Vehicle, running board assembly and drive assembly for running board

Information

  • Patent Grant
  • 10682960
  • Patent Number
    10,682,960
  • Date Filed
    Friday, July 12, 2019
    5 years ago
  • Date Issued
    Tuesday, June 16, 2020
    4 years ago
Abstract
A vehicle, a running board assembly, and a drive assembly for a running board are disclosed. The drive assembly includes: a mounting base, a first connecting portion, a second connecting portion, and a running board holder. The first connecting portion is rotatably connected with the mounting base and the running board holder. The second connecting portion is rotatably connected with the mounting base and the running board holder. The running board holder includes a third main body and a third hinged portion. The first connecting portion includes a first main body and a plurality of first hinged portions, and the third hinged portion is rotatably connected among the plurality of first hinged portions; and/or the second connecting portion includes a second main body and a plurality of second hinged portions, the third hinged portion being rotatably connected among the plurality of second hinged portions.
Description
FIELD

The present disclosure relates to a technical field of vehicles, and more particularly to a drive assembly for a running board and a running board assembly for a vehicle, as well as a vehicle.


BACKGROUND

A drive assembly for a running board of a vehicle in the related art has a complicated structure and high manufacturing process requirements, so the cost is high. Moreover, during the long-term use of the drive assembly, due to harsh conditions like bumpy roads, mud or sand can be easily mixed into the drive assembly. If mud or sand enters the drive assembly, not only abnormal noise is caused, but also the drive assembly is worn, affecting the service life of the drive assembly. In addition, there is no cushioning member in the drive assembly, such that collisions easily occur among various components of the drive assembly, and the drive assembly cannot have sufficiently stable operation, which degrades the product performance.


SUMMARY

The present disclosure aims to solve at least one of the technical problems in the related art to a certain extent. Accordingly, one objective of the present disclosure is to propose a drive assembly for a running board and a running board assembly for a vehicle, as well as a vehicle.


A drive assembly for a running board according to embodiments of a first aspect of the present disclosure has a simple structure, high structural strength, and low cost.


A running board assembly for a vehicle according to embodiments of a second aspect of the present disclosure includes the above-described drive assembly.


A vehicle according to embodiments of a third aspect of the present disclosure includes the above-described running board assembly.


The drive assembly according to embodiments of the first aspect of the present disclosure includes: a mounting base; a running board holder; a first connecting portion rotatably connected with the mounting base and the running board holder; and a second connecting portion rotatably connected with the mounting base and the running board holder. A central rotation shaft of the second connection portion relative to the running board holder, a central rotation shaft of the second connection portion relative to the mounting base, a central rotation shaft of the first connection portion relative to the running board holder, and a central rotation shaft of the first connection portion relative to the mounting base each extend along a left-right direction and are parallel to one another; the mounting base, the first connecting portion, the second connecting portion and the running board holder constitute a linkage to make the running board holder movable between an extended position and a retracted position. The running board holder includes a third main body and a third hinged portion connected with the third main body; the first connecting portion includes a first main body, and a plurality of first hinged portions connected with the first main body and spaced apart in the left-right direction, the third hinged portion being rotatably connected among the plurality of first hinged portions; and/or the second connecting portion includes a second main body, and a plurality of second hinged portions connected with the second main body and spaced apart in the left-right direction, the third hinged portion being rotatably connected among the plurality of second hinged portions.


In the drive assembly according to embodiments of the present disclosure, the third hinged portion is rotatably provided between the first hinged portions and/or the second hinged portions, and the running board holder has a simple structure, good manufacturability, and hence low cost.


In addition, the drive assembly according to the above embodiments of the present disclosure may further have the following additional technical features.


According to an embodiment of the present disclosure, the first main body has a first end rotatably connected with the mounting base, and a second end provided with two first hinged portions spaced apart in the left-right direction; the two first hinged portions are disposed at both sides of the third hinged portion, and the third hinged portion is connected with the two first hinged portions through a first connecting shaft.


According to an embodiment of the present disclosure, the second main body has a first end rotatably connected with the mounting base, and a second end provided with two second hinged portions spaced apart in the left-right direction; the two second hinged portions are disposed at both sides of the third hinged portion, and the third hinged portion is connected with the two second hinged portions through a second connecting shaft.


