This application claims priority of German Application No. 102020131243.1, filed on Nov. 25, 2020, which is incorporated herein by reference.
The invention relates to a vehicle rim having a (preferably rotationally symmetrical) rim body made from a fiber composite material, the rim body having two rim flange areas and a rim bed area connecting the two rim flange areas, and at least one rim flange area being reinforced by at least one fiber bundle.
Vehicle rims of the type in question are already sufficiently known from the prior art. For example, WO 2016/128289 A1 discloses a method for producing a fiber-reinforced ring body in which so-called rovings are used as reinforcement.
In the production of vehicle rims of the type in question, it has been found that, in order to achieve a high strength of the rim flange area of the rim body, it is of great importance to make the fiber bundles used for reinforcement as compact as possible and to allow the single fibers of the fiber bundle to run over the circumference with as few changes in direction as possible. In previous reinforcements, the single fibers of the fiber bundles often exhibited numerous changes in direction, in particular in the form of corrugations, which have a negative effect on the strength of the wheel in the cured state of the rim.
It is therefore an object of the invention to provide a vehicle rim with a rim body which is made from a fiber composite material and which has increased strength but can simultaneously be produced as simply as possible.
According to the invention, this object is achieved in that the at least one fiber bundle is surrounded by a compression wrap.
A compression wrap is understood to be a wrap which exerts a pressure acting radially inwards on the fiber bundle, with the single fibers of the fiber bundle abutting one another as closely as possible (compression). Therefore, the compression wrap is a wrap that surrounds/compresses the fiber bundle with a specific radial prestressing force.
A compression wrap of this type markedly increases the fiber density of the fiber bundle. Furthermore, the radial prestress markedly reduces or even completely prevents the formation of corrugations. This markedly increases strength.
Further advantageous embodiments are claimed with the subclaims and explained in more detail below.
Accordingly, it is a further advantage for the at least one fiber bundle to be twisted/distorted (as viewed in its longitudinal direction). Such a twisting further reduces the formation of corrugations so as to increase strength.
In this respect, it has also been found to be beneficial for ease of production if the fiber bundle has multiple single rovings. The rovings are then preferably twisted with one another. In addition or as an alternative to twisting the rovings with one another, it is also advantageous to twist the monofilaments of a roving. This further increases the strength of the vehicle rim.
Each roving and/or the at least one fiber bundle as a whole is preferably twisted with five to ten turns per meter.
If the at least one fiber bundle includes multiple rovings, for example 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more, which are preferably twisted with one another, for example by 5, 6, 7, 8, 9 or 10 turns per meter +/−2 to 3, the fiber bundle itself provides excellent stiffness for both processing and subsequent use of the entire rim body.
It is also advantageous for the compression wrap to be made as an envelopment or a braid. The compression wrap is thus also implemented as a wound tube or braided tube. This makes it possible to produce a compression of the single fibers of the fiber bundle that is as constant as possible over the length. It also renders possible simple producibility.
In order to keep the wrapping process as simple as possible, it is also advantageous for the compression wrap to have at least two intersecting threads, preferably at least two threads intersecting regularly/at equal distances over the length of the fiber bundle.
For a suitable compromise between a low material content of compression wrap and a high compression of the single fibers of the fiber bundle, it has also been found to be advantageous for a distance between two crossing points of the at least two threads directly following one another along a surface line of the at least one fiber bundle to be between 2 mm and 8 mm, more preferably between 4 mm and 6 mm, in particular about 5 mm.
If the compression wrap consists of/is made from a glass fiber/from glass fiber threads or thermoplastic threads/fibers, a material is provided that can be handled as damage-free as possible and in an easy fashion during the production process. Alternatively, it is again also advantageous to produce the compression wrap from other fibers, e.g. natural fibers, such as cotton fibers or hemp fibers.
If the at least one fiber bundle is sewn onto a fiber mat which helps to form the at least one rim flange area and which is preferably implemented as an NCF mat, the production process of the rim flange area is additionally facilitated since the fiber mat is arranged/draped directly together with the fiber bundle.
