Not applicable.
This subject invention relates to counter measure systems and, in particular, to an easy to install, fairly inexpensive, and more effective vehicle protection system.
Rocket Propelled Grenades (RPGs) and other threats used by enemy forces and insurgents are a serious threat to troops on the battlefield, on city streets, and on country roads. RPG weapons are relatively inexpensive and widely available throughout the world. There are a variety of RPG warhead types, but the most prolific are the RPG-7 and RPG-7M which employ a focus blast or shaped charge warhead capable of penetrating considerable armor even if the warhead is detonated at standoffs up to 10 meters from a vehicle. A perfect hit with a shaped charge can penetrate a 12 inch thick steel plate. RPG's pose a persistent deadly threat to moving ground vehicles and stationary structures such as security check points.
Heavily armored, lightly armored, and unarmored vehicles have been proven vulnerable to the RPG shaped charge. Pick-up trucks, HMMWV's, 2½ ton trucks, 5 ton trucks, light armor vehicles, and M118 armored personnel carriers are frequently defeated by a single RPG shot. Even heavily armored vehicles such as the M1 Abrams Tank have been felled by a single RPG shot. The RPG-7 and RPG-7M are the most prolific class of RPG weapons, accounting for a reported 90% of the engagements. RPG-18s have been reported as well accounting for a significant remainder of the threat encounters. Close engagements 30 meters away occurs in less than 0.25 seconds and an impact speed ranging from 120-180 m/s. Engagements at 100 meters will reach a target in approximately 1.0 second and at impact speeds approaching 300 m/s.
The RPG-7 is in general use in Africa, Asia, and the Middle East and weapon caches are found in random locations making them available to the inexperienced insurgent. Today, the RPG threat in Iraq is present at every turn and caches have been found under bridges, in pickup trucks, buried by the road sides, and in even in churches.
Armor plating on a vehicle does not always protect the vehicle's occupants in the case of an RPG impact and no known countermeasure has proven effective.
Certain prior art discloses the idea of deploying an airbag (U.S. Pat. No. 6,029,558) or a barrier (U.S. Pat. No. 6,279,449) in the trajectory path of a munition to deflect it but such countermeasure systems would be wholly ineffective in the face of a RPG.
Other prior art discloses systems designed to intercept and destroy an incoming threat. See, e.g., U.S. Pat. No. 5,578,784 which discloses a projectile “catcher” launched into the path of a projectile. Many such interception systems are ineffective and/or expensive, complex, and unreliable.
It is therefore an object of this invention to provide a more effective and reliable protection system for vehicles and structures.
It is a further object of this invention to provide such a system which is fairly simple in design, easy to install and remove, and which is inexpensive.
The subject invention results from the realization that a more effective and reliable protection system is effected by a shield typically deployable outward from a vehicle or structure when an incoming RPG or other threat is detected and designed to disarm the threat instead of deflect or intercept and destroy the threat.
The subject invention, however, in other embodiments, need not achieve all these objectives and the claims hereof should not be limited to structures or methods capable of achieving these objectives.
This invention features a protection system for a vehicle or other structure. In one embodiment, there is a sensor subsystem for detecting an incoming threat, a flexible packaged net with perimeter weighting housed in a deployment box attached to the vehicle, a deployment subsystem including an airbag packaged in the deployment box behind the net, and a fire control subsystem, responsive to the sensor subsystem, configured to activate the deployment subsystem to inflate the airbag and deploy the net in the trajectory path of the incoming threat.
In one example, the sensor subsystem includes a radar system. Preferably, the threat has a nose diameter less than its body diameter and the net has a mesh size between the body diameter and the tail diameter, typically between 30-60 mm. Preferably, the net has a knotless weave. The net can be made of PBO material and may have a line diameter of 0.5-3 mm.
Typically, the airbag is mounted centrally in the box, the perimeter weighting is located over the airbag, and the remainder of the net is folded adjacent the sides of the airbag. The deployment box then defines a concave compartment for the remainder of the net around the airbag.
The net may be attached to the deployment box or not. There may be two or more nets packaged in the deployment box with their mesh aligned or not depending on the specific implementation. The preferred net may include at least one layer of smaller diameter line material and a layer of larger diameter line material. Typically, there are between 2-4 layers of smaller diameter line material over a single layer of larger diameter line material.