According to an embodiment of the present disclosure, at least one of the first connecting portion and the running board holder is provided with a damping block, and the damping block abuts between the first connecting portion and the running board holder when the running board holder is in at least one of the extended position and the retracted position.


According to an embodiment of the present disclosure, at least one of the second connecting portion and the running board holder is provided with a damping block, and the damping block abuts between the second connecting portion and the running board holder when the running board holder is in at least one of the extended position and the retracted position.


According to an embodiment of the present disclosure, at least a part of the plurality of first hinged portions is provided with a damping block, the third main body is provided with a wedged bevel opposite the first hinged portion, and when the running board holder is in the extended position, the damping block abuts against the wedged bevel.


According to an embodiment of the present disclosure, two first hinged portions are provided and spaced apart in the left-right direction, and each of the two first hinged portions is provided with the damping block; the third main body is provided with the wedged bevel at each of left and right sides of the third hinged portion, and the two wedged bevels are provided in one-to-one correspondence with the two first hinged portions; and when the running board holder is in the extended position, the damping blocks on the two first hinged portions abut against the corresponding wedged bevels.


According to an embodiment of the present disclosure, the first connecting portion is configured as a first link rod with two ends connected with the mounting base and the running board holder respectively; the second connecting portion is configured as a second link rod with two ends connected with the mounting base and the running board holder respectively.


According to an embodiment of the present disclosure, the first connecting portion includes: a third link rod rotatably connected with the mounting base; a fourth link rod having two ends rotatably connected with the third link rod and the running board holder respectively; and a support portion connected at a hinge joint of the third link rod and the fourth link rod, and connected with the second connecting portion.


According to an embodiment of the present disclosure, the support portion is a sliding block, the second connecting portion is provided with a sliding groove, and the support portion is slidably embedded in the sliding groove along a direction perpendicular to the left-right direction.


According to an embodiment of the present disclosure, the support portion is a fifth link rod, and the fifth link rod has a first end rotatably connected at the hinge joint of the third link rod and the fourth link rod and a second end rotatably connected with the second connecting portion.


According to an embodiment of the present disclosure, the third link rod includes two fourth hinged portions spaced apart in the left-right direction; the fourth link rod includes a fifth hinged portion; the two fourth hinged portions are disposed at left and right sides of the fifth hinged portion; and the fifth hinged portion and the two fourth hinged portions are connected by a third connecting shaft.


According to an embodiment of the present disclosure, two ends of the third connecting shaft protrude from the two fourth hinged portions to form or connect the support portion.


The running board assembly according to embodiments of the second aspect of the present disclosure includes: a running board; a drive assembly, the drive assembly being configured as the above-described drive assembly, the running board holder being connected with the running board; and a driving part connected with the first connecting portion to drive the first connecting portion to rotate with respect to the mounting base.


The running board assembly according to embodiments of the present disclosure includes the above-described drive assembly, and the driving part is used to drive the running board to extend or retract. The running board assembly has a simple structure, long service life, and low cost.


According to an embodiment of the present disclosure, the running board extends along a left-right direction, and is provided with a plurality of the drive assemblies spaced apart along the left-right direction.


According to an embodiment of the present disclosure, each of the drive assemblies is individually driven by one driving part.


The vehicle according to embodiments of the third aspect of the present disclosure includes the above-described running board assembly, and the cost of the vehicle is low.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an exploded view of a drive assembly according to an embodiment of the present disclosure.



FIG. 2 is a schematic view of a drive assembly with a running board holder in an extended position according to an embodiment of the present disclosure.



FIG. 3 is a schematic view of a drive assembly with a running board holder in a retracted position according to an embodiment of the present disclosure.



FIG. 4 is a schematic view of a drive assembly with a running board holder in a retracted position according to an embodiment of the present disclosure.



FIG. 5 is a side view of a drive assembly with a running board holder in a retracted position according to an embodiment of the present disclosure.



FIG. 6 is a side view of a drive assembly with a running board holder in an extended position according to an embodiment of the present disclosure.



FIG. 7 is an exploded view of a drive assembly according to an embodiment of the present disclosure.



FIG. 8 is a schematic view of a drive assembly with a running board holder in an extended position according to an embodiment of the present disclosure.



FIG. 9 is a schematic view of a drive assembly with a running board holder in a retracted position according to an embodiment of the present disclosure.



FIG. 10 is a schematic view of a drive assembly with a running board holder in a retracted position according to an embodiment of the present disclosure.



