameras positioned on the vehicle so as to observe the scene;computing a spatial representation of the object based on at least a portion of the images from at least one of the imagers;transposing a view of at least a portion of the images to a perspective consistent with a direct view of a driver of the vehicle; anddisplaying a real-time visual representation of the scene disposed before the vehicle, the visual representation transposed to the perspective consistent with the direct view of the driver of the vehicle and comprising a transparent representation of the object superimposed in relation to the visual representation.
  • 12. The method of claim 11, wherein the vehicle comprises a lifting member configured to move a load, and wherein the object obstructs at least a portion of the scene when moving a load comprising the object.
  • 13. The method of claim 11, wherein the vehicle comprises a lifting member with at least one of the imagers disposed upon a portion of the lifting member.
  • 14. The method of claim 11, wherein the vehicle comprises a lifting member configured to move a load, and wherein at least one of the imagers comprises an element movable in relation to the load.
  • 15. The method of claim 11, wherein the object comprises one or more boxes, one or more crates, one or more packages, one or more machinery items, and/or an one or more palletized configurations.
  • 16. The method of claim 11, wherein the transparent representation of the object comprises a wireframe outlining the object.
  • 17. The method of claim 11, wherein the vehicle is configured to move the object, and wherein displaying the real-time visual representation of the scene comprises superimposing the transparent representation of the object in relation to the visual representation upon lifting the object.
  • 18. The method of claim 11, wherein the vehicle comprises a heads-up-display configured display the real-time visual representation of the scene.
  • 19. The method of claim 11, wherein the scene disposed before the vehicle comprises an obstruction beyond the object, and the real-time visual representation of the scene comprises a view of the obstruction.
  • 20. The method of claim 11, comprising: detecting an obstruction in scene, wherein the real-time visual representation of the scene comprises a visual representation of the obstruction; andcomputing a trajectory for the vehicle in relation to the obstruction.
US Referenced Citations (1225)
Number Name Date Kind
3971065 Bayer Jul 1976 A
4026031 Siddall et al. May 1977 A
4279328 Ahlbom Jul 1981 A
4398811 Nishioka et al. Aug 1983 A
4495559 Gelatt, Jr. Jan 1985 A
4634278 Ross et al. Jan 1987 A
4730190 Win et al. Mar 1988 A
4803639 Steele et al. Feb 1989 A
4914460 Caimi et al. Apr 1990 A
4974919 Muraki et al. Dec 1990 A
5111325 DeJager May 1992 A
5175601 Fitts Dec 1992 A
5184733 Arnarson et al. Feb 1993 A
5198648 Hibbard Mar 1993 A
5220536 Stringer et al. Jun 1993 A
5243619 Albers et al. Sep 1993 A
5331118 Jensen Jul 1994 A
5359185 Hanson Oct 1994 A
5384901 Glassner et al. Jan 1995 A
5477622 Skalnik Dec 1995 A
5548707 LoNegro et al. Aug 1996 A
5555090 Schmutz Sep 1996 A
5561526 Huber et al. Oct 1996 A
5590060 Granville et al. Dec 1996 A
5592333 Lewis Jan 1997 A
5606534 Stringer et al. Feb 1997 A
5619245 Kessler et al. Apr 1997 A
5655095 LoNegro et al. Aug 1997 A
5661561 Wurz et al. Aug 1997 A
5699161 Woodworth Dec 1997 A
5729750 Ishida Mar 1998 A
5730252 Herbinet Mar 1998 A
5732147 Tao Mar 1998 A
5734476 Dlugos Mar 1998 A
5737074 Naga et al. Apr 1998 A
5748199 Palm May 1998 A
5767962 Suzuki et al. Jun 1998 A
5802092 Endriz Sep 1998 A
5808657 Kurtz et al. Sep 1998 A
5831737 Stringer et al. Nov 1998 A
5850370 Stringer et al. Dec 1998 A
5850490 Johnson Dec 1998 A
5869827 Rando Feb 1999 A
5870220 Migdal et al. Feb 1999 A
5900611 Hecht May 1999 A
5923428 Woodworth Jul 1999 A
5929856 LoNegro et al. Jul 1999 A
5938710 Lanza Aug 1999 A
5959568 Woolley Sep 1999 A
5960098 Tao Sep 1999 A
5969823 Wurz et al. Oct 1999 A
5978512 Kim et al. Nov 1999 A
5979760 Freyman et al. Nov 1999 A
5988862 Kacyra et al. Nov 1999 A
5991041 Woodworth Nov 1999 A
6009189 Schaack Dec 1999 A
6025847 Marks Feb 2000 A
6035067 Ponticos Mar 2000 A
6049386 Stringer et al. Apr 2000 A
6053409 Brobst et al. Apr 2000 A
6064759 Buckley et al. May 2000 A
6067110 Nonaka et al. May 2000 A
6069696 McQueen et al. May 2000 A
6115114 Berg et al. Sep 2000 A
6137577 Woodworth Oct 2000 A
6177999 Wurz et al. Jan 2001 B1
6189223 Haug Feb 2001 B1
6232597 Kley May 2001 B1
6236403 Chaki May 2001 B1
6246468 Dimsdale Jun 2001 B1
6333749 Reinhardt Dec 2001 B1
6336587 He et al. Jan 2002 B1
6369401 Lee Apr 2002 B1
6373579 Ober et al. Apr 2002 B1
6429803 Kumar Aug 2002 B1
6457642 Good et al. Oct 2002 B1
6507406 Yagi et al. Jan 2003 B1
6517004 Good et al. Feb 2003 B2
6519550 D'Hooge et al. Feb 2003 B1
6535776 Tobin et al. Mar 2003 B1
6661521 Stern Sep 2003 B1
6674904 McQueen Jan 2004 B1
6705526 Zhu et al. Mar 2004 B1
6773142 Rekow Aug 2004 B2
6781621 Gobush et al. Aug 2004 B1
6804269 Lizotte et al. Oct 2004 B2
6824058 Patel et al. Nov 2004 B2
6832725 Gardiner et al. Dec 2004 B2
6858857 Pease et al. Feb 2005 B2
6912293 Korobkin Jun 2005 B1
6922632 Foxlin Jul 2005 B2
6971580 Zhu et al. Dec 2005 B2
6995762 Pavlidis et al. Feb 2006 B1
7057632 Yamawaki et al. Jun 2006 B2
7085409 Sawhney et al. Aug 2006 B2
7086162 Tyroler Aug 2006 B2
7104453 Zhu et al. Sep 2006 B1
7128266 Zhu et al. Oct 2006 B2
7137556 Bonner et al. Nov 2006 B1
7159783 Walczyk et al. Jan 2007 B2
7161688 Bonner et al. Jan 2007 B1
7205529 Andersen et al. Apr 2007 B2
7214954 Schopp May 2007 B2
7233682 Levine Jun 2007 B2
7277187 Smith et al. Oct 2007 B2
7307653 Dutta Dec 2007 B2
7310431 Gokturk et al. Dec 2007 B2
7313264 Crampton Dec 2007 B2
7353137 Vock et al. Apr 2008 B2
7413127 Ehrhart et al. Aug 2008 B2
7509529 Colucci et al. Mar 2009 B2
7527205 Zhu May 2009 B2
7586049 Wurz Sep 2009 B2
7602404 Reinhardt et al. Oct 2009 B1
7614563 Nunnink et al. Nov 2009 B1
7639722 Paxton et al. Dec 2009 B1
7726206 Terrafranca, Jr. et al. Jun 2010 B2
7726575 Wang et al. Jun 2010 B2
7780084 Zhang et al. Aug 2010 B2
7788883 Buckley et al. Sep 2010 B2
7912320 Minor Mar 2011 B1
7974025 Topliss Jul 2011 B2
8009358 Zalevsky et al. Aug 2011 B2
8027096 Feng et al. Sep 2011 B2
8028501 Buckley et al. Oct 2011 B2
8050461 Shpunt et al. Nov 2011 B2
8055061 Katano Nov 2011 B2
8061610 Nunnink Nov 2011 B2
8072581 Breiholz Dec 2011 B1
8102395 Kondo et al. Jan 2012 B2
8132728 Dwinell et al. Mar 2012 B2
8134717 Pangrazio et al. Mar 2012 B2
8149224 Kuo et al. Apr 2012 B1
8194097 Xiao et al. Jun 2012 B2
8201737 Palacios Durazo et al. Jun 2012 B1
8212158 Wiest Jul 2012 B2
8212889 Chanas et al. Jul 2012 B2
8224133 Popovich et al. Jul 2012 B2
8228510 Pangrazio et al. Jul 2012 B2
8230367 Bell et al. Jul 2012 B2
8294969 Plesko Oct 2012 B2
8301027 Shaw et al. Oct 2012 B2
8305458 Hara Nov 2012 B2
8310656 Zalewski Nov 2012 B2
8313380 Zalewski et al. Nov 2012 B2
8317105 Kotlarsky et al. Nov 2012 B2
8320621 McEldowney Nov 2012 B2
8322622 Liu Dec 2012 B2
8339462 Stec et al. Dec 2012 B2
8350959 Topliss et al. Jan 2013 B2
8351670 Ijiri et al. Jan 2013 B2
8366005 Kotlarsky et al. Feb 2013 B2
8368762 Chen et al. Feb 2013 B1
8371507 Haggerty et al. Feb 2013 B2
8374498 Pastore Feb 2013 B2
8376233 Van Horn et al. Feb 2013 B2
8381976 Mohideen et al. Feb 2013 B2
8381979 Franz Feb 2013 B2
8390909 Plesko Mar 2013 B2
8408464 Zhu et al. Apr 2013 B2
8408468 Horn et al. Apr 2013 B2
8408469 Good Apr 2013 B2
8424768 Rueblinger et al. Apr 2013 B2
8437539 Komatsu et al. May 2013 B2
8441749 Brown et al. May 2013 B2
8448863 Xian et al. May 2013 B2
8457013 Essinger et al. Jun 2013 B2
8459557 Havens et al. Jun 2013 B2
8463079 Ackley et al. Jun 2013 B2
8469272 Kearney Jun 2013 B2