An NCF mat is understood to be a fiber mat made from NCF. An NCF is in turn understood to be a “non-crimp fabric”. This is a fabric consisting of one or more layers of parallel running stretched threads. The threads are fixed at the crossing points. The fixation is achieved by either bonded connection or mechanically by friction and/or interlocking connection, for example by a seam.
The following types of thread webs (/ fiber mats) exist:
The thread layers in multilayered webs can all have different orientations and also consist of different thread densities and different degrees of thread fineness. Compared to fabrics, webs as reinforcing structures are known to have better mechanical properties in fiber-plastics composites, this being the basic technical field to which the invention belongs, because the threads are available in stretched form and thus there is no additional structural elongation and the orientation of the threads can be defined specifically for the particular application.
In order to produce particularly heavy-duty rims with an appropriate rim body, it has proved useful for the NCF mat to be a monoaxial/unidirectional, or biaxial (e.g. containing +/−45° fibers) or multiaxial web, preferably made from carbon fibers, glass fibers or aramid fibers.
In order for the production to proceed quickly and to be able to rely on machine production, it is advantageous for the at least one fiber bundle to be sewn onto the fiber mat, e.g. by means of a zigzag seam following the longitudinal direction of the fiber bundle and the NCF fiber mat. In this connection, it has proved useful for a change in direction of a sewing thread of the zigzag seam to take place every 15 mm and the width of the seam measured transversely to the longitudinal direction of the fiber bundle to be 7 mm.
Therefore, the at least one fiber bundle is preferably used as a 0° bundle.
It is also advantageous for the at least one fiber bundle to be spaced between 5/12 to 6/13+/−10% of the width of the fiber mat from a longitudinal edge of the fiber mat. In this way, the fiber bundle is positioned off-center, which accounts for an increase in material during roll-up/turn-up/fold-over/turning inside out.
For a further increase in strength, it is furthermore useful for the at least one rim flange area to have multiple fiber bundles arranged axially and/or radially next to one another. It is particularly preferred to provide two fiber bundles (preferably running parallel to one another) which are arranged axially next to one another and which are more preferably sewn onto the same fiber mat.
For a further simplified production, it is also beneficial for the at least one rim flange area to have multiple radially nested fiber bundle portions (preferably of the same fiber bundle). It is thus possible to wind the rim flange area in multiple layers using a single fiber mat, for example with one fiber bundle or two fiber bundles arranged next to each other.
Accordingly, it is again advantageous for a portion of the fiber mat to be interposed/arranged between two fiber bundle portions arranged radially directly above one another.
It is also useful for the single fiber mat portions to be finally connected inwardly in the radial direction to the rim bed area or merge directly into this rim bed area. In this way, the rim body can be produced in its entirety as simply as possible.
The at least one fiber bundle and/or the fiber mat are/is more preferably made from a carbon fiber. This further increases strength. In further embodiments, the at least one fiber bundle and/or the fiber mat are/is also made from glass fiber or aramid fiber.
With regard to a further reinforcement of the vehicle rim, it is also advantageous for the fiber bundle to form a mixture of different fiber materials or to be supplemented by additional reinforcing components. Preferably, the fiber bundle then has in addition, preferably in addition to rovings made from carbon fiber, glass fiber, and/or aramid fiber, one metal wire/metal yarn or multiple metal wires/metal yarns.
Moreover, the invention relates to a vehicle wheel including the vehicle rim according to the invention on the basis of at least one of the embodiments described above and a spoke unit connected to the rim body and extending to a hub body.
In addition, the invention comprises a method for producing a vehicle rim having a rim body made from fiber composite material, at least one fiber bundle being made available, which is provided with a compression wrap while experiencing a compression, whereupon the at least one fiber bundle is sewn onto a fiber mat, the fiber mat is draped with the at least one fiber bundle while forming a rim flange area, and finally the rim body is cured/consolidated.
With regard to a production of the rim body as efficient as possible, it is also useful for the rim body to be composed by a first subpreform at a first axial end and a third subpreform at an opposite second axial end, a second subpreform being arranged between the first subpreform and the third subpreform. The second subpreform then preferably engages in both a front connecting cavity formed by/existing in the first subpreform and a rear connecting cavity formed by/existing in the third subpreform.