FIG. 11 is a side view of a drive assembly with a running board holder in a retracted position according to an embodiment of the present disclosure.



FIG. 12 is a side view of a drive assembly with a running board holder in an extended position according to an embodiment of the present disclosure.



FIG. 13 is a side view of a drive assembly with a running board holder in an extended position according to an embodiment of the present disclosure.



FIG. 14 is an exploded view of a drive assembly according to an embodiment of the present disclosure.



FIG. 15 is a schematic view of a drive assembly with a running board holder in a retracted position according to an embodiment of the present disclosure.



FIG. 16 is a schematic view of a drive assembly with a running board holder in a retracted position according to an embodiment of the present disclosure.



FIG. 17 is a schematic view of a drive assembly with a running board holder in a retracted position according to an embodiment of the present disclosure.



FIG. 18 is a schematic view of a drive assembly with a running board holder in an extended position according to an embodiment of the present disclosure.



FIG. 19 is a side view of a drive assembly with a running board holder in an extended position according to an embodiment of the present disclosure.



FIG. 20 is a side view of a drive assembly with a running board holder in a retracted position according to an embodiment of the present disclosure.



FIG. 21 is a side view of a drive assembly with a running board holder in an extended position according to an embodiment of the present disclosure.



FIG. 22 is a schematic view of a connecting portion assembled with a damping block according to an embodiment of the present disclosure.



FIG. 23 is a schematic view of a running board assembly according to an embodiment of the present disclosure.





REFERENCE NUMERALS





    • running board assembly 1,

    • drive assembly 100,

    • mounting base 10,

    • first connecting portion 20, first main body 21, first hinged portion 22, first link rod 23, third link rod 25, fourth hinged portion 251, fourth link rod 26, fifth hinged portion 261, sliding block 27, fifth link rod 28,

    • second connecting portion 30, second main body 31, second hinged portion 32, sliding groove 33, second link rod 34,

    • running board holder 40, third main body 41, wedged bevel 411, third hinged portion 42,

    • first connecting shaft 50, second connecting shaft 60, damping block 70, third connecting shaft 80, sleeve 90,

    • running board 200.





DETAILED DESCRIPTION

Embodiments of the present disclosure will be described in detail and examples of the embodiments will be illustrated in the drawings, where same or similar reference numerals are used to indicate same or similar elements or elements with same or similar functions. The embodiments described herein with reference to the drawings are explanatory, illustrative, and used to generally understand the present disclosure. The embodiments shall not be construed to limit the present disclosure.


A vehicle and a running board assembly, as well as a drive assembly 100 for a running board 200 according to embodiments of the present disclosure will be described below with reference to FIGS. 1-23.


As illustrated in FIGS. 1, 7 and 14, the drive assembly 100 for the running board 200 can generally include a mounting base 10, a first connecting portion 20, a second connecting portion 30, and a running board holder 40.


Specifically, the first connecting portion 20 is rotatably connected with the mounting base 10 and the running board holder 40, and the second connecting portion 30 is rotatably connected with the mounting base 10 and the running board holder 40. A central rotation shaft of the second connection portion 30 relative to the running board holder 40, a central rotation shaft of the second connection portion 30 relative to the mounting base 10, a central rotation shaft of the first connection portion 20 relative to the running board holder 40, and a central rotation shaft of the first connection portion 20 relative to the mounting base 10 each extend along a left-right direction and are parallel to one another. The mounting base 10, the first connecting portion 20, the second connecting portion 30 and the running board holder 40 constitute a linkage to make the running board holder 40 movable between an extended position and a retracted position.


That is, the first connecting portion 20 is rotatably connected with the mounting base 10 and the running board holder 40 through the respective central rotation shafts, and the second connecting portion 30 is rotatably connected with the mounting base 10 and the running board holder 40 through the respective central rotation shafts. In other words, the mounting base 10, the first connecting portion 20, the second connecting portion 30 and the running board holder 40 constitute the linkage. The mounting base 10 is mounted to a vehicle body and fixed. A driving part (not illustrated) is connected with at least one of the first connecting portion 20 and the second connecting portion 30, i.e. at least one of the first connecting portion 20 and the second connecting portion 30 is an active rod.