8474712 Kearney et al. Jul 2013 B2
8479992 Kotlarsky et al. Jul 2013 B2
8490877 Kearney Jul 2013 B2
8517271 Kotlarsky et al. Aug 2013 B2
8523076 Good Sep 2013 B2
8528818 Ehrhart et al. Sep 2013 B2
8544737 Gomez et al. Oct 2013 B2
8548420 Grunow et al. Oct 2013 B2
8550335 Samek et al. Oct 2013 B2
8550354 Gannon et al. Oct 2013 B2
8550357 Kearney Oct 2013 B2
8556174 Kosecki et al. Oct 2013 B2
8556176 Van Horn et al. Oct 2013 B2
8556177 Hussey et al. Oct 2013 B2
8559767 Barber et al. Oct 2013 B2
8561895 Gomez et al. Oct 2013 B2
8561903 Sauerwein Oct 2013 B2
8561905 Edmonds et al. Oct 2013 B2
8565107 Pease et al. Oct 2013 B2
8570343 Halstead Oct 2013 B2
8571307 Li et al. Oct 2013 B2
8576390 Nunnink Nov 2013 B1
8579200 Samek et al. Nov 2013 B2
8583924 Caballero et al. Nov 2013 B2
8584945 Wang et al. Nov 2013 B2
8587595 Wang Nov 2013 B2
8587697 Hussey et al. Nov 2013 B2
8588869 Sauerwein et al. Nov 2013 B2
8590789 Nahill et al. Nov 2013 B2
8594425 Gurman et al. Nov 2013 B2
8596539 Havens et al. Dec 2013 B2
8596542 Havens et al. Dec 2013 B2
8596543 Havens et al. Dec 2013 B2
8599271 Havens et al. Dec 2013 B2
8599957 Peake et al. Dec 2013 B2
8600158 Li et al. Dec 2013 B2
8600167 Showering Dec 2013 B2
8602309 Longacre et al. Dec 2013 B2
8608053 Meier et al. Dec 2013 B2
8608071 Liu et al. Dec 2013 B2
8611309 Wang et al. Dec 2013 B2
8615487 Gomez et al. Dec 2013 B2
8621123 Caballero Dec 2013 B2
8622303 Meier et al. Jan 2014 B2
8628013 Ding Jan 2014 B2
8628015 Wang et al. Jan 2014 B2
8628016 Winegar Jan 2014 B2
8629926 Wang Jan 2014 B2
8630491 Longacre et al. Jan 2014 B2
8635309 Berthiaume et al. Jan 2014 B2
8636200 Kearney Jan 2014 B2
8636212 Nahill et al. Jan 2014 B2
8636215 Ding et al. Jan 2014 B2
8636224 Wang Jan 2014 B2
8638806 Wang et al. Jan 2014 B2
8640958 Lu et al. Feb 2014 B2
8640960 Wang et al. Feb 2014 B2
8643717 Li et al. Feb 2014 B2
8646692 Meier et al. Feb 2014 B2
8646694 Wang et al. Feb 2014 B2
8657200 Ren et al. Feb 2014 B2
8659397 Vargo et al. Feb 2014 B2
8668149 Good Mar 2014 B2
8678285 Kearney Mar 2014 B2
8678286 Smith et al. Mar 2014 B2
8682077 Longacre Mar 2014 B1
D702237 Oberpriller et al. Apr 2014 S
8687282 Feng et al. Apr 2014 B2
8692927 Pease et al. Apr 2014 B2
8695880 Bremer et al. Apr 2014 B2
8698949 Grunow et al. Apr 2014 B2
8702000 Barber et al. Apr 2014 B2
8717494 Gannon May 2014 B2
8720783 Biss et al. May 2014 B2
8723804 Fletcher et al. May 2014 B2
8723904 Marty et al. May 2014 B2
8727223 Wang May 2014 B2
8736909 Sato et al. May 2014 B2
8740082 Wilz Jun 2014 B2
8740085 Furlong et al. Jun 2014 B2
8746563 Hennick et al. Jun 2014 B2
8750445 Peake et al. Jun 2014 B2
8752766 Xian et al. Jun 2014 B2
8756059 Braho et al. Jun 2014 B2
8757495 Qu et al. Jun 2014 B2
8760563 Koziol et al. Jun 2014 B2
8763909 Reed et al. Jul 2014 B2
8777108 Coyle Jul 2014 B2
8777109 Oberpriller et al. Jul 2014 B2
8779898 Havens et al. Jul 2014 B2
8781520 Payne et al. Jul 2014 B2
8783573 Havens et al. Jul 2014 B2
8789757 Barten Jul 2014 B2
8789758 Hawley et al. Jul 2014 B2
8789759 Xian et al. Jul 2014 B2
8792688 Unsworth Jul 2014 B2
8794520 Wang et al. Aug 2014 B2
8794522 Ehrhart Aug 2014 B2
8794525 Amundsen et al. Aug 2014 B2
8794526 Wang et al. Aug 2014 B2
8798367 Ellis Aug 2014 B2
8807431 Wang et al. Aug 2014 B2
8807432 Van Horn et al. Aug 2014 B2
8810779 Hilde Aug 2014 B1
8820630 Qu et al. Sep 2014 B2
8822806 Cockerell et al. Sep 2014 B2
8822848 Meagher Sep 2014 B2
8824692 Sheerin et al. Sep 2014 B2
8824696 Braho Sep 2014 B2
8842849 Wahl et al. Sep 2014 B2
8844822 Kotlarsky et al. Sep 2014 B2
8844823 Fritz et al. Sep 2014 B2
8849019 Li et al. Sep 2014 B2
D716285 Chaney et al. Oct 2014 S
8851383 Yeakley et al. Oct 2014 B2
8854633 Laffargue Oct 2014 B2
8866963 Grunow et al. Oct 2014 B2
8868421 Braho et al. Oct 2014 B2
8868519 Maloy et al. Oct 2014 B2
8868802 Barten Oct 2014 B2
8868803 Caballero Oct 2014 B2
8870074 Gannon Oct 2014 B1
8879639 Sauerwein Nov 2014 B2
8880426 Smith Nov 2014 B2
8881983 Havens et al. Nov 2014 B2
8881987 Wang Nov 2014 B2
8897596 Passmore et al. Nov 2014 B1
8903172 Smith Dec 2014 B2
8908277 Pesach et al. Dec 2014 B2
8908995 Benos et al. Dec 2014 B2
8910870 Li et al. Dec 2014 B2
8910875 Ren et al. Dec 2014 B2
8914290 Hendrickson et al. Dec 2014 B2
8914788 Pettinelli et al. Dec 2014 B2
8915439 Feng et al. Dec 2014 B2
8915444 Havens et al. Dec 2014 B2
8916789 Woodburn Dec 2014 B2
8918250 Hollifield Dec 2014 B2
8918564 Caballero Dec 2014 B2
8925818 Kosecki et al. Jan 2015 B2
8928896 Kennington et al. Jan 2015 B2
8939374 Jovanovski et al. Jan 2015 B2
8942480 Ellis Jan 2015 B2
8944313 Williams et al. Feb 2015 B2
8944327 Meier et al. Feb 2015 B2
8944332 Harding et al. Feb 2015 B2
8950678 Germaine et al. Feb 2015 B2
D723560 Zhou et al. Mar 2015 S
8967468 Gomez et al. Mar 2015 B2
8971346 Sevier Mar 2015 B2
8976030 Cunningham et al. Mar 2015 B2
8976368 Akel et al. Mar 2015 B2
8978981 Guan Mar 2015 B2
8978983 Bremer et al. Mar 2015 B2
8978984 Hennick et al. Mar 2015 B2
8985456 Zhu et al. Mar 2015 B2
8985457 Soule et al. Mar 2015 B2
8985459 Kearney et al. Mar 2015 B2
8985461 Gelay et al. Mar 2015 B2
8988578 Showering Mar 2015 B2
8988590 Gillet et al. Mar 2015 B2
8991704 Hopper et al. Mar 2015 B2
8993974 Goodwin Mar 2015 B2
8996194 Davis et al. Mar 2015 B2
8996384 Funyak et al. Mar 2015 B2
8998091 Edmonds et al. Apr 2015 B2
9002641 Showering Apr 2015 B2
9007368 Laffargue et al. Apr 2015 B2
9010641 Qu et al. Apr 2015 B2
9014441 Truyen et al. Apr 2015 B2
9015513 Murawski et al. Apr 2015 B2
9016576 Brady et al. Apr 2015 B2
D730357 Fitch et al. May 2015 S
9022288 Nahill et al. May 2015 B2
9030964 Essinger et al. May 2015 B2
9033240 Smith et al. May 2015 B2
9033242 Gillet et al. May 2015 B2
9036054 Koziol et al. May 2015 B2
9037344 Chamberlin May 2015 B2
9038911 Xian et al. May 2015 B2
9038915 Smith May 2015 B2
D730901 Oberpriller et al. Jun 2015 S
D730902 Fitch et al. Jun 2015 S
D733112 Chaney et al. Jun 2015 S
9047098 Barten Jun 2015 B2
9047359 Caballero et al. Jun 2015 B2
9047420 Caballero Jun 2015 B2
9047525 Barber Jun 2015 B2
9047531 Showering et al. Jun 2015 B2
9049640 Wang et al. Jun 2015 B2
9053055 Caballero Jun 2015 B2
9053378 Hou et al. Jun 2015 B1
9053380 Xian et al. Jun 2015 B2
9057641 Amundsen et al. Jun 2015 B2
9058526 Powilleit Jun 2015 B2
9061527 Tobin et al. Jun 2015 B2
9064165 Havens et al. Jun 2015 B2
9064167 Xian et al. Jun 2015 B2
9064168 Todeschini et al. Jun 2015 B2
9064254 Todeschini et al. Jun 2015 B2
9066032 Wang Jun 2015 B2
9066087 Shpunt Jun 2015 B2
9070032 Corcoran Jun 2015 B2
D734339 Zhou et al. Jul 2015 S
D734751 Oberpriller et al. Jul 2015 S
9076459 Braho et al. Jul 2015 B2
9079423 Bouverie et al. Jul 2015 B2
9080856 Laffargue Jul 2015 B2
9082023 Feng et al. Jul 2015 B2
9082195 Holeva Jul 2015 B2
9084032 Rautiola et al. Jul 2015 B2
9087250 Coyle Jul 2015 B2
9092681 Havens et al. Jul 2015 B2
9092682 Wilz et al. Jul 2015 B2
9092683 Koziol et al. Jul 2015 B2
9093141 Liu Jul 2015 B2
9098763 Lu et al. Aug 2015 B2
9104929 Todeschini Aug 2015 B2
9104934 Li et al. Aug 2015 B2
9107484 Chaney Aug 2015 B2
9111159 Liu et al. Aug 2015 B2
9111166 Cunningham Aug 2015 B2
9135483 Liu et al. Sep 2015 B2
9137009 Gardiner Sep 2015 B1
9141839 Xian et al. Sep 2015 B2
9142035 Rotman et al. Sep 2015 B1
9147096 Wang Sep 2015 B2
9148474 Skvoretz Sep 2015 B2
9158000 Sauerwein Oct 2015 B2
9158340 Reed et al. Oct 2015 B2
9158953 Gillet et al. Oct 2015 B2
9159059 Daddabbo et al. Oct 2015 B2
9165174 Huck Oct 2015 B2
9171278 Kong et al. Oct 2015 B1
9171543 Emerick et al. Oct 2015 B2
9183425 Wang Nov 2015 B2
9189669 Zhu et al. Nov 2015 B2
9195844 Todeschini et al. Nov 2015 B2
9202458 Braho et al. Dec 2015 B2
9208366 Liu Dec 2015 B2
9208367 Wangu Dec 2015 B2
9219836 Bouverie et al. Dec 2015 B2
9224022 Ackley et al. Dec 2015 B2
9224024 Bremer et al. Dec 2015 B2