One protection system in accordance with this invention includes a sensor subsystem for detecting an incoming threat, a flexible packaged net in a deployment box attached to a structure, a deployment subsystem packaged in the deployment box, and a fire control subsystem, responsive to the sensor system, configured to activate the deployment system to deploy the net into the trajectory path of the incoming threat. One example of a deployment subsystem is an airbag packaged in the deployment box behind the net. The fire control subsystem is configured to activate the deployment subsystem to inflate the airbag and deploy the net. Another example of a deployment subsystem includes rockets attached to the net. The fire control subsystem is configured to fire the rocket to deploy the net. Another deployment subsystem includes spring loaded folded actuators configured to deploy the net as the actuators are released.
In another embodiment, the protection system includes a frame on a structure and a net on the frame spaced from the structure and having a mesh size designed to disarm an incoming threat. Typically, the net mesh size is between 35-60 mm. The preferred net has a knotless “ultracross” weave. There may be two or more nets on the frame with their mesh aligned or not.
A protection system in accordance with this invention may be characterized as including, inter alia, flexible means for disarming an incoming threat and means for deploying said flexible means into a spaced relationship with a structure. In the preferred embodiment, the flexible means includes a net. In one example, the means for deploying includes an airbag. In another example, the means for deploying includes rockets. In still another example, the means for deploying is a static frame attached to the structure.
In a more comprehensive sense, one protection system in accordance with this invention features a mobile vehicle including sensor subsystem for detecting an incoming threat. A deployment box is removably attached to the vehicle. The deployment box includes therein a flexible packaged net with perimeter weighting, and a deployment subsystem including an airbag is packaged in the deployment box behind the net. A fire control subsystem is responsive to the sensor subsystem and is configured to activate the deployment subsystem to inflate the airbag and deploy the net in the trajectory path of the incoming threat.
Another protection system for a threat having a nose diameter less than its body diameter includes a mobile vehicle with a frame releasably attached to the vehicle. A net on the frame is spaced from the vehicle and has a mesh size between the threat nose diameter and the body diameter to disarm the threat.
One preferred protection system includes a flexible packaged net including at least two layers of a small line diameter net over at least one layer of a larger line diameter net and a deployment subsystem for deploying the net. One deployment subsystem includes an airbag. Another deployment subsystem includes rockets. Still another deployment subsystem includes a static frame for the net. Still another deployment subsystem includes actuator members.
Other objects, features and advantages will occur to those skilled in the art from the following description of a preferred embodiment and the accompanying drawings, in which:
Aside from the preferred embodiment or embodiments disclosed below, this invention is capable of other embodiments and of being practiced or being carried out in various ways. Thus, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of components set forth in the following description or illustrated in the drawings. If only one embodiment is described herein, the claims hereof are not to be limited to that embodiment. Moreover, the claims hereof are not to be read restrictively unless there is clear and convincing evidence manifesting a certain exclusion, restriction, or disclaimer.
In one specific embodiment, a vehicle or structure protection system in accordance with the subject invention includes 4″ deep, 14½″×14″, 35 lb deployment box 10,
In this embodiment, net 14 is not attached to deployment box 10.
In any embodiment, the deployment box can be attached to all the door panels of vehicle 30, its roof, its hood, its front and rear bumpers, and the like to provide complete vehicle coverage.
As discussed above, net 14,
The preferred net has a knotless weave for increased strength (e.g., an “ultracross” weave) and is made of “Dyneema” or PBO (poly P-phenylene-2,6 bezibisoxazole) material with a line diameter of between 0.5 mm to 3 mm. The net material, construction, and line diameter may vary depending upon the specific implementation, its location on the vehicle or structure, the vehicle or structure type, and the different types of threats likely to be encountered. “Net” as used herein, means not only traditional nets but also scrims, fabrics with loose weaves, and other structures designed to disarm incoming threats.
A complete system in accordance with one example of the subject invention also includes a sensor subsystem 60,
Those skilled in the art will appreciate that sensor subsystem 60,
In still another example, the roof of vehicle 100,
The preferred configuration of a net in any embodiment is shown in
The plies 150a-150b of net material include lines of PBO material 0.9 mm diameter (braided, 4 ply, 35 mm mesh) and the larger diameter line net 152 includes 3 mm diameter lines of PBO material (braided, 28 ply, 45-55 mm mesh).