For example, the driving part can be connected with the first connecting portion 20, such that the first connecting portion 20 acts as the active rod, an end of the first connecting portion 20 rotates around the mounting base 10 while the other end thereof rotates around the running board holder 40 and drives the running board holder 40 to move, and the running board holder 40 drives an end of the second connecting portion 30 to rotate around the mounting base 10. The first connecting portion 20 can also be associated with the second connecting portion 30, and the first connecting portion 20 and the second connecting portion 30 together drive the running board holder 40 to extend or retract.


Certainly, the above embodiment is merely illustrative, and the driving part can also be connected with the second connecting portion 30, or the driving part can be connected with the first connecting portion 20 and the second connecting portion 30 simultaneously.


It should be understood that the running board holder 40 is mounted below a door of the vehicle, and when a passenger needs to get on or off, the running board holder 40 extends out of the vehicle body, i.e., the running board holder 40 is in the extended position, which is convenient for the passenger to get on and off the vehicle. When the vehicle is starting and traveling, the running board holder 40 is in the retracted position, that is, the running board holder 40 is retracted into the vehicle body, thus ensuring the safety of driving the vehicle.


As illustrated in FIGS. 1, 7 and 14, the running board holder 40 includes a third main body 41 and a third hinged portion 42 connected with the third main body 41; the first connecting portion 20 includes a first main body 21 and a plurality of first hinged portions 22 connected with the first main body 21 and spaced apart in the left-right direction, in which the third hinged portion 42 is rotatably connected among the plurality of first hinged portions 22. The second connecting portion 30 includes a second main body 31 and a plurality of second hinged portions 32 connected with the second main body 31 and spaced apart in the left-right direction, in which the third hinged portion 42 is rotatably connected among the plurality of second hinged portions 32.


In other words, the running board holder 40 has the third main body 41 and the third hinged portion 42; the first connecting portion 20 has the first main body 21 and the plurality of first hinged portions 22; and the second connecting portion 30 has the second main body 31 and the plurality of second hinged portions 32.


As illustrated in FIG. 1 in combination with FIGS. 2, 3, 4, 5 and 6, as illustrated in FIG. 7 in combination with FIGS. 8, 9, 10, 11, 12 and 13, as illustrated in FIG. 14 in combination with FIGS. 15, 16, 17, 18, 19, 20 and 21, the third hinged portion 42 is interposed among the plurality of first hinged portions 22 and the plurality of second hinged portions 32. For example, two first hinged portions 22 are provided and spaced apart in the left-right direction, and the third hinged portion 42 is sandwiched between the two first hinged portions 22 that are spaced apart from each other in the left-right direction. Alternatively, two second hinged portions 32 are provided and spaced apart in the left-right direction, and the third hinged portion 42 is sandwiched between the two second hinged portions 32 that are spaced apart from each other in the left-right direction. Alternatively, the third hinged portion 42 is simultaneously sandwiched between the first hinged portions 22 spaced apart along the left-right direction and between the second hinged portions 32 spaced apart along the left-right direction.


Certainly, the above embodiment is merely illustrative, and for example, three or more first hinged portions 22 and three or more second hinged portions 32 can be provided.


It could be understood that the third hinged portion 42 is wrapped by the first hinged portions 22 and the second hinged portions 32, in which case the first hinged portion 22 and the second hinged portion 32 have a relatively large width in the left-right direction and increased structural strength. In addition, the first hinged portion 22 and the second hinged portion 32 are tightly fitted with the third hinged portion 42, and a contact area of the third hinged portion 42 with the first hinged portion 22 and the second hinged portion 32 is enlarged, so that the reliability of the connection thereof is further improved.


Moreover, the third hinged portion 42 is wrapped by the first hinged portion 22 and the second hinged portion 32 to prevent the intrusion of mud, sand or the like, avoid the wear and abnormal noise of the hinged portions due to the mud and sand, and prolong the service life of the drive assembly 100.


Since the drive assembly 100 for the running board 200 according to the embodiments of the present disclosure forms the linkage, and the third hinged portion 42 is interposed among the plurality of first hinged portions 22 and the plurality of second hinged portions 32, the drive assembly 100 has a simple structure, high strength, low cost and long service life.