9224027 Van Horn et al. Dec 2015 B2
D747321 London et al. Jan 2016 S
9230140 Ackley Jan 2016 B1
9233470 Bradski et al. Jan 2016 B1
9235553 Fitch et al. Jan 2016 B2
9235899 Kirmani et al. Jan 2016 B1
9239950 Fletcher Jan 2016 B2
9245492 Ackley et al. Jan 2016 B2
9443123 Hejl Jan 2016 B2
9248640 Heng Feb 2016 B2
9250652 London et al. Feb 2016 B2
9250712 Todeschini Feb 2016 B1
9251411 Todeschini Feb 2016 B2
9258033 Showering Feb 2016 B2
9261398 Amundsen et al. Feb 2016 B2
9262633 Todeschini et al. Feb 2016 B1
9262660 Lu et al. Feb 2016 B2
9262662 Chen et al. Feb 2016 B2
9262664 Soule et al. Feb 2016 B2
9269036 Bremer Feb 2016 B2
9270782 Hala et al. Feb 2016 B2
9273846 Rossi et al. Mar 2016 B1
9274806 Barten Mar 2016 B2
9274812 Doren et al. Mar 2016 B2
9275388 Havens et al. Mar 2016 B2
9277668 Feng et al. Mar 2016 B2
9280693 Feng et al. Mar 2016 B2
9282501 Wang et al. Mar 2016 B2
9286496 Smith Mar 2016 B2
9297900 Jiang Mar 2016 B2
9298667 Caballero Mar 2016 B2
9298964 Li et al. Mar 2016 B2
9299013 Curlander et al. Mar 2016 B1
9301427 Feng et al. Mar 2016 B2
9304376 Anderson Apr 2016 B2
9310609 Rueblinger et al. Apr 2016 B2
9313377 Todeschini et al. Apr 2016 B2
9317037 Byford et al. Apr 2016 B2
9319548 Showering et al. Apr 2016 B2
D757009 Oberpriller et al. May 2016 S
9342723 Liu et al. May 2016 B2
9342724 McCloskey May 2016 B2
9342827 Smith May 2016 B2
9355294 Smith et al. May 2016 B2
9361882 Ressler et al. Jun 2016 B2
9365381 Colonel et al. Jun 2016 B2
9366861 Johnson Jun 2016 B1
9367722 Xian et al. Jun 2016 B2
9373018 Colavito et al. Jun 2016 B2
9375945 Bowles Jun 2016 B1
9378403 Wang et al. Jun 2016 B2
D760719 Zhou et al. Jul 2016 S
9360304 Chang et al. Jul 2016 B2
9383848 Daghigh Jul 2016 B2
9384374 Bianconi Jul 2016 B2
9390596 Todeschini Jul 2016 B1
9396375 Qu et al. Jul 2016 B2
9398008 Todeschini et al. Jul 2016 B2
9399557 Mishra et al. Jul 2016 B1
D762604 Fitch et al. Aug 2016 S
D762647 Fitch et al. Aug 2016 S
9407840 Wang Aug 2016 B2
9411386 Sauerwein Aug 2016 B2
9412242 Van Horn et al. Aug 2016 B2
9418252 Nahill et al. Aug 2016 B2
9418269 Havens et al. Aug 2016 B2
9418270 Van Volkinburg et al. Aug 2016 B2
9423318 Lui et al. Aug 2016 B2
9424749 Reed Aug 2016 B1
D766244 Zhou et al. Sep 2016 S
9443222 Singel et al. Sep 2016 B2
9448610 Davis Sep 2016 B2
9454689 McCloskey et al. Sep 2016 B2
9464885 Lloyd et al. Oct 2016 B2
9465967 Xian et al. Oct 2016 B2
9470511 Maynard et al. Oct 2016 B2
9478113 Xie et al. Oct 2016 B2
9478983 Kather et al. Oct 2016 B2
D771631 Fitch et al. Nov 2016 S
9481186 Bouverie et al. Nov 2016 B2
9486921 Straszheim Nov 2016 B1
9488986 Solanki Nov 2016 B1
9489782 Payne et al. Nov 2016 B2
9490540 Davies et al. Nov 2016 B1
9491729 Rautiola et al. Nov 2016 B2
9497092 Gomez et al. Nov 2016 B2
9507974 Todeschini Nov 2016 B1
9519814 Cudzilo Dec 2016 B2
9521331 Bessettes et al. Dec 2016 B2
9530038 Xian et al. Dec 2016 B2
D777166 Bidwell et al. Jan 2017 S
9558386 Yeakley Jan 2017 B2
9572901 Todeschini Feb 2017 B2
9582696 Barber et al. Feb 2017 B2
9595038 Cavalcanti et al. Mar 2017 B1
9606581 Howe et al. Mar 2017 B1
D783601 Schulte et al. Apr 2017 S
9616749 Chamberlin Apr 2017 B2
9618993 Murawski et al. Apr 2017 B2
D785617 Bidwell et al. May 2017 S
D785636 Oberpriller et al. May 2017 S
9646189 Lu et al. May 2017 B2
9646191 Unemyr et al. May 2017 B2
9646419 Bostick May 2017 B2
9652648 Ackley et al. May 2017 B2
9652653 Todeschini et al. May 2017 B2
9656487 Ho et al. May 2017 B2
9659198 Giordano et al. May 2017 B2
D790505 Vargo et al. Jun 2017 S
D790546 Zhou et al. Jun 2017 S
D790553 Fitch et al. Jun 2017 S
9680282 Hanenburg Jun 2017 B2
9697401 Feng et al. Jul 2017 B2
9701140 Alaganchetty et al. Jul 2017 B1
9709387 Fujita et al. Jul 2017 B2
9715614 Todeschini et al. Jul 2017 B2
9734493 Gomez et al. Aug 2017 B2
9736459 Mor et al. Aug 2017 B2
9741136 Holz Aug 2017 B2
9826220 Laffargue et al. Nov 2017 B2
9828223 Svensson Nov 2017 B2
10019334 Caballero et al. Jul 2018 B2
10021043 Sevier Jul 2018 B2
10025314 Houle Jul 2018 B2
10237421 Houle et al. Mar 2019 B2
10327158 Wang et al. Jun 2019 B2
10387733 Yokota Aug 2019 B2
10410029 Powilleit Sep 2019 B2
20010027995 Patel et al. Oct 2001 A1
20010032879 He et al. Oct 2001 A1
20020036765 McCaffrey Mar 2002 A1
20020054289 Thibault et al. May 2002 A1
20020067855 Chiu et al. Jun 2002 A1
20020105639 Roelke Aug 2002 A1
20020109835 Goetz Aug 2002 A1
20020113946 Kitaguchi et al. Aug 2002 A1
20020118874 Chung et al. Aug 2002 A1
20020158873 Williamson Oct 2002 A1
20020167677 Okada et al. Nov 2002 A1
20020179708 Zhu et al. Dec 2002 A1
20020186897 Kim et al. Dec 2002 A1
20020196534 Lizotte et al. Dec 2002 A1
20030038179 Tsikos et al. Feb 2003 A1
20030053513 Vatan et al. Mar 2003 A1
20030063086 Baumberg Apr 2003 A1
20030078755 Leutz et al. Apr 2003 A1
20030091227 Chang et al. May 2003 A1
20030156756 Gokturk et al. Aug 2003 A1
20030163287 Vock et al. Aug 2003 A1
20030197138 Pease et al. Oct 2003 A1
20030225712 Cooper et al. Dec 2003 A1
20030235331 Kawaike et al. Dec 2003 A1
20040008259 Gokturk et al. Jan 2004 A1
20040019274 Galloway et al. Jan 2004 A1
20040024754 Mane et al. Feb 2004 A1
20040066329 Zeitfuss et al. Apr 2004 A1
20040073359 Ichijo Apr 2004 A1
20040083025 Yamanouchi Apr 2004 A1
20040089482 Ramsden et al. May 2004 A1
20040098146 Katae May 2004 A1
20040105580 Hager Jun 2004 A1
20040118928 Patel et al. Jun 2004 A1
20040122779 Stickler et al. Jun 2004 A1
20040132297 Baba et al. Jul 2004 A1
20040155975 Hart et al. Aug 2004 A1
20040165090 Ning Aug 2004 A1
20040184041 Schopp Sep 2004 A1
20040211836 Patel et al. Oct 2004 A1
20040214623 Takahashi et al. Oct 2004 A1
20040233461 Armstrong et al. Nov 2004 A1
20040258353 Gluckstad et al. Dec 2004 A1
20050006477 Patel Jan 2005 A1
20050117215 Lange Jun 2005 A1
20050128193 Popescu et al. Jun 2005 A1
20050128196 Popescu et al. Jun 2005 A1
20050168488 Montague Aug 2005 A1
20050187887 Nicolas et al. Aug 2005 A1
20050211782 Martin Sep 2005 A1
20050240317 Kienzle-Lietl Oct 2005 A1
20050257748 Kriesel Nov 2005 A1
20050264867 Cho et al. Dec 2005 A1
20060036556 Knispel Feb 2006 A1
20060047704 Gopalakrishnan Mar 2006 A1
20060078226 Zhou Apr 2006 A1
20060108266 Bowers et al. May 2006 A1
20060109105 Varner et al. May 2006 A1
20060112023 Horhann May 2006 A1
20060151604 Zhu et al. Jul 2006 A1
20060159307 Anderson et al. Jul 2006 A1
20060159344 Shao et al. Jul 2006 A1
20060213999 Wang et al. Sep 2006 A1
20060230640 Chen Oct 2006 A1
20060232681 Okada Oct 2006 A1
20060255150 Longacre Nov 2006 A1
20060269165 Viswanathan Nov 2006 A1
20060276709 Khamene et al. Dec 2006 A1
20060291719 Ikeda et al. Dec 2006 A1
20070003154 Sun et al. Jan 2007 A1
20070025612 Iwasaki et al. Feb 2007 A1
20070031064 Zhao et al. Feb 2007 A1
20070063048 Havens et al. Mar 2007 A1
20070116357 Dewaele May 2007 A1
20070127022 Cohen et al. Jun 2007 A1
20070143082 Degnan Jun 2007 A1
20070153293 Gruhlke et al. Jul 2007 A1
20070165013 Goulanian et al. Jul 2007 A1
20070171220 Kriveshko Jul 2007 A1
20070177011 Lewin Aug 2007 A1
20070181685 Zhu et al. Aug 2007 A1
20070237356 Dwinell et al. Oct 2007 A1
20070291031 Konev et al. Dec 2007 A1
20070299338 Stevick et al. Dec 2007 A1
20080013793 Hillis et al. Jan 2008 A1
20080035390 Wurz Feb 2008 A1
20080047760 Georgitsis Feb 2008 A1
20080050042 Zhang et al. Feb 2008 A1
20080054062 Gunning et al. Mar 2008 A1
20080056536 Hildreth et al. Mar 2008 A1
20080062164 Bassi et al. Mar 2008 A1
20080065509 Williams Mar 2008 A1
20080077265 Boyden Mar 2008 A1
20080079955 Storm Apr 2008 A1
20080156619 Patel et al. Jul 2008 A1
20080164074 Wurz Jul 2008 A1
20080204476 Montague Aug 2008 A1
20080212168 Olmstead et al. Sep 2008 A1
20080247635 Davis et al. Oct 2008 A1
20080273191 Kim et al. Nov 2008 A1
20080273210 Hilde Nov 2008 A1
20080278790 Boesser et al. Nov 2008 A1
20090038182 Lans et al. Feb 2009 A1
20090046296 Kilpartrick et al. Feb 2009 A1