It was found in testing that folds of the smaller line diameter net, in some cases, was sometimes pierced by a munition without duding. Adding additional layers or plies would sometimes result in the munition detonating on the net. A single layer larger diameter line net could also result in the munition detonating upon striking the net. But, surprisingly, when three layers of the smaller line diameter net were added in front of a single layer of the larger diameter line net, the munition did not pierce the net, did not detonate upon striking the net, and was successfully duded. It is believed this net system works well because the smaller diameter line net layers affects the response of the piezo charge generator of the munition and, when the munition then strikes the larger diameter line net, it disarms the net as explained above with reference to
In any embodiment, the result is a more effective and reliable protection system which is fairly simple in design and easy to install and which can also be manufactured fairly inexpensively. Protection is effected by a shield typically deployable or deployed outward from a vehicle or other structure when an incoming RPG or other threat is detected. The shield is designed primarily to disarm the threat instead of deflect or intercept and destroy it.
Although specific features of the invention are shown in some drawings and not in others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention. The words “including”, “comprising”, “having”, and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments disclosed in the subject application are not to be taken as the only possible embodiments. Other embodiments will occur to those skilled in the art and are within the following claims.
In addition, any amendment presented during the prosecution of the patent application for this patent is not a disclaimer of any claim element presented in the application as filed: those skilled in the art cannot reasonably be expected to draft a claim that would literally encompass all possible equivalents, many equivalents will be unforeseeable at the time of the amendment and are beyond a fair interpretation of what is to be surrendered (if anything), the rationale underlying the amendment may bear no more than a tangential relation to many equivalents, and/or there are many other reasons the applicant can not be expected to describe certain insubstantial substitutes for any claim element amended.
This application is a divisional application which claims the benefit of and priority to U.S. patent application Ser. No. 12/806,724 filed Aug. 19, 2010 now U.S. Pat. No. 8,042,449, which is a divisional application of Ser. No. 11/351,130, filed Feb. 9, 2006, now U.S. Pat. No. 7,866,250 B2, under 35 U.S.C. §§119, 120, 363, 365, and 37 C.F.R. §1.55 and §1.78 and which are incorporated into this application by this reference.
This invention was made with U.S. Government support under DARPA contract No. HR0011-05-C-0056. The Government may have certain rights in the subject invention.
Number | Name | Date | Kind |
---|---|---|---|
1198035 | Huntington | Sep 1916 | A |
1204547 | Corrado et al. | Nov 1916 | A |
1229421 | Downs | Jun 1917 | A |
1235076 | Stanton | Jul 1917 | A |
1385897 | Tolmie | Jul 1921 | A |
2296980 | Carmichael | Sep 1942 | A |
2308683 | Forbes | Jan 1943 | A |
2322624 | Forbes | Jun 1943 | A |
3633936 | Huber | Jan 1972 | A |
3656791 | Truesdell | Apr 1972 | A |
3893368 | Wales, Jr. | Jul 1975 | A |
3992628 | Karney | Nov 1976 | A |
4253132 | Cover | Feb 1981 | A |
4262595 | Longerich | Apr 1981 | A |
4358984 | Winblad | Nov 1982 | A |