In some embodiments, as illustrated in FIG. 1 in combination with FIGS. 2, 3, 4, 5 and 6, as illustrated in FIG. 7 in combination with FIGS. 8, 9, 10, 11, 12 and 13, as illustrated in FIG. 14 in combination with FIGS. 15, 16, 17, 18, 19, 20 and 21, a first end of the first main body 21 is rotatably connected with the mounting base 10, while a second end of the first main body 21 is provided with two first hinged portions 22 spaced apart along the left-right direction; the two first hinged portions 22 are disposed at two sides of the third hinged portion 42, and the third hinged portion 42 is connected with the two first hinged portions 22 by a first connecting shaft 50. That is, two ends of the first connecting portion 20 are rotatably connected with the mounting base 10 and the running board holder 40 respectively. The first end of the first main body 21 is connected with the mounting base 10, and the two first hinged portions 22 are spaced apart and provided at the second end of the first main body 21; the first hinged portions 22 and the third hinged portion 42 are rotatably connected through the first connecting shaft 50. Thus, the third hinged portion 42 is wrapped between the two first hinged portions 22 to prevent the intrusion of mud, sand or the like, avoid the wear and abnormal noise of the hinged portions due to the mud and sand, and prolong the service life of the drive assembly 100.


In some embodiments, as illustrated in FIG. 1 in combination with FIGS. 2, 3, 4, 5 and 6, as illustrated in FIG. 7 in combination with FIGS. 8, 9, 10, 11, 12 and 13, as illustrated in FIG. 14 in combination with FIGS. 15, 16, 17, 18, 19, 20 and 21, a first end of the second main body 31 is rotatably connected with the mounting base 10, while a second end of the second main body 31 is provided with two second hinged portions 32 spaced apart along the left-right direction; the two second hinged portions 32 are disposed at two sides of the third hinged portion 42, and the third hinged portion 42 is connected with the two second hinged portions 32 by a second connecting shaft 60. That is, two ends of the second connecting portion 30 are rotatably connected with the mounting base 10 and the running board holder 40 respectively. The first end of the second main body 31 is connected with the mounting base 10, and the two second hinged portions 32 are spaced apart and provided at the second end of the second main body 31; the second hinged portions 32 and the third hinged portion 42 are rotatably connected through the second connecting shaft 60. Thus, the third hinged portion 42 is wrapped between the two second hinged portions 32 to prevent the intrusion of mud, sand or the like, avoid the wear and abnormal noise of the hinged portions due to the mud and sand, and prolong the service life of the drive assembly 100.


In some optional embodiments, as illustrated in FIGS. 1, 7, 14 and 22, at least one of the first connecting portion 20 and the running board holder 40 is provided with a damping block 70, and the damping block 70 abuts between the first connecting portion 20 and the running board holder 40 when the running board holder 40 is in at least one of the extended position and the retracted position. The damping block 70 plays a cushioning role to prevent the first connecting portion 20 from directly colliding with the running board holder 40, and avoid vibration and damage of the first connecting portion 20 and the running board holder 40 due to collision, such that the drive assembly 100 operates stably and the service life of the drive assembly 100 is prolonged. The damping block 70 can be provided to the first connecting portion 20, or the damping block 70 can be provided to the running board holder 40, or the damping block 70 can be simultaneously provided to the first connecting portion 20 and the running board holder 40. Further, the damping block 70 can abut between the first connecting portion 20 and the running board holder 40 when the running board holder 40 is in the extended position; the damping block 70 can abut between the first connecting portion 20 and the running board holder 40 also when the running board holder 40 is in the retracted position; the damping block 70 can also abut between the first connecting portion 20 and the running board holder 40 when the running board holder 40 is in the extended position or the retracted position. Additionally, one, or two or more damping blocks 70 can be provided.


The damping block 70 functions as a cushion to prevent the second connecting portion 30 from directly colliding with the running board holder 40 and avoid vibration and damage of the second connecting portion 30 and the running board holder 40 due to collision, such that the drive assembly 100 operates stably and the service life of the drive assembly 100 is prolonged. The damping block 70 can be provided to the second connecting portion 30, or the damping block 70 can be provided to the running board holder 40, or the damping block 70 can be simultaneously provided to the second connecting portion 30 and the running board holder 40. Further, the damping block 70 can abut between the second connecting portion 30 and the running board holder 40 when the running board holder 40 is in the extended position; the damping block 70 can abut between the second connecting portion 30 and the running board holder 40 also when the running board holder 40 is in the retracted position; the damping block 70 can also abut between the second connecting portion 30 and the running board holder 40 when the running board holder 40 is in the extended position or the retracted position. Additionally, one, or two or more damping blocks 70 can be provided.