20090059004 Bochicchio Mar 2009 A1
20090081008 Somin et al. Mar 2009 A1
20090095047 Patel et al. Apr 2009 A1
20090114818 Casares et al. May 2009 A1
20090134221 Zhu et al. May 2009 A1
20090161090 Campbell et al. Jun 2009 A1
20090189858 Lev et al. Jul 2009 A1
20090195790 Zhu et al. Aug 2009 A1
20090225333 Bendall et al. Sep 2009 A1
20090237411 Gossweiler et al. Sep 2009 A1
20090268023 Hsieh Oct 2009 A1
20090272724 Gubler Nov 2009 A1
20090273770 Bauhahn et al. Nov 2009 A1
20090313948 Buckley et al. Dec 2009 A1
20090318815 Barnes et al. Dec 2009 A1
20090323084 Dunn et al. Dec 2009 A1
20090323121 Valkenburg Dec 2009 A1
20100035637 Varanasi et al. Feb 2010 A1
20100060604 Zwart et al. Mar 2010 A1
20100091104 Sprigle Apr 2010 A1
20100113153 Yen et al. May 2010 A1
20100118200 Gelman et al. May 2010 A1
20100128109 Banks May 2010 A1
20100161170 Sins Jun 2010 A1
20100171740 Andersen et al. Jul 2010 A1
20100172567 Prokoski Jul 2010 A1
20100177076 Essinger et al. Jul 2010 A1
20100177080 Essinger et al. Jul 2010 A1
20100177707 Essinger et al. Jul 2010 A1
20100177749 Essinger et al. Jul 2010 A1
20100194709 Tamaki et al. Aug 2010 A1
20100202702 Benos et al. Aug 2010 A1
20100208039 Stettner Aug 2010 A1
20100211355 Horst et al. Aug 2010 A1
20100217678 Goncalves Aug 2010 A1
20100220849 Colbert et al. Sep 2010 A1
20100220894 Ackley et al. Sep 2010 A1
20100223276 Al-Shameri et al. Sep 2010 A1
20100245850 Lee et al. Sep 2010 A1
20100254611 Arnz Oct 2010 A1
20100274728 Kugelman Oct 2010 A1
20100303336 Abraham Dec 2010 A1
20100315413 Izadi et al. Dec 2010 A1
20100321482 Cleveland Dec 2010 A1
20110019155 Daniel et al. Jan 2011 A1
20110040192 Brenner et al. Feb 2011 A1
20110040407 Lim Feb 2011 A1
20110043609 Choi et al. Feb 2011 A1
20110075936 Deaver Mar 2011 A1
20110081044 Peeper Apr 2011 A1
20110099474 Grossman et al. Apr 2011 A1
20110169999 Grunow et al. Jul 2011 A1
20110180695 Li et al. Jul 2011 A1
20110188054 Petronius et al. Aug 2011 A1
20110188741 Sones et al. Aug 2011 A1
20110202554 Powilleit et al. Aug 2011 A1
20110234389 Mellin Sep 2011 A1
20110235854 Berger et al. Sep 2011 A1
20110243432 Hirsch et al. Oct 2011 A1
20110249864 Venkatesan et al. Oct 2011 A1
20110254840 Halstead Oct 2011 A1
20110260965 Kim Oct 2011 A1
20110279916 Brown Nov 2011 A1
20110286007 Pangrazio et al. Nov 2011 A1
20110286628 Goncalves et al. Nov 2011 A1
20110288818 Thierman Nov 2011 A1
20110297590 Ackley et al. Dec 2011 A1
20110301994 Tieman Dec 2011 A1
20110303748 Lemma Dec 2011 A1
20110310227 Konertz et al. Dec 2011 A1
20110310256 Shishido Dec 2011 A1
20120014572 Wong et al. Jan 2012 A1
20120024952 Chen Feb 2012 A1
20120056982 Katz et al. Mar 2012 A1
20120057345 Kuchibhotla Mar 2012 A1
20120067955 Rowe Mar 2012 A1
20120074227 Ferren et al. Mar 2012 A1
20120081714 Pangrazio et al. Apr 2012 A1
20120082383 Kruglick Apr 2012 A1
20120111946 Golant May 2012 A1
20120113223 Hilliges et al. May 2012 A1
20120126000 Kunzig et al. May 2012 A1
20120140300 Freeman Jun 2012 A1
20120168509 Nunnink et al. Jul 2012 A1
20120168512 Kotlarsky et al. Jul 2012 A1
20120179665 Baarman et al. Jul 2012 A1
20120185094 Rosenstein et al. Jul 2012 A1
20120190386 Anderson Jul 2012 A1
20120193423 Samek Aug 2012 A1
20120197464 Wang et al. Aug 2012 A1
20120203647 Smith Aug 2012 A1
20120218436 Rodriguez et al. Sep 2012 A1
20120223141 Good et al. Sep 2012 A1
20120224026 Bayer et al. Sep 2012 A1
20120224060 Gurevich Sep 2012 A1
20120236212 Itoh et al. Sep 2012 A1
20120236288 Stanley Sep 2012 A1
20120242852 Hayward et al. Sep 2012 A1
20120113250 Farlotti et al. Oct 2012 A1
20120256901 Bendall Oct 2012 A1
20120261474 Kawashime et al. Oct 2012 A1
20120262558 Boger et al. Oct 2012 A1
20120280908 Rhoads et al. Nov 2012 A1
20120282905 Owen Nov 2012 A1
20120282911 Davis et al. Nov 2012 A1
20120284012 Rodriguez et al. Nov 2012 A1
20120284122 Brandis Nov 2012 A1
20120284339 Rodriguez Nov 2012 A1
20120284593 Rodriguez Nov 2012 A1
20120293610 Doepke et al. Nov 2012 A1
20120293625 Schneider Nov 2012 A1
20120294478 Publicover et al. Nov 2012 A1
20120294549 Doepke Nov 2012 A1
20120299961 Ramkumar et al. Nov 2012 A1
20120300991 Mikio Nov 2012 A1
20120313848 Galor et al. Dec 2012 A1
20120314030 Datta Dec 2012 A1
20120314058 Bendall et al. Dec 2012 A1
20120314258 Moriya Dec 2012 A1
20120316820 Nakazato et al. Dec 2012 A1
20130019278 Sun et al. Jan 2013 A1
20130038881 Pesach et al. Feb 2013 A1
20130038941 Pesach et al. Feb 2013 A1
20130043312 Van Horn Feb 2013 A1
20130050426 Sarmast et al. Feb 2013 A1
20130075168 Amundsen et al. Mar 2013 A1
20130076857 Kurashige et al. Mar 2013 A1
20130093895 Palmer Apr 2013 A1
20130094069 Lee et al. Apr 2013 A1
20130101158 Lloyd et al. Apr 2013 A1
20130156267 Muraoka et al. Jun 2013 A1
20130175341 Kearney et al. Jul 2013 A1
20130175343 Good Jul 2013 A1
20130200150 Reynolds et al. Aug 2013 A1
20130201288 Billerbaeck et al. Aug 2013 A1
20130208164 Cazier et al. Aug 2013 A1
20130211790 Loveland et al. Aug 2013 A1
20130222592 Gieseke Aug 2013 A1
20130223673 Davis et al. Aug 2013 A1
20130257744 Daghigh et al. Oct 2013 A1
20130257759 Daghigh Oct 2013 A1
20130270346 Xian et al. Oct 2013 A1
20130287258 Kearney Oct 2013 A1
20130291998 Konnerth Nov 2013 A1
20130292475 Kotlarsky et al. Nov 2013 A1
20130292477 Hennick et al. Nov 2013 A1
20130293539 Hunt et al. Nov 2013 A1
20130293540 Laffargue et al. Nov 2013 A1
20130306728 Thuries et al. Nov 2013 A1
20130306731 Pedraro Nov 2013 A1
20130307964 Bremer et al. Nov 2013 A1
20130308013 Li et al. Nov 2013 A1
20130308625 Park et al. Nov 2013 A1
20130313324 Koziol et al. Nov 2013 A1
20130317642 Asaria Nov 2013 A1
20130326425 Forstall et al. Dec 2013 A1
20130329012 Bartos Dec 2013 A1
20130329013 Metois et al. Dec 2013 A1
20130332524 Fiala et al. Dec 2013 A1
20130342342 Sabre et al. Dec 2013 A1
20130342343 Harring et al. Dec 2013 A1
20130342717 Havens et al. Dec 2013 A1
20140001258 Chan et al. Jan 2014 A1
20140001267 Giordano et al. Jan 2014 A1
20140002828 Laffargue et al. Jan 2014 A1
20140008439 Wang Jan 2014 A1
20140009586 McNamer et al. Jan 2014 A1
20140019005 Lee Jan 2014 A1
20140021259 Moed et al. Jan 2014 A1
20140025584 Liu et al. Jan 2014 A1
20140031665 Pinto et al. Jan 2014 A1
20140034731 Gao et al. Feb 2014 A1
20140034734 Sauerwein Feb 2014 A1
20140036848 Pease et al. Feb 2014 A1
20140039674 Motoyama et al. Feb 2014 A1
20140039693 Havens et al. Feb 2014 A1
20140049120 Kohtz et al. Feb 2014 A1
20140049635 Laffargue et al. Feb 2014 A1
20140058612 Wong Feb 2014 A1
20140061306 Wu et al. Mar 2014 A1
20140062709 Hyer et al. Mar 2014 A1
20140063289 Hussey et al. Mar 2014 A1
20140064624 Kim et al. Mar 2014 A1
20140066136 Sauerwein et al. Mar 2014 A1
20140067104 Osterhout Mar 2014 A1
20140067692 Ye et al. Mar 2014 A1
20140070005 Nahill et al. Mar 2014 A1
20140071430 Hansen et al. Mar 2014 A1
20140071840 Venancio Mar 2014 A1
20140074746 Wang Mar 2014 A1
20140076974 Havens et al. Mar 2014 A1
20140078341 Havens et al. Mar 2014 A1
20140078342 Li et al. Mar 2014 A1
20140078345 Showering Mar 2014 A1
20140079297 Tadayon et al. Mar 2014 A1
20140091147 Evans et al. Apr 2014 A1
20140097238 Ghazizadeh Apr 2014 A1
20140097252 He et al. Apr 2014 A1
20140098091 Hori Apr 2014 A1
20140098243 Ghazizadeh Apr 2014 A1
20140098244 Ghazizadeh Apr 2014 A1
20140098792 Wang et al. Apr 2014 A1
20140100774 Showering Apr 2014 A1
20140100813 Showering Apr 2014 A1
20140103115 Meier et al. Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140104414 McCloskey et al. Apr 2014 A1
20140104416 Giordano et al. Apr 2014 A1
20140104664 Lee Apr 2014 A1
20140106725 Sauerwein Apr 2014 A1
20140108010 Maltseff et al. Apr 2014 A1
20140108402 Gomez et al. Apr 2014 A1
20140108682 Caballero Apr 2014 A1
20140110485 Toa et al. Apr 2014 A1
20140114530 Fitch et al. Apr 2014 A1
20140121438 Long et al. May 2014 A1
