In order to increase the pace of play, golf carts are used to quickly transport golfers around the course during the course of playing a typical round of 18 holes. Many of the golf carts utilize gasoline motors which naturally are an undesirable source of pollution. Battery-powered golf carts are also well known but suffer from the problem of the golf cart losing power during the course of a round of golf, thereby causing the player to be stranded usually a considerable distance from the clubhouse.
The present invention is a propulsion system for vehicles which travel from point to point within a confined area and make periodic stops at fixed points along a given path of travel. Such vehicles include public transportation vehicles, personnel shuttle cars, tramcars, mail carts, golf carts and the like. By this invention, a vehicle propulsion system includes a charge station having contact bars disposed therein to transmit power to a vehicle disposed thereabove in order to rotate a flywheel. The flywheel is mounted on an axle shaft within a housing and by which power is transmitted through a transmission/differential to the vehicle wheels.
In the drawings:
With respect to the embodiment of the invention illustrated in
Flywheel assembly 1, as shown in
As shown in
More specifically, motor/generator control element 114 connects coil assemblies 105 for advantageous use of flywheel assembly 1 as a motor or as a generator. Motor/generator control element 114 also connects pickups 6 and auxiliary power receptacle 13 inputs to flywheel assembly 1. Auxiliary power control 113 modulates and controls the flow of power from auxiliary supply 121 to flywheel assembly 1. Travel control 111 supplies a forward, stop and reverse control signal to drive motor control 112, as selected by the positioning of control handle 3. Power level meter 120 is a tachometer which thereby indicates the rotational speed of flywheel 100 which indicates the energy level of flywheel 100 and the useful power available for propulsion of the vehicle.
In
In operation, flywheel 100 is rotated by magnet assembly 102 when coil assembly 105 is configured as a motor. Power is supplied to control assembly 2 from charge station 7 or auxiliary power receptacle 13. From control assembly 2, power is supplied to coil assembly 102 through multiple strand harness 107. Flywheel 100 is rotated to a speed sufficient to propel the vehicle for the required length of travel and as indicated by power level meter 120. As the vehicle traverses the course of travel, flywheel assembly 1 furnishes power to motor 116 and then wheels 118. During the course of travel, power is depleted from flywheel assembly 1 and power level meter 120 indicates the level of power remaining. If the power level is reduced to the degree that vehicle propulsion is not possible, auxiliary power source 21 is employed to restore the system to an operating condition.
In the actual use of the golf cart propulsion system, the operator would position the vehicle on charge station 7 at the first tee and then engage pickup operator 5 thereby lowering pickups 6 to communicate with contact bars 9 causing an increase in rotational speed of flywheel 100. Elements of the propulsion system are sized to allow sufficient power storage during the interval of travel between tee boxes. The operator then proceeds to the green, stopping the vehicle along the way, as required. When the vehicle is stopped, flywheel 100 will only loose power due to frictional forces in the rotational mechanism, such as bearing friction and aerodynamic drag. The process if then repeated for the remaining holes.
Therefore, by this invention, a vehicle propulsion system is provided which is energy efficient and environmentally desirable.
Number | Name | Date | Kind |
---|---|---|---|
4217526 | Farr | Aug 1980 | A |
5180023 | Reimers | Jan 1993 | A |
5343128 | Beltrame et al. | Aug 1994 | A |
5583418 | Honda et al. | Dec 1996 | A |
6886647 | Gotta | May 2005 | B1 |
7061153 | Foshage et al. | Jun 2006 | B1 |
7293621 | Long | Nov 2007 | B2 |
7416039 | Anderson et al. | Aug 2008 | B1 |
8307967 | Patwardhan | Nov 2012 | B2 |
8324858 | Hill et al. | Dec 2012 | B2 |
20100308601 | Walden | Dec 2010 | A1 |
20120280656 | Bedell | Nov 2012 | A1 |