In some optional embodiments, as illustrated in FIGS. 1, 7, 13, 14, 21 and 22, at least a part of the plurality of first hinged portions 22 is provided with the damping block 70. That is, at least one of the plurality of first hinged portions 22 is provided with the damping block 70. For example, two first hinged portions 22 are provided at an end of the first main body 21 and spaced apart in the left-right direction, and the damping block 70 can be provided to one of the first hinged portions 22 or can be simultaneously provided to both of the first hinged portions 22.


Further, as illustrated in FIG. 1 in combination with FIGS. 2, 3, 4, 5 and 6, as illustrated in FIG. 7 in combination with FIGS. 8, 9, 10, 11, 12 and 13, as illustrated in FIG. 14 in combination with FIGS. 15, 16, 17, 18, 19, 20 and 21, the third main body 41 is provided with a wedged bevel 411 opposite the first hinged portion 22, and when the running board holder 40 is in the extended position, the damping block 70 abuts against the wedged bevel 411. It could be understood that the first connecting portion 20 rotates relative to the running board holder 40, and the contact between the damping block 70 and the wedged bevel 411 is facilitated by providing the third main body 41 with the wedged bevel 411 opposite the first hinged portion 22, such that the damping block 70 can have a larger contact area with the wedged bevel 411, thereby improving a damping effect. Preferably, when the running board holder 40 is in the extended position, the damping block 70 abuts against and is in vertical contact with the wedged bevel 411, such that the damping block 70 has good mechanical behavior and a prolonged service life.


As illustrated in FIG. 22, a side of the first hinged portion 22 or the second hinged portion 32 facing the wedged bevel 411 has a groove, and the damping block 70 is accommodated in the groove. The groove functions to position the damping block 70 and enable the damping block 70 to be stably mounted to the first hinged portion 22 or the second hinged portion 32.


In some specific embodiments, as illustrated in FIG. 1 in combination with FIGS. 2, 3, 4, 5 and 6, as illustrated in FIG. 7 in combination with FIGS. 8, 9, 10, 11, 12 and 13, as illustrated in FIG. 14 in combination with FIGS. 15, 16, 17, 18, 19, 20 and 21, two first hinged portions 22 are provided and spaced apart in the left-right direction, and each of the first hinged portions 22 is provided with the damping block 70; the third main body 41 is provided with the wedged bevel 411 at each of left and right sides of the third hinged portion 42, and the two wedged bevels 411 are provided in one-to-one correspondence with the two first hinged portions 22; and when the running board holder 40 is in the extended position, the damping blocks 70 on the two first hinged portions 22 abut against the corresponding wedged bevels 411. As a result, when the running board holder 40 is in the extended position, the damping blocks 70 at the left and right sides abut against the corresponding wedged bevels 411 respectively, which leads to good balance and enhances a cushioning effect.


In some embodiments of the present disclosure, as illustrated in FIG. 7 in combination with FIGS. 8, 9, 10, 11, 12 and 13, the first connecting portion 20 is configured as a first link rod 23 with two ends connected with the mounting base 10 and the running board holder 40 respectively. The second connecting portion 30 is configured as a second link rod 34 with two ends connected with the mounting base 10 and the running board holder 40 respectively. That is, the drive assembly 100 is a four-bar linkage, and the drive assembly 100 has a simple structure and low cost.


In some embodiments of the present disclosure, as illustrated in FIG. 1 in combination with FIGS. 2, 3, 4, 5 and 6, as illustrated in FIG. 14 in combination with FIGS. 15, 16, 17, 18, 19, 20 and 21, the first connecting portion 20 includes a third link rod 25, a fourth link rod 26, and a support portion. The third link rod 25 is rotatably connected with the mounting base 10; two ends of the fourth link rod 26 are rotatably connected with the third link rod 25 and the running board holder 40 respectively; the support portion is connected at a hinge joint of the third link rod 25 and the fourth link rod 26; and the support portion is connected with the second connecting portion 30. As a result, the drive assembly 100 forms a five-bar linkage or a six-bar linkage. The driving part is connected with the third link rod 25, that is, the third link rod 25 is an active rod, and an end of the third link rod 25 is rotated around the mounting base 10 under the driving of the driving part, and the other end of the third link rod 25 drives the support portion and the fourth link rod 26 to move. The fourth link rod 26 drives the running board holder 40 to move while the support portion drives an end of the second connecting portion 30 to rotate around the mounting base 10, and the other end of the second connecting portion 30 drives the running board holder 40 to move. In other words, under the cooperation of the fourth link rod 26 and the second connecting portion 30, the running board holder 40 can be extended and retracted. It could be understood that the running board holder 40 is used to support the running board 200. When there is a passenger stepping on the running board 200, the running board holder 40 needs to have some load-bearing capacity, and the running board holder 40 needs to keep stable when bearing the load. With the linkage configured as the five-bar linkage or the six-bar linkage, the structure of the drive mechanism is stable on the one hand, and the load-bearing capacity of the drive mechanism is enhanced on the other hand.