20140121445 Fontenot et al. May 2014 A1
20140124577 Wang May 2014 A1
20140124579 Ding May 2014 A1
20140125577 Hoang et al. May 2014 A1
20140125842 Winegar May 2014 A1
20140125853 Wang May 2014 A1
20140125999 Longacre et al. May 2014 A1
20140129378 Richardson May 2014 A1
20140131438 Kearney May 2014 A1
20140131441 Nahill et al. May 2014 A1
20140131443 Smith May 2014 A1
20140131444 Wang May 2014 A1
20140131445 Ding et al. May 2014 A1
20140133379 Wang et al. May 2014 A1
20140135984 Hirata May 2014 A1
20140136208 Maltseff et al. May 2014 A1
20140139654 Taskahashi May 2014 A1
20140140585 Wang May 2014 A1
20140142398 Patil et al. May 2014 A1
20140151453 Meier et al. Jun 2014 A1
20140152882 Samek et al. Jun 2014 A1
20140152975 Ko Jun 2014 A1
20140157861 Jonas et al. Jun 2014 A1
20140158468 Adami Jun 2014 A1
20140158770 Sevier et al. Jun 2014 A1
20140159869 Zumsteg et al. Jun 2014 A1
20140166755 Liu et al. Jun 2014 A1
20140166757 Smith Jun 2014 A1
20140166759 Liu et al. Jun 2014 A1
20140168380 Heidemann et al. Jun 2014 A1
20140168787 Wang et al. Jun 2014 A1
20140175165 Havens et al. Jun 2014 A1
20140175172 Jovanovski et al. Jun 2014 A1
20140177931 Kocherscheidt et al. Jun 2014 A1
20140191913 Ge et al. Jul 2014 A1
20140192187 Atwell et al. Jul 2014 A1
20140192551 Masaki Jul 2014 A1
20140197239 Havens et al. Jul 2014 A1
20140197304 Feng et al. Jul 2014 A1
20140201126 Zadeh et al. Jul 2014 A1
20140204268 Grunow et al. Jul 2014 A1
20140205150 Ogawa Jul 2014 A1
20140214631 Hansen Jul 2014 A1
20140217166 Berthiaume et al. Aug 2014 A1
20140217180 Liu Aug 2014 A1
20140225918 Mittal et al. Aug 2014 A1
20140225985 Klusza et al. Aug 2014 A1
20140231500 Ehrhart et al. Aug 2014 A1
20140240454 Lee Aug 2014 A1
20140247279 Nicholas et al. Sep 2014 A1
20140247280 Nicholas et al. Sep 2014 A1
20140247315 Marty et al. Sep 2014 A1
20140263493 Amurgis et al. Sep 2014 A1
20140263645 Smith et al. Sep 2014 A1
20140267609 Laffargue Sep 2014 A1
20140268093 Tohme et al. Sep 2014 A1
20140270196 Braho et al. Sep 2014 A1
20140270229 Braho Sep 2014 A1
20140270361 Amma et al. Sep 2014 A1
20140278387 DiGregorio Sep 2014 A1
20140282210 Bianconi Sep 2014 A1
20140288933 Braho et al. Sep 2014 A1
20140297058 Barker et al. Oct 2014 A1
20140299665 Barber et al. Oct 2014 A1
20140306833 Ricci Oct 2014 A1
20140307855 Withagen et al. Oct 2014 A1
20140312121 Lu et al. Oct 2014 A1
20140313527 Askan Oct 2014 A1
20140319219 Liu et al. Oct 2014 A1
20140319221 Oberpriller et al. Oct 2014 A1
20140320408 Zagorsek et al. Oct 2014 A1
20140320605 Johnson Oct 2014 A1
20140326787 Barten Nov 2014 A1
20140332590 Wang Nov 2014 A1
20140333775 Naikal et al. Nov 2014 A1
20140347533 Ovsiannikov et al. Nov 2014 A1
20140350710 Gopalkrishnan et al. Nov 2014 A1
20140351317 Smith et al. Nov 2014 A1
20140353373 Van et al. Dec 2014 A1
20140361073 Qu et al. Dec 2014 A1
20140362184 Jovanovski et al. Dec 2014 A1
20140363015 Braho Dec 2014 A1
20140369511 Sheerin et al. Dec 2014 A1
20140374483 Lu Dec 2014 A1
20140374485 Xian et al. Dec 2014 A1
20140379613 Nishitani et al. Dec 2014 A1
20150001301 Ouyang Jan 2015 A1
20150003673 Fletcher Jan 2015 A1
20150009100 Haneda et al. Jan 2015 A1
20150009301 Ribnick et al. Jan 2015 A1
20150009338 Laffargue et al. Jan 2015 A1
20150014416 Kotlarsky et al. Jan 2015 A1
20150016712 Rhoads et al. Jan 2015 A1
20150021397 Rueblinger et al. Jan 2015 A1
20150028102 Ren Jan 2015 A1
20150028104 Ma et al. Jan 2015 A1
20150029002 Yeakley et al. Jan 2015 A1
20150032709 Maloy et al. Jan 2015 A1
20150036876 Marrion et al. Feb 2015 A1
20150039309 Braho et al. Feb 2015 A1
20150040378 Saber et al. Feb 2015 A1
20150042791 Metois et al. Feb 2015 A1
20150048168 Fritz et al. Feb 2015 A1
20150049347 Laffargue et al. Feb 2015 A1
20150051992 Smith Feb 2015 A1
20150053766 Havens Feb 2015 A1
20150053769 Thuries et al. Feb 2015 A1
20150062160 Sakamoto et al. Mar 2015 A1
20150062366 Liu et al. Mar 2015 A1
20150062369 Gehring et al. Mar 2015 A1
20150063215 Wang Mar 2015 A1
20150063676 Lloyd et al. Mar 2015 A1
20150069130 Gannon Mar 2015 A1
20150070158 Hayasaka Mar 2015 A1
20150070489 Hudman et al. Mar 2015 A1
20150071818 Scheuren et al. Mar 2015 A1
20150083800 Li et al. Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150096872 Woodburn Apr 2015 A1
20150099557 Pettinelli et al. Apr 2015 A1
20150100196 Hollifield Apr 2015 A1
20150115035 Meier et al. Apr 2015 A1
20150116498 Vartiainen Apr 2015 A1
20150117749 Smith et al. Apr 2015 A1
20150127791 Kosecki et al. May 2015 A1
20150128116 Chen et al. May 2015 A1
20150129659 Feng et al. May 2015 A1
20150130928 Maynard et al. May 2015 A1
20150133047 Smith et al. May 2015 A1
20150134470 Hejl et al. May 2015 A1
20150136851 Harding et al. May 2015 A1
20150142492 Kumar May 2015 A1
20150144692 Hejl May 2015 A1
20150144698 Teng et al. May 2015 A1
20150149946 Benos et al. May 2015 A1
20150161429 Xian Jun 2015 A1
20150163474 You Jun 2015 A1
20150169925 Chen et al. Jun 2015 A1
20150169929 Williams et al. Jun 2015 A1
20150178523 Gelay et al. Jun 2015 A1
20150178534 Jovanovski et al. Jun 2015 A1
20150178535 Bremer Jun 2015 A1
20150178536 Hennick Jun 2015 A1
20150178537 El et al. Jun 2015 A1
20150178900 Kim et al. Jun 2015 A1
20150181093 Zhu et al. Jun 2015 A1
20150181109 Gillet et al. Jun 2015 A1
20150182844 Jang Jul 2015 A1
20150186703 Chen et al. Jul 2015 A1
20150193644 Kearney et al. Jul 2015 A1
20150199957 Funyak et al. Jul 2015 A1
20150204662 Kobayashi et al. Jul 2015 A1
20150204671 Showering Jul 2015 A1
20150210199 Payne Jul 2015 A1
20150213590 Brown et al. Jul 2015 A1
20150213647 Laffargue et al. Jul 2015 A1
20150219748 Hyatt Aug 2015 A1
20150220753 Zhu et al. Aug 2015 A1
20150229838 Hakim et al. Aug 2015 A1
20150243030 Pfeiffer Aug 2015 A1
20150248578 Utsumi Sep 2015 A1
20150253469 Le Gros et al. Sep 2015 A1
20150254485 Feng et al. Sep 2015 A1
20150260830 Ghosh et al. Sep 2015 A1
20150269403 Lei et al. Sep 2015 A1
20150201181 Herschbach Oct 2015 A1
20150276379 Ni et al. Oct 2015 A1
20150301181 Herschbach Oct 2015 A1
20150308816 Laffargue et al. Oct 2015 A1
20150310243 Ackley Oct 2015 A1
20150310389 Crimm et al. Oct 2015 A1
20150316368 Moench et al. Nov 2015 A1
20150325036 Lee Nov 2015 A1
20150327012 Bian et al. Nov 2015 A1
20150332075 Burch Nov 2015 A1
20150332463 Galera Nov 2015 A1
20150355470 Herschbach Dec 2015 A1
20160014251 Hejl Jan 2016 A1
20160040982 Li et al. Feb 2016 A1
20160042241 Todeschini Feb 2016 A1
20160048725 Holz Feb 2016 A1
20160057230 Todeschini et al. Feb 2016 A1
20160070982 Li et al. Feb 2016 A1
20160062473 Bouchat et al. Mar 2016 A1
20160063429 Varley et al. Mar 2016 A1
20160065912 Peterson Mar 2016 A1
20160088287 Sadi et al. Mar 2016 A1
20160090283 Svensson Mar 2016 A1
20160090284 Svensson Mar 2016 A1
20160092805 Geisler et al. Mar 2016 A1
20160094016 Beach et al. Mar 2016 A1
20160101936 Chamberlin Apr 2016 A1
20160102975 McCloskey et al. Apr 2016 A1
20160104019 Todeschini et al. Apr 2016 A1
20160104274 Jovanovski et al. Apr 2016 A1
20160109219 Ackley et al. Apr 2016 A1
20160109220 Laffargue et al. Apr 2016 A1
20160109224 Thuries et al. Apr 2016 A1
20160112631 Ackley Apr 2016 A1
20160112643 Laffargue Apr 2016 A1
20160117627 Raj et al. Apr 2016 A1
20160117631 McCloskey et al. Apr 2016 A1
20160124516 Schoon et al. May 2016 A1
20160125217 Todeschini May 2016 A1
20160125342 Miller et al. May 2016 A1
20160133253 Braho et al. May 2016 A1
20160138247 Conway May 2016 A1
20160138248 Conway May 2016 A1
20160138249 Conway May 2016 A1
20160147408 Bevis et al. May 2016 A1
20160164261 Warren Jun 2016 A1
20160169665 Deschenes et al. Jun 2016 A1
20160171597 Todeschini Jun 2016 A1
20160171666 McCloskey Jun 2016 A1
20160171720 Todeschini Jun 2016 A1
20160171775 Todeschini et al. Jun 2016 A1
20160171777 Todeschini et al. Jun 2016 A1
20160174674 Oberpriller et al. Jun 2016 A1
20160178479 Goldsmith Jun 2016 A1