In the finished state of the vehicle rim, the first subpreform forms a first rim flange area, the third subpreform forms a third rim flange area and the second subpreform forms the rim bed area connecting the first rim flange area to the second rim flange area.
Particularly high forces at low weight can be absorbed by the rim body whenever the first subpreform and/or the second subpreform and/or the third subpreform has/have multiple, e.g. 3, 4, 5, 6, 7, 8 or more layers of the fiber mat/fiber mat portions, the first subpreform and the third subpreform preferably having the same number of layers and the second subpreform having a different number of layers from the first and third subpreform, preferably having more layers than the first subpreform and/or the third subpreform. It is precisely this different layer distribution that also has a positive effect on the subsequent driving behavior of the vehicle using the vehicle rim.
The stiffness/weight ratio is particularly advantageous whenever the first subpreform and/or the third subpreform is wound/built up in 4, 5 or 6 layers and/or the second subpreform is wound/built up in 5, 6 or 7 layers. Even more layers, such as 8, 9, 10, etc., are possible.
The invention is now explained in more detail below with reference to drawings, in which context various exemplary embodiments are also presented.
In these drawings:
The drawings are only of a schematic nature and are used exclusively for the understanding of the invention. The same elements are provided with the same reference signs.
The vehicle wheel 20 is implemented as a so-called hybrid wheel and, in addition to the rim body 2 made from fiber composite material, includes the radially inwardly adjoining spoke unit 22, which is firmly connected to the rim body 2 and which is made from a metal (preferably light metal alloy). The spoke unit 22 is preferably connected to the rim body 2 via screw connections. In further embodiments, the spoke unit 22 is also made at least partially or completely from a fiber composite material and is connected to the rim body 2 by a material bond.
The directional indications used in the present case should be seen in relation to the central longitudinal axis 13/axis of rotation. Axial/axial direction consequently means a direction along/parallel to the longitudinal axis 13, radial/radial direction means a direction perpendicular to the longitudinal axis 13 and circumferential direction means a direction along an imaginary circular line concentrically circumferential relative to the longitudinal axis 13.
In the first exemplary embodiment according to
A fiber bundle 5 is arranged radially between the fiber mat portions 14 in the region of the first rim flange area 3a.
In
The second exemplary embodiment according to
Moreover,
In the third exemplary embodiment according to
In the fourth exemplary embodiment according to
According to the invention, the at least one fiber bundle 5 includes the compression wrap 6. The compression wrap 6 is implemented by a plurality of threads 7 which enwrap the fiber bundles 5. The threads 7 are wound around the fiber bundles 5 in such a way that they compress their monofilaments in the radial direction. The compression wrap 6 has at least two, in this case four, intersecting threads 7 that intersect regularly in the longitudinal direction of the fiber bundle 5. In further embodiments, two, six or eight threads 7 are also preferably used.
The fiber bundle 5 is composed of multiple single, in this case eleven, rovings which are twisted with one another in the longitudinal direction. In connection with
The fiber bundle 5 is sewn onto the fiber mat 11 in the embodiment according to
It has turned out to be preferred for the fiber mat 11 with the sewn-on fiber bundles 5 to have such a length that it is simply wound up multiple times, for example three, four, five or six times, in order to form the first rim flange area 3a shown in
With regard to the fiber mat 11, it should also be noted that this fiber mat is preferably realized on an NCF mat, but in further embodiments can also be formed in other ways. The fiber mat 11 consists of a biaxial thread web (here +/−45° thread web) and is also made from carbon fiber. However, in further embodiments, other fibers, such as glass fibers or aramid fibers, are also used for the fiber mat 11.
With respect to a production method of the vehicle rim 1, it should be noted that following the wrapping of the fiber bundles 5 with the compression wrap 6, the fiber bundles 5 are sewn onto the fiber mat 11 in a typical manner. Following this sewing-on process, the fiber mat 11 together with the fiber bundles 5 is wound up multiple times, preferably the winding device 17 as shown in
Number | Date | Country | Kind |
---|---|---|---|
102020131243.1 | Nov 2020 | DE | national |