In some embodiments of the present disclosure, as illustrated in FIG. 14 in combination with FIGS. 15, 16, 17, 18, 19, 20 and 21, the support portion is a sliding block 27, the second connecting portion 30 is provided with a sliding groove 33, and the support portion is slidably embedded in the sliding groove 33 along a direction perpendicular to the left-right direction. Thus, the drive assembly 100 forms a five-bar linkage. It could be understood that the sliding groove 33 has a guiding effect on the movement of the sliding block 27, such that the third link rod 25, the fourth link rod 26 and the second connecting portion 30 as well as the running board holder 40 all move along a predetermined trajectory, the movement of the first connecting portion 20 is associated with that of the second connecting portion 30, and under the cooperation of the fourth link rod 26 and the second connecting portion 30, the running board holder 40 can be extended and retracted.


In some other specific embodiments, as illustrated in FIG. 1 in combination with FIGS. 2, 3, 4, 5 and 6, the support portion is a fifth link rod 28, and an end of the fifth link rod 28 is rotatably connected at the hinge joint of the third link rod 25 and the fourth link rod 26 while the other end of the fifth link rod 28 is rotatably connected with the second connecting portion 30. Thus, the drive assembly 100 forms a six-bar linkage. The driving part is connected with the third link rod 25, that is, the third link rod 25 is an active rod, and an end of the third link rod 25 is rotated around the mounting base 10 under the driving of the driving part, and the other end of the third link rod 25 drives the fifth link rod 28 and the fourth link rod 26 to move. The fourth link rod 26 drives the running board holder 40 to move while the fifth link rod 28 drives an end of the second connecting portion 30 to rotate around the mounting base 10, and the other end of the second connecting portion 30 drives the running board holder 40 to move. As a result, the third link rod 25, the fourth link rod 26, the fifth link rod 28 and the second connecting portion 30 as well as the running board holder 40 all move along a predetermined trajectory, the movement of the first connecting portion 20 is associated with that of the second connecting portion 30, and under the cooperation of the fourth link rod 26 and the second connecting portion 30, the running board holder 40 can be extended and retracted.


In some optional embodiments, as illustrated in FIG. 1 in combination with FIGS. 2, 3, 4, 5 and 6, as illustrated in FIG. 14 in combination with FIGS. 15, 16, 17, 18, 19, 20 and 21, the third link rod 25 includes two fourth hinged portions 251 spaced apart in the left-right direction; the fourth link rod 26 includes a fifth hinged portion 261; the two fourth hinged portions 251 are disposed at left and right sides of the fifth hinged portion 261; and the fifth hinged portion 261 and the two fourth hinged portions 251 are connected by a third connecting shaft 80.


In other words, the fourth link rod 26 has the fifth hinged portion 261, and the third link rod 25 has the two fourth hinged portions 251, in which the fifth hinged portion 261 is sandwiched between the two fourth hinged portions 251.


It could be understood that the fifth hinged portion 261 is wrapped by the fourth hinged portions 251, in which case the fourth hinged portion 251 has a relatively large width in the left-right direction, and the structural strength of the fourth hinged portion 251 is enhanced. In addition, the fifth hinged portion 261 and the fourth hinged portion 251 are tightly fitted, and a contact area of the fifth hinged portion 261 with the fourth hinged portion 251 is enlarged, so that the reliability of the connection thereof is further improved.


Moreover, the fifth hinged portion 261 is wrapped by the two fourth hinged portions 251 to prevent the intrusion of mud, sand or the like, avoid the wear and abnormal noise of the hinged portions due to the mud and sand, and prolong the service life of the drive assembly 100.