20160178685 Young et al. Jun 2016 A1
20160178707 Young et al. Jun 2016 A1
20160178915 Mor et al. Jun 2016 A1
20160179132 Harr et al. Jun 2016 A1
20160179143 Bidwell et al. Jun 2016 A1
20160179368 Roeder Jun 2016 A1
20160179378 Kent et al. Jun 2016 A1
20160180130 Bremer Jun 2016 A1
20160180133 Oberpriller et al. Jun 2016 A1
20160180136 Meier et al. Jun 2016 A1
20160180594 Todeschini Jun 2016 A1
20160180663 McMahan et al. Jun 2016 A1
20160180678 Ackley et al. Jun 2016 A1
20160180713 Bernhardt et al. Jun 2016 A1
20160185136 Ng et al. Jun 2016 A1
20160185291 Chamberlin Jun 2016 A1
20160186926 Oberpriller et al. Jun 2016 A1
20160187186 Coleman Jun 2016 A1
20160187187 Coleman Jun 2016 A1
20160187210 Coleman Jun 2016 A1
20160188861 Todeschini Jun 2016 A1
20160188939 Sailors et al. Jun 2016 A1
20160188940 Lu et al. Jun 2016 A1
20160188941 Todeschini et al. Jun 2016 A1
20160188942 Good et al. Jun 2016 A1
20160188943 Linwood Jun 2016 A1
20160188944 Wilz et al. Jun 2016 A1
20160189076 Mellott et al. Jun 2016 A1
20160189087 Morton et al. Jun 2016 A1
20160189088 Pecorari et al. Jun 2016 A1
20160189092 George et al. Jun 2016 A1
20160189284 Mellott et al. Jun 2016 A1
20160189288 Todeschini Jun 2016 A1
20160189366 Chamberlin et al. Jun 2016 A1
20160189443 Smith Jun 2016 A1
20160189447 Valenzuela Jun 2016 A1
20160189489 Au et al. Jun 2016 A1
20160191684 DiPiazza et al. Jun 2016 A1
20160191801 Sivan Jun 2016 A1
20160192051 DiPiazza et al. Jun 2016 A1
20160125873 Braho et al. Jul 2016 A1
20160202478 Masson et al. Jul 2016 A1
20160202951 Pike et al. Jul 2016 A1
20160202958 Zabel et al. Jul 2016 A1
20160202959 Doubleday et al. Jul 2016 A1
20160203021 Pike et al. Jul 2016 A1
20160203429 Mellott et al. Jul 2016 A1
20160203641 Bostick Jul 2016 A1
20160203797 Pike et al. Jul 2016 A1
20160203820 Zabel et al. Jul 2016 A1
20160204623 Haggert et al. Jul 2016 A1
20160204636 Allen et al. Jul 2016 A1
20160204638 Miraglia et al. Jul 2016 A1
20160210780 Paulovich et al. Jul 2016 A1
20160316190 McCloskey et al. Jul 2016 A1
20160223474 Tang et al. Aug 2016 A1
20160227912 Oberpriller et al. Aug 2016 A1
20160232891 Pecorari Aug 2016 A1
20160292477 Bidwell Oct 2016 A1
20160294779 Yeakley et al. Oct 2016 A1
20160306769 Kohtz et al. Oct 2016 A1
20160314276 Sewell et al. Oct 2016 A1
20160314294 Kubler et al. Oct 2016 A1
20160323310 Todeschini et al. Nov 2016 A1
20160325677 Fitch et al. Nov 2016 A1
20160327614 Young et al. Nov 2016 A1
20160327930 Charpentier et al. Nov 2016 A1
20160328762 Pape Nov 2016 A1
20160328854 Kimura Nov 2016 A1
20160330218 Hussey et al. Nov 2016 A1
20160343163 Venkatesha et al. Nov 2016 A1
20160343176 Ackley Nov 2016 A1
20160364914 Todeschini Dec 2016 A1
20160370220 Ackley et al. Dec 2016 A1
20160372282 Bandringa Dec 2016 A1
20160373847 Vargo et al. Dec 2016 A1
20160377414 Thuries et al. Dec 2016 A1
20160377417 Jovanovski et al. Dec 2016 A1
20170010141 Ackley Jan 2017 A1
20170010328 Mullen et al. Jan 2017 A1
20170010780 Waldron et al. Jan 2017 A1
20170016714 Laffargue et al. Jan 2017 A1
20170018094 Todeschini Jan 2017 A1
20170046603 Lee et al. Feb 2017 A1
20170047864 Stang et al. Feb 2017 A1
20170053146 Liu et al. Feb 2017 A1
20170053147 Geramine et al. Feb 2017 A1
20170053647 Nichols et al. Feb 2017 A1
20170055606 Xu et al. Mar 2017 A1
20170060316 Larson Mar 2017 A1
20170061689 Petrany Mar 2017 A1
20170061961 Nichols et al. Mar 2017 A1
20170064634 Van Horn et al. Mar 2017 A1
20170083730 Feng et al. Mar 2017 A1
20170091502 Furlong et al. Mar 2017 A1
20170091706 Lloyd et al. Mar 2017 A1
20170091741 Todeschini Mar 2017 A1
20170091904 Ventress Mar 2017 A1
20170092908 Chaney Mar 2017 A1
20170094238 Germaine et al. Mar 2017 A1
20170098947 Wolski Apr 2017 A1
20170100949 Celinder et al. Apr 2017 A1
20170103545 Holz Apr 2017 A1
20170108838 Todeschini et al. Apr 2017 A1
20170108895 Chamberlin et al. Apr 2017 A1
20170115490 Hsieh et al. Apr 2017 A1
20170115497 Chen et al. Apr 2017 A1
20170116462 Ogasawara Apr 2017 A1
20170118355 Wong et al. Apr 2017 A1
20170121158 Wong May 2017 A1
20170123598 Phan et al. May 2017 A1
20170124369 Rueblinger et al. May 2017 A1
20170124396 Todeschini et al. May 2017 A1
20170124687 McCloskey et al. May 2017 A1
20170126873 McGary et al. May 2017 A1
20170126904 d'Armancourt et al. May 2017 A1
20170132806 Balachandreswaran May 2017 A1
20170139012 Smith May 2017 A1
20170139213 Schmidtlin May 2017 A1
20170140329 Bernhardt et al. May 2017 A1
20170140731 Smith May 2017 A1
20170147847 Berggren et al. May 2017 A1
20170148250 Angermayer May 2017 A1
20170150124 Thuries May 2017 A1
20170018294 Hardy et al. Jun 2017 A1
20170169198 Nichols Jun 2017 A1
20170171035 Lu et al. Jun 2017 A1
20170171703 Maheswaranathan Jun 2017 A1
20170171803 Maheswaranathan Jun 2017 A1
20170180359 Wolski et al. Jun 2017 A1
20170180577 Nguon et al. Jun 2017 A1
20170181299 Shi et al. Jun 2017 A1
20170182942 Hardy et al. Jun 2017 A1
20170190192 Delario et al. Jul 2017 A1
20170193432 Bernhardt Jul 2017 A1
20170193461 Jonas et al. Jul 2017 A1
20170193727 Van Horn et al. Jul 2017 A1
20170200108 Au et al. Jul 2017 A1
20170200275 McCloskey et al. Jul 2017 A1
20170200296 Jones et al. Jul 2017 A1
20170309108 Sadovsky et al. Oct 2017 A1
20170336870 Everett et al. Nov 2017 A1
20180018627 Ross Jan 2018 A1
20190169008 Houle Jun 2019 A1
Foreign Referenced Citations (65)
Number Date Country
2004212587 Apr 2005 AU
201139117 Oct 2008 CN
3335760 Apr 1985 DE
10210813 Oct 2003 DE
102007037282 Mar 2008 DE
1111435 Jun 2001 EP
1443312 Aug 2004 EP
1112483 May 2006 EP
1232480 May 2006 EP
2013117 Jan 2009 EP
2216634 Aug 2010 EP
2286932 Feb 2011 EP
2372648 Oct 2011 EP
2381421 Oct 2011 EP
2533009 Dec 2012 EP
2562715 Feb 2013 EP
2722656 Apr 2014 EP
2779027 Sep 2014 EP
2833323 Feb 2015 EP
2843590 Mar 2015 EP
2845170 Mar 2015 EP
2966595 Jan 2016 EP
3006893 Mar 2016 EP
3012601 Mar 2016 EP
3007096 Apr 2016 EP
3270342 Jan 2018 EP
2503978 Jan 2014 GB
2525053 Oct 2015 GB
2531928 May 2016 GB
H04129902 Apr 1992 JP
200696457 Apr 2006 JP
2007084162 Apr 2007 JP
2008210276 Sep 2008 JP
2014210646 Nov 2014 JP
2015174705 Oct 2015 JP
20100020115 Feb 2010 KR
20110013200 Feb 2011 KR
20110117020 Oct 2011 KR
20120028109 Mar 2012 KR
9640452 Dec 1996 WO
0077726 Dec 2000 WO
0114836 Mar 2001 WO
2006095110 Sep 2006 WO
2007015059 Feb 2007 WO
2007125554 Nov 2007 WO
200712554 Nov 2007 WO
2011017241 Feb 2011 WO
2012175731 Dec 2012 WO
2013021157 Feb 2013 WO
2013033442 Mar 2013 WO
2013173985 Nov 2013 WO
2013163789 Nov 2013 WO
2013166368 Nov 2013 WO
20130184340 Dec 2013 WO
2014019130 Feb 2014 WO
2014023697 Feb 2014 WO
2014110495 Jul 2014 WO
2014102341 Jul 2014 WO
2014149702 Sep 2014 WO
2014151746 Sep 2014 WO
2015006865 Jan 2015 WO
2016020038 Feb 2016 WO
2016061699 Apr 2016 WO
2016061699 Apr 2016 WO
2016085682 Jun 2016 WO
Non-Patent Literature Citations (134)
Entry
Peter Clarke, Actuator Developer Claims Anti-Shake Breakthrough for Smartphone Cams, Electronic Engineering Times, p. 24, May 16, 2011. [Previously cited and copy provided in parent application].
Spiller, Jonathan; Object Localization Using Deformable Templates, Master's Dissertation, University of the Witwatersrand, Johannesburg, South Africa, 2007; 74 pages [Previously cited and copy provided in parent application].
Leotta, Matthew J.; Joseph L. Mundy; Predicting High Resolution Image Edges with a Generic, Adaptive, 3-D Vehicle Model; IEEE Conference on Computer Vision and Pattern Recognition, 2009; 8 pages. [Previously cited and copy provided in parent application].
European Search Report for application No. EP13186043 dated Feb. 26, 2014 (now EP2722656 (Apr. 23, 2014)): Total pp. 7 [Previously cited and copy provided in parent application].
International Search Report for PCT/US2013/039438 (WO2013166368), dated Oct. 1, 2013, 7 pages [Previously cited and copy provided in parent application].