4768417 | Wright | Sep 1988 | A |
4912869 | Govett | Apr 1990 | A |
4928575 | Smirlock et al. | May 1990 | A |
5025707 | Gonzalez | Jun 1991 | A |
5069109 | Lavan, Jr. | Dec 1991 | A |
5078117 | Cover | Jan 1992 | A |
5094170 | Raynaud et al. | Mar 1992 | A |
5170690 | Smirlock et al. | Dec 1992 | A |
5191166 | Smirlock et al. | Mar 1993 | A |
5279199 | August | Jan 1994 | A |
5333532 | Smirlock et al. | Aug 1994 | A |
5370035 | Madden, Jr. | Dec 1994 | A |
5394786 | Gettle et al. | Mar 1995 | A |
5400688 | Eninger et al. | Mar 1995 | A |
5435226 | McQuilkin | Jul 1995 | A |
5524524 | Richards et al. | Jun 1996 | A |
5578784 | Karr et al. | Nov 1996 | A |
5583311 | Rieger | Dec 1996 | A |
5622455 | Anderson et al. | Apr 1997 | A |
5646613 | Cho | Jul 1997 | A |
5725265 | Baber | Mar 1998 | A |
5739458 | Girard | Apr 1998 | A |
5750918 | Mangolds et al. | May 1998 | A |
5792976 | Genovese | Aug 1998 | A |
5898125 | Mangolds et al. | Apr 1999 | A |
5924723 | Brantman et al. | Jul 1999 | A |
5988036 | Mangolds et al. | Nov 1999 | A |
6029558 | Stevens et al. | Feb 2000 | A |
6119574 | Burky et al. | Sep 2000 | A |
6128999 | Sepp et al. | Oct 2000 | A |
6279449 | Ladika et al. | Aug 2001 | B1 |
6282860 | Ramirez | Sep 2001 | B1 |
6311605 | Kellner et al. | Nov 2001 | B1 |
6325015 | Garcia et al. | Dec 2001 | B1 |
6374565 | Warren | Apr 2002 | B1 |
6394016 | Swartout et al. | May 2002 | B2 |
6595102 | Stevens et al. | Jul 2003 | B2 |
6626077 | Gilbert | Sep 2003 | B1 |
6672220 | Brooks et al. | Jan 2004 | B2 |
6782792 | Edberg et al. | Aug 2004 | B1 |
6805035 | Edberg et al. | Oct 2004 | B2 |
6854374 | Breazeale | Feb 2005 | B1 |
6901839 | Edberg et al. | Jun 2005 | B2 |
6904838 | Dindl | Jun 2005 | B1 |
6925771 | Lee et al. | Aug 2005 | B2 |
6957602 | Koenig et al. | Oct 2005 | B1 |
7190304 | Carlson | Mar 2007 | B1 |
7308738 | Barvosa-Carter et al. | Dec 2007 | B2 |
7328644 | Vickroy | Feb 2008 | B2 |
7412916 | Lloyd | Aug 2008 | B2 |
7415917 | Lloyd | Aug 2008 | B2 |
7513186 | Ravid et al. | Apr 2009 | B2 |
7866250 | Farinella et al. | Jan 2011 | B2 |
20010032577 | Swartout et al. | Oct 2001 | A1 |
20020134365 | Gray | Sep 2002 | A1 |
20030217502 | Hansen | Nov 2003 | A1 |
20040016846 | Blackwell-Thompson et al. | Jan 2004 | A1 |
20050011396 | Burdette et al. | Jan 2005 | A1 |
20050016372 | Kilvert | Jan 2005 | A1 |
20050278098 | Breed | Dec 2005 | A1 |
20060065111 | Henry | Mar 2006 | A1 |
20070057495 | Tesch et al. | Mar 2007 | A1 |
20070089597 | Ma | Apr 2007 | A1 |
20070180983 | Farinella et al. | Aug 2007 | A1 |
20080164379 | Wartmann et al. | Jul 2008 | A1 |
20080258063 | Rapanotti | Oct 2008 | A1 |
20090084284 | Martinez et al. | Apr 2009 | A1 |
20090104422 | Sampson | Apr 2009 | A1 |
20090173250 | Marscher et al. | Jul 2009 | A1 |
20090178597 | Silwa, Jr. | Jul 2009 | A1 |
20090217811 | Leeming | Sep 2009 | A1 |
20090266226 | Beach et al. | Oct 2009 | A1 |
20100288114 | Soukos | Nov 2010 | A1 |
20100319524 | Farinella et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
2206404 | Aug 1973 | DE |
3722420 | Jan 1989 | DE |
3735426 | May 1989 | DE |
3834367 | Apr 1990 | DE |
4437412 | Sep 1995 | DE |
691067 | Jan 2006 | DE |
0655603 | May 1995 | EP |
0872705 | Apr 1998 | EP |
0902250 | Sep 1998 | EP |
2695467 | Mar 1994 | FR |
2449055 | Dec 2008 | GB |
WO 9930966 | Jun 1999 | WO |
WO 2006134407 | Dec 2006 | WO |
WO 2006135432 | Dec 2006 | WO |
WO 2008007001 | Jan 2008 | WO |
WO 2008079001 | Mar 2008 | WO |
Number | Date | Country | |
---|---|---|---|
Parent | 12806724 | Aug 2010 | US |
Child | 13066961 | US | |
Parent | 11351130 | Feb 2006 | US |
Child | 12806724 | US |