The present invention relates to a rear wiper system for a vehicle, and more particularly a rear wiper system that does not need a bladed wiper.
Many automotive vehicles, such as sport utility vehicles, cross over vehicles, and minivans, have rear window glass wipers that include a pivoting arm upon which is mounted a rubber blade pressed against the window, with the rubber blade sweeping across a portion of the window to clear rain, snow and debris from the window. These types of rear wipers may be desirable due to the fact that the rear window may attract a lot of dirt and debris in the low pressure zone formed immediately behind the vehicle when travelling in a forward direction. Also, due to the tendency for the rear window to collect the dirt and debris, a washer nozzle may be mounted adjacent to the rear window to wet the window prior to activating the rear wiper.
These conventional wipers with the rubber blades have some drawbacks, however. For example, the wipers may detract from the vehicle appearance. Due to the shape of the rear window they may clean a smaller area than is desired. The rubber blade, when worn out, may be relatively difficult to replace. Also, since the rubber blade rubbing against the rear window glass is abrasive in nature, the addition of hydrophobic coatings on the glass may not be desirable. The blade may freeze to the window in cold ice/snow weather. Moreover, the washer nozzle may not apply a liquid coating to the rear window very accurately at higher speeds due to the air flow and pressures behind the vehicle.
An embodiment contemplates a vehicle including a rear window having hydrophobic portion, and a non-hydrophobic portion below the hydrophobic portion; and a rear wiper system, mounted adjacent to a top of the rear window, including a pivotable nozzle and a blower configured to direct an airstream through the nozzle onto the rear window.
An embodiment contemplates a method of clearing a vehicle rear window comprising: activating a blower to direct air through a nozzle, located adjacent to a top of the rear window, onto the rear window, which has a hydrophobic portion and a non-hydrophobic portion below the hydrophobic portion; and pivoting the nozzle as the air is directed through the nozzle to push debris on the rear window from the hydrophobic portion to the non-hydrophobic portion.
An advantage of an embodiment is that a high speed pivotable air nozzle may clean the window similarly to a conventional rear wiper system but without the need for a wiper arm or blade. Moreover, a hydrophobic coating shapes the water flow to improve the clearing of the rear window, without a blade that would tend to wear the coating off of the window glass. And, a hydrophobic coating will tend to allow for less frost, ice and dirt accumulation, thus making rear window cleaning easier.
Another advantage of an embodiment is that the air blower speeds may be changed based on the needs for clearing rain or snow, and moreover may clear a larger area of the rear window than a blade on a conventional rear wiper system.
Another advantage of an embodiment is that the rear wiper system may be compact and light weight, and also improve the appearance of the rear window area by eliminating a wiper arm and blade.
The rear wiper system 30 may be mounted adjacent to or formed as part of the CHMSL 26 at the top center of the rear window 20. The system 30 may include a housing 32 containing a variable speed blower (fan) 34 driven by a motor 36, which may be controlled by a controller 38, such as for example a body controller 38 (the details of the rear wiper system 30 are best seen in
The nozzle 42 may be configured to create an airstream 50 that may have a width somewhat larger than or somewhat smaller than the width of a traditional wiper blade, depending upon the particular model of vehicle 10 that is employing this rear wiper system 30.
The variable speed blower 34 may be sized to assure that proper wiping (i.e., cleaning) of the rear window 20 occurs at various vehicle speeds. That is, for particular vehicles, especially vehicles with a relatively vertical rear window 20 (such as sport utility, cross overs and minivans), a low pressure zone is created immediately behind the vehicle 10 as the vehicle travels in a forward direction. For such vehicles, then, a relatively high speed airstream 50 is created by the blower 34 and nozzle 42 combination. The rear wiper system 30, then, preferably creates an airstream 50 with the air coming out of the nozzle 42 at a speed of at least about 50 meters/second (about 100 miles per hour). This is sufficient for moving the airstream 50 from top center to bottom of the rear window 20, thus allowing for rear window clearing even at relatively high vehicle speeds, such as about 80 miles per hour (130 kilometers per hour) or even somewhat higher. The variable speed of the blower 34 allows for slower speed airstreams 50 when the full high speed air is not needed—such conditions for higher or lower speed airstreams 50 may be programmed into the controller 38.
As the blower 34 pushes the airstream 50 out of the nozzle 42, the rotary actuator 46 pivots the nozzle 42 back and forth across the rear window 20, thus clearing the window 20 in a manner similar to a conventional wiper blade.
The rear wiper system 30 may also include a liquid supply 52 of cleaner to feed into the airstream 50 (shown in
The rear window 20 includes a hydrophobic coating 54 over a portion 56 of the window 20 (noted in
The rear window 20 also includes a portion 58 that does not have a hydrophobic coating (i.e., a non-hydrophobic portion). This non-hydrophobic portion 58 is adjacent to the bottom of the rear window 20, and extends generally horizontally, with a slight downward curvature in the middle and increasing curvature at each end toward vertical.
This configuration of window portions 56, 58 with and without hydrophobic coating, channels water being pushed down the rear window 20 by the airstream 50 to desired locations at the bottom of the rear window 20.
While certain embodiments of the present invention have been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention as defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5140719 | Cowan | Aug 1992 | A |
6044843 | O'Neil | Apr 2000 | A |
20040084069 | Woodard | May 2004 | A1 |
20040238016 | Krause | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
105346516 | Feb 2016 | CN |
106184129 | Dec 2016 | CN |
2645011 | Aug 1997 | JP |
2009241819 | Oct 2009 | JP |
100262087 | Oct 2000 | KR |
WO-2009010133 | Jan 2009 | WO |
WO-2016177380 | Nov 2016 | WO |
Entry |
---|
English Machine Translation of WO 2009-010133. |
Number | Date | Country | |
---|---|---|---|
20200070782 A1 | Mar 2020 | US |