Lloyd, Ryan and Scott McCloskey, “Recognition of 3D Package Shapes for Singe Camera Metrology” IEEE Winter Conference on Applications of computer Visiona, IEEE, Mar. 24, 2014, pp. 99-106, {retrieved on Jun. 16, 2014}, Authors are employees of common Applicant [Previously cited and copy provided in parent application].
European Office Action for application EP 13186043, dated Jun. 12, 2014(now EP2722656 (Apr. 23, 2014)), Total of 6 pages [Previously cited and copy provided in parent application].
Zhang, Zhaoxiang; Tieniu Tan, Kaiqi Huang, Yunhong Wang; Three-Dimensional Deformable-Model-based Localization and Recognition of Road Vehicles; IEEE Transactions on Image Processing, vol. 21, No. 1, Jan. 2012, 13 pages. [Previously cited and copy provided in parent application].
U.S. Appl. No. 14/801,023, Tyler Doomenbal et al., filed Jul. 16, 2015, not published yet, Adjusting Dimensioning Results Using Augmented Reality, 39 pages [Previously cited and copy provided in parent application].
Wikipedia, YUV description and definition, downloaded from http://www.wikipeida.org/wiki/YUV on Jun. 29, 2012, 10 pages [Previously cited and copy provided in parent application].
YUV Pixel Format, downloaded from http://www.fource.org/yuv.php on Jun. 29, 2012; 13 pages. [Previously cited and copy provided in parent application].
YUV to RGB Conversion, downloaded from http://www.fource.org/fccyvrgb.php on Jun. 29, 2012; 5 pages [Previously cited and copy provided in parent application].
Benos et al., “Semi-Automatic Dimensioning with Imager of a Portable Device,” U.S. Appl. No. 61/149,912, filed Feb. 4, 2009 (now expired), 56 pages. [Previously cited and copy provided in parent application].
Dimensional Weight—Wikipedia, the Free Encyclopedia, URL=http://en.wikipedia.org/wiki/Dimensional_weight, download date Aug. 1, 2008, 2 pages. [Previously cited and copy provided in parent application].
Dimensioning—Wikipedia, the Free Encyclopedia, URL=http://en.wikipedia.org/wiki/Dimensioning, download date Aug. 1, 2008, 1 page [Previously cited and copy provided in parent application].
European Patent Office Action for Application No. 14157971.4-1906, dated Jul. 16, 2014, 5 pages. [Previously cited and copy provided in parent application].
European Patent Search Report for Application No. 14157971.4-1906, dated Jun. 30, 2014, 6 pages. [Previously cited and copy provided in parent application].
Caulier, Yannick et al., “A New Type of Color-Coded Light Structures for an Adapted and Rapid Determination of Point Correspondences for 3D Reconstruction.” Proc. of SPIE, vol. 8082 808232-3; 2011; 8 pages [Previously cited and copy provided in parent application].
Kazantsev, Aleksei et al. “Robust Pseudo-Random Coded Colored STructured Light Techniques for 3D Object Model Recovery”; ROSE 2008 IEEE International Workshop on Robotic and Sensors Environments (Oct. 17-18, 2008) , 6 pages [Previously cited and copy provided in parent application].
Mouaddib E. et al. “Recent Progress in Structured Light in order to Solve the Correspondence Problem in Stereo Vision” Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Apr. 1997; 7 pages [Previously cited and copy provided in parent application].
Proesmans, Marc et al. “Active Acquisition of 3D Shape for Moving Objects” 0-7803-3258-X/96 1996 IEEE; 4 pages [Previously cited and copy provided in parent application].
Salvi, Joaquim et al. “Pattern Codification Strategies in Structured Light Systems” published in Pattern Recognition; The Journal of the Pattern Recognition Society, Accepted Oct. 2, 2003; 23 pages [Previously cited and copy provided in parent application].
EP Search and Written Opinion Report in related matter EP Application No. 14181437.6, dated Mar. 26, 2015, 7 pages. [Previously cited and copy provided in parent application].
Hetzel, Gunter et al.; “3D Object Recognition from Range Images using Local Feature Histograms,”, Proceedings 2OO1 IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2001. Kauai, Hawaii, Dec. 8- 14, 2001; pp. 394-399, XP010584149, ISBN: 978-0-7695-1272-3. [Previously cited and copy provided in parent application].
Second Chinese Office Action in related CN Application No. 201520810685.6, dated Mar. 22, 2016, 5 pages, no references. [Previously cited and copy provided in parent application].
European Search Report in related EP Application No. 15190315.0, dated Apr. 1, 2016, 7 pages [Previously cited and copy provided in parent application].
Second Chinese Office Action in related CN Application No. 2015220810562.2, dated Mar. 22, 2016, 5 pages. English Translation provided [No references] [Previously cited and copy provided in parent application].
European Search Report for related Application EP 15190249.1, dated Mar. 22, 2016, 7 pages. [Previously cited and copy provided in parent application].
Second Chinese Office Action in related CN Application No. 201520810313.3, dated Mar. 22, 2016, 5 pages. English Translation provided [No references].
U.S. Appl. No. 14/800,757 , Eric Todeschini, filed Jul. 16, 2015, not published yet, Dimensioning and Imaging Items, 80 pages [Previously cited and copy provided in parent application].
U.S. Appl. No. 14/747,197, Serge Thuries et al., filed Jun. 23, 2015, not published yet, Optical Pattern Projector; 33 pages [Previously cited and copy provided in parent application].
U.S. Appl. No. 14/747,490, Brian L. Jovanovski et al., filed Jun. 23, 2015, not published yet, Dual-Projector Three-Dimensional Scanner; 40 pages [Previously cited and copy provided in parent application].
Search Report and Opinion in related GB Application No. 1517112.7, dated Feb. 19, 2016, 6 Pages [Previously cited and copy provided in parent application].
U.S. Appl. No. 14/793,149, H. Sprague Ackley, filed Jul. 7, 2015, not published yet, Mobile Dimensioner Apparatus for Use in Commerce; 57 pages [Previously cited and copy provided in parent application].
U.S. Appl. No. 14/740,373, H. Sprague Ackley et al., filed Jun. 16, 2015, not published yet, Calibrating a Volume Dimensioner; 63 pages [Previously cited and copy provided in parent application].
Intention to Grant in counterpart European Application No. 14157971.4 dated Apr. 14, 2015, pp. 1-8 [Previously cited and copy provided in parent application].
Decision to Grant in counterpart European Application No. 14157971.4 dated Aug. 6, 2015, pp. 1-2 [Previously cited and copy provided in parent application].
Leotta, Matthew, Generic, Deformable Models for 3-D Vehicle Surveillance, May 2010, Doctoral Dissertation, Brown University, Providence RI, 248 pages [Previously cited and copy provided in parent application].
Ward, Benjamin, Interactive 3D Reconstruction from Video, Aug. 2012, Doctoral Thesis, Univesity of Adelaide, Adelaide, South Australia, 157 pages [Previously cited and copy provided in parent application].
Hood, Frederick W.; William A. Hoff, Robert King, Evaluation of an Interactive Technique for Creating Site Models from Range Data, Apr. 27-May 1, 1997 Proceedings of the ANS 7th Topical Meeting on Robotics & Remote Systems, Augusta GA, 9 pages [Previously cited and copy provided in parent application].
Gupta, Alok; Range Image Segmentation for 3-D Objects Recognition, May 1988, Technical Reports (CIS), Paper 736, University of Pennsylvania Department of Computer and Information Science, retrieved from Http://repository.upenn.edu/cis_reports/736, Accessed May 31, 2015, 157 pages [Previously cited and copy provided in parent application].
Reisner-Kollmann,Irene; Anton L. Fuhrmann, Werner Purgathofer, Interactive Reconstruction of Industrial Sites Using Parametric Models, May 2010, Proceedings of the 26th Spring Conference of Computer Graphics SCCG 10, 8 pages [Previously cited and copy provided in parent application].
Drummond, Tom; Roberto Cipolla, Real-Time Visual Tracking of Complex Structures, Jul. 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, No. 7; 15 pages. [Previously cited and copy provided in parent application].
European Search Report for Related EP Application No. 15189214.8, dated Mar. 3, 2016, 9 pages [Previously cited and copy provided in parent application].
Santolaria et al. “A one-step intrinsic and extrinsic calibration method for laster line scanner operation in coordinate measuring machines”, dated Apr. 1, 2009, Measurement Science and Technology, IOP, Bristol, GB, vol. 20, No. 4; 12 pages [Previously cited and copy provided in parent application].
Search Report and Opinion in Related EP Application 15176943.7, dated Jan. 8, 2016, 8 pages [Previously cited and copy provided in parent application].
European Search Report for related EP Application No. 15188440.0, dated Mar. 8, 2016, 8 pages. [Previously cited and copy provided in parent application].
United Kingdom Search Report in related application GB1517842.9, dated Apr. 8, 2016, 8 pages [Previously cited and copy provided in parent application].
Great Britain Search Report for related Application On. GB1517843.7, dated Feb. 23, 2016; 8 pages [Previously cited and copy provided in parent application].
United Kingdom Further Exam Report in related application GB1607394.2 dated Oct. 5, 2018; 5 pages {Only new art cited here in].
European Extended Search Report in related EP application 18184864.9, dated Oct. 30, 2018, 7 pages.
Combined Search and Examination Report in related UK Application No. GB1900752.5 dated Feb. 1, 2019, pp. 1-5.
Examination Report in related UK Application No. GB1517842.9 dated Mar. 8, 2019, pp. 1-4.
Examination Report in related EP Application No. 13193181.8 dated Mar. 20, 2019, pp. 1-4.
First Office Action in related CN Application No. 201510860188.1 dated Jan. 18, 2019, pp. 1-14 [All references previously cited.].
Examination Report in related EP Application No. 13785171.3 dated Apr. 2, 2019, pp. 1-5.
Lowe David G., “Fitting Parameterized Three-Dimensional Models to Images”, IEEE Transaction on Pattern Analysis and Machine Intelligence, IEEE Computer Society, USA, vol. 13, No. 5, May 1, 1991, pp. 441-450.
Padzensky, Ron; “Augmera; Gesture Control”, Dated Apr. 18, 2015, 15 pages [Art in Office Action dated Jan. 20, 2017 in related Application.].
Grabowski, Ralph; “New Commands in AutoCADS 2010: Part 11 Smoothing 3D Mesh Objects” Dated 2011 , 6 pages, [Art in Office Action dated Jan. 20, 2017 in related Application.].
Theodoropoulos, Gabriel; “Using Gesture Recognizers to Handle Pinch, Rotate, Pan, Swipe, and Tap Gestures” dated Aug. 25, 2014, 34 pages, [Art in Office Action dated Jan. 20, 2017 in related Application.].
Boavida et al., “Dam monitoring using combined terrestrial imaging systems”, 2009 Civil Engineering Survey De/Jan. 2009, pp. 33-38 {Cited in Notice of Allowance dated Sep. 15, 2017 in related matter}.
Ralph Grabowski, “Smothing 3D Mesh Objects,” New Commands in AutoCAD 2010: Part 11, art in related matter Non Final Office Action dated May 19, 2017; 6 pages.
Wikipedia, “Microlens”, Downloaded from https://en.wikipedia.org/wiki/Microlens, pp. 3. {in Feb. 9, 2017 Final Office Action in related matter}.
Fukaya et al., “Characteristics of Speckle Random Pattern and Its Applications”, pp. 317-327, Nouv. Rev. Optique, t.6, n.6. (1975) {in Feb. 9, 2017 Final Office Action in related matter: downloaded Mar. 2, 2017 from http://iopscience.iop.org}.
Thorlabs, NPL in Advisory Action dated Apr. 12, 2017 in related commonly owned application, downloaded from https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6430, 4 pages.
Eksma Optics, NPL in Advisory Action dated Apr. 12, 2017 in related commonly owned application, downloaded from http://eksmaoptics.com/optical-systems/f-theta-lenses/f-theta-lens-for-1064-nm/, 2 pages.
Sill Optics, NPL in Advisory Action dated Apr. 12, 2017 in related commonly owned application, http://www.silloptics.de/1/products/sill-encyclopedia/laser-optics/f-theta-lenses/, 4 pages.
United Kingdom Further Examination Report in related GB Patent Application No. 1517842.9 dated Jul. 26, 2018; 5 pages [Cited art has been previously cited in this matter].
United Kingdom Further Examination Report in related GB Patent Application No. 1517112.7 dated Jul. 17, 2018; 4 pages [No art cited].
United Kingdom Further Examination Report in related GB Patent Application No. 1620676.5 dated Jul. 17, 2018; 4 pages [No art cited].
Office Action in counterpart European Application No. 13186043.9 dated Sep. 30, 2015, pp. 1-7.
Lloyd et al., “System for Monitoring the Condition of Packages Throughout Transit”, U.S. Appl. No. 14/865,575, filed Sep. 25, 2015, 59 pages, not yet published.
McCloskey et al., “Image Transformation for Indicia Reading,” U.S. Appl. No. 14/928,032, filed Oct. 30, 2015, 48 pages, not yet published.
Great Britain Combined Search and Examination Report in related Application GB1517842.9, dated Apr. 8, 2016, 8 pages.
Search Report in counterpart European Application No. 15182675.7, dated Dec. 4, 2015, 10 pages.
Wikipedia, “3D projection” Downloaded on Nov. 25, 2015 from www.wikipedia.com, 4 pages.
M.Zahid Gurbuz, Selim Akyokus, Ibrahim Emiroglu, Aysun Guran, An Efficient Algorithm for 3D Rectangular Box Packing, 2009, Applied Automatic Systems: Proceedings of Selected AAS 2009 Papers, pp. 131-134.
European Extended Search Report in Related EP Application No. 16172995.9, dated Aug. 22, 2016, 11 pages.
European Extended search report in related EP Application No. 15190306.9, dated Sep. 9, 2016, 15 pages.
Collings et al., “The Applications and Technology of Phase-Only Liquid Crystal on Silicon Devices”, Journal of Display Technology, IEEE Service Center, New, York, NY, US, vol. 7, No. 3, Mar. 1, 2011 (Mar. 1, 2011), pp. 112-119.
European extended Search report in related EP Application 13785171.3, dated Sep. 19, 2016, 8 pages.
El-Hakim et al., “Multicamera vision-based approach to flexible feature measurement for inspection and reverse engineering”, published in Optical Engineering, Society of Photo-Optical Instrumentation Engineers, vol. 32, No. 9, Sep. 1, 1993, 15 pages.
El-Hakim et al., “A Knowledge-based Edge/Object Measurement Technique”, Retrieved from the Internet: URL: https://www.researchgate.net/profile/Sabry_E1-Hakim/publication/44075058_A_Knowledge_Based_EdgeObject_Measurement_Technique/links/00b4953b5faa7d334000000.pdf [retrieved on Jul. 15, 2016] dated Jan. 1, 1993, 9 pages.
H. Sprague Ackley, “Automatic Mode Switching in a Volume Dimensioner”, U.S. Appl. No. 15/182,636, filed Jun. 15, 2016, 53 pages, Not yet published.
Bosch Tool Corporation, “Operating/Safety Instruction for DLR 130”, Dated Feb. 2, 2009, 36 pages.
European Search Report for related EP Application No. 16152477.2, dated May 24, 2016, 8 pages.
Mike Stensvold, “get the Most Out of Variable Aperture Lenses”, published on www.OutdoorPhotogrpaher.com; dated Dec. 7, 2010; 4 pages, [As noted on search report retrieved from URL: http://www.outdoorphotographer.com/gear/lenses/get-the-most-out-ofvariable-aperture-lenses.html on Feb. 9, 2016].
Houle et al., “Vehical Positioning and Object Avoidance”, U.S. Appl. No. 15/007,522 [not yet published], filed Jan. 27, 2016, 59 pages.
United Kingdom combined Search and Examination Report in related GB Application No. 1607394.2, dated Oct. 19, 2016, 7 pages.
European Search Report from related EP Application No. 16168216.6, dated Oct. 20, 2016, 8 pages.
Examination Report in European Application No. 16152477.2 dated Jun. 18, 2019, pp. 1-6.
Examination Report in European Application No. 17175357.7 dated Jun. 26, 2019, pp. 1-5 [All references previously cited.].
Examination Report in European Application No. 19171976.4 dated Jun. 19, 2019, pp. 1-8.
Examination Report in GB Application No. 1607394.2 dated Jul. 5, 2019, pp. 1-4.
Combined Search and Examination Report in related UK Application No. GB1817189.2 dated Nov. 14, 2018, pp. 1-4 [Reference previously cited].
Examination Report in related UK Application No. GB1517842.9 dated Dec. 21, 2018, pp. 1-7 [All references previously cited].
Non-Final Rejection dated Jun. 15, 2017 for U.S. Appl. No. 15/007,522.
Notice of Allowance and Fees Due (PTOL-85) dated Jan. 24, 2018 for U.S. Appl. No. 15/007,522.
Notice of Allowance and Fees Due (PTOL-85) dated Jun. 20, 2018 for U.S. Appl. No. 15/007,522.
U.S. Appl. No. 14/277,337 for Multipurpose Optical Reader, filed May 14, 2014 (Jovanovski et al.); 59 pages; now abandoned.
U.S. Patent Application for a Laser Scanning Module Employing an Elastomeric U-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.), U.S. Appl. No. 13/367,978.
U.S. Patent Application for Indicia Reader filed Apr. 1, 2015 (Huck), U.S. Appl. No. 14/676,109.
U.S. Patent Application for Multifunction Point of Sale Apparatus With Optical Signature Capture filed Jul. 30, 2014 (Good et al.), U.S. Appl. No. 14/446,391.
U.S. Patent Application for Terminal Having Illumination and Focus Control filed May 21, 2014 (Liu et al.), U.S. Appl. No. 14/283,282.
United Kingdom Combined Search and Examination Report for related GB Application No. 1802036.2 dated Mar. 21, 2018, 6 pages.
United Kingdom Examination Report for related GB Application No. 1700338.5 dated Feb. 26, 2018, 2 pages.
United Kingdom Intention to Grant for related GB Application No. 1700338.5 dated May 31, 2018, 2 pages.
United Kingdom Intention to Grant for related GB Application No. 1802036.2 dated Oct. 25, 2018, 2 pages.
United Kingdom Notification of Grant for GB Application No. 1700338.5 dated Jul. 10, 2018, 2 pages.
United Kingdom Notification of Grant for related GB Application No. 1802036.2 dated Dec. 11, 2018, 2 pages.
European Extended Search Report in related EP Application No. 16190017.0, dated Jan. 4, 2017, 6 pages.
European Extended Search Report in related EP Application No. 16173429.8, dated Dec. 1, 2016, 8 pages [US 2013/0038881 cited on separate IDS filed concurrently herewith].
Extended European Search Report in related EP Application No. 16175410.0, dated Dec. 13, 2016, 5 pages.
European extended search report in related EP Application 16190833.0, dated Mar. 9, 2017, 8 pages [US Publication 2014/0034731 cited on separate IDS filed concurrently herewith].
United Kingdom Combined Search and Examination Report in related Application No. GB1620676.5, dated Mar. 8, 2017, 6 pages [References cited on separate IDS filed concurrently herewith; WO2014/151746, WO2012/175731, US 2014/0313527, GB2503978].
European Exam Report in related , EP Application No. 16168216.6, dated Feb. 27, 2017, 5 pages, [cited on separate IDS tiled concurrently herewith; WO2011/017241 and US 2014/0104413].
EP Search Report in related EP Application No. 17171844 dated Sep. 18, 2017. 4 pages [Only new art cited hierein; some art has been cited on separate IDS filed concurrently herewith}.
EP Extended Search Report in related EP Applicalon No. 17174843.7 dated Oct. 17, 2017, 5 pages {Only new art sited herein; some art has been cited on separate IDS filed concurrently herewith}.
UK Further Exam Report in related UK Application No. GB1517842.9, dated Sep. 1, 2017, 5 pages (only new art cited herein; some art cited on separate IDS filed concurrently herewith).
European Exam Report in related EP Application No. 15176943.7, dated Apr. 12, 2017, 6 pages [Art cited on separate IDS filed concurrently herewith].
European Exam Report in related EP Application No. 15188440.0, dated Apr. 21, 2017, 4 pages [Art has been cited on separate IDS filed concurrently herewith.].
European Examination report in related EP Application No. 14181437.6, dated Feb. 8, 2017, 5 pages [References cited on separate IDS filed concurrently herewith].
Chinese Notice of Reexamination in related Chinese Application 201520810313.3, dated Mar. 14, 2017, English Computer Translation provided, 7 pages [References cited on separate IDS filed concurrently herewith].
Extended European search report in related EP Application 16199707.7, dated Apr. 10, 2017, 15 pages.
Ulusoy et al., One-Shot Scanning using De Bruijn Spaced Grids, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, 7 pages [Cited in EP Extended search report dated Apr. 10, 2017; NPL 14].
European Exam Report in related EP Application No. 16152477.2, dated Jun. 20, 2017, 4 pages [References cited on separate IDS filed concurrently herewith].
European Exam Report in related EP Applciation 16172995.9, dated Jul. 6, 2017, 9 pages [References cited on separate IDS filed concurrently herewith].
United Kingdom Search Report in related Application No. GB1700338.5, dated Jun. 30, 2017, 5 pages.
European Search Report in related EP Application No. 17175357.7, dated Aug. 17, 2017, pp. 1-7 [References cited on separate IDS filed concurrently herewith].
European extended Search Report in related Application No. 17207882.6 dated Apr. 26, 2018, 10 pages.
European Extended Search Report in related EP Application No. 17201794.9, dated Mar. 16, 2018, 10 pages [Only new art cited herein].
European Extended Search Report in related EP Application 17205030.4, dated Mar. 22, 2018, 8 pages.
European Exam Report in related EP Application 16172995.9, dated Mar. 15, 2018, 7 pages (Only new art cited hierein).
United Kingdom Combined Search and Examination Report dated Mar. 21, 2018, 5 pages (Art has been previously cited).
Related Publications (1)
Number Date Country
20180267551 A1 Sep 2018 US
Continuations (1)
Number Date Country
Parent 15007522 Jan 2016 US
Child 15986226 US