In some embodiments, two ends of the third connecting shaft 80 protrude from the two fourth hinged portions 251 to form or connect the support portion. The third connecting shaft 80 protrude from both ends of the fourth hinged portion 251 along the left-right direction, so that a part of the third connecting shaft 80 protruding from both ends of the fourth hinged portion 251 can serve as the sliding block 27. The sliding block 27 is fitted with the sliding groove 33 in the second connecting portion 30 and moves along the sliding groove 33, which simplifies the structure and facilitates the assembling. In addition, the part of the third connecting shaft 80 protruding from both ends of the fourth hinged portion 251 can also facilitate the connection of the fifth link rod 28.


Preferably, as illustrated in FIGS. 1, 7 and 14, a sleeve 90 is provided between the first connecting shaft 50 and the first hinged portion 22, and the sleeve 90 has an interference fit with the first connecting shaft 50 and the first hinged portion 22. A sleeve 90 is provided between the second connecting shaft 60 and the second hinged portion 32, and provided between the third connecting shaft 80 and the fourth hinged portion 251, and the sleeve 90 has an interference fit with the third connecting shaft 80 and the fourth hinged portion 251. The sleeve 90 functions to protect the connecting shafts and the hinged portions, and additionally, the interference fit can prevent mud and sand from entering from the outside through a gap among the sleeve, the hinged portions and the connecting shafts, reduce wear and tear, and prolong the service life of the drive assembly 100.


As illustrated in FIG. 23, a running board assembly 1 for a vehicle according to embodiments of the present disclosure includes a running board 200, a drive assembly 100, and the driving part, in which the drive assembly 100 is the above-described drive assembly.


Specifically, the running board holder 40 is connected with the running board 200, and the driving part is connected with the first connecting portion 20 to drive the first connecting portion 20 to rotate with respect to the mounting base 10.


The running board 200 is used for passengers to step on, so that passengers can get on and off the vehicle conveniently. The driving part can be an electric motor that drives the first connecting portion 20 to rotate with respect to the mounting base 10, the first connecting portion 20 drives the running board holder 40 to move, and the running board holder 40 is connected with the running board 200, such that the running board 200 can be extended or retracted. The second connecting portion 30 is rotatably connected with the running board holder 40, the running board holder 40 drives the second connecting portion 30 to rotate, and the first connecting portion 20 and the second connecting portion 30 each can provide support for the running board holder 40. Hence, the stability of the running board assembly 1 is enhanced.


Therefore, the running board assembly 1 according to embodiments of the present disclosure has the driving part that drives the first connecting portion 20 to rotate, and the running board assembly 1 has a simple structure, high stability and low cost.


In some embodiments, the running board 200 extends along the left-right direction, and is provided with a plurality of drive assemblies 100 spaced apart along the left-right direction. It could be understood that the drive assembly 100 is used to provide support for the running board 200, and by providing the running board 200 with the plurality of drive assemblies 100, the running board 200 can keep balanced and be safer. For example, one drive assembly 100 is provided adjacent to each of left and right ends of the running board 200, such that two ends of the running board 200 are supported along with better stability.


Advantageously, each drive assembly 100 is individually driven by one drive part. It could be understood that during long-term driving, the vehicle often encounters bumpy roads, which may cause one side of the running board 200 to sag, thereby affecting the transmission of the running board assembly 1, and the running board 200 also becomes unstable due to the tilt, resulting in poor safety performance. Since the drive assemblies 100 are spaced apart on the running board 200 in the left-right direction, and each drive assembly 100 has the driving part, a long transmission path is not required (for example, when there is only one driving part, a transmission member is required to transmit motion to each of the drive assemblies 100), and both sides of the running board 200 are supported, such that the running board 200 is not easy to sag, and the stability of the running board assembly 1 becomes high.


A vehicle according to embodiments of the present disclosure includes the above-described running board assembly 1. The vehicle is convenient for the passenger to get on and off, and have good stability and low cost.


Other compositions and configurations of the vehicle according to embodiments of the present disclosure are easily understood and readily available to those skilled in the art, which will not be elaborated herein.


In the specification, it is to be understood that terms such as “central,” “longitudinal,” “lateral,” “length,” “width,” “thickness,” “upper,” “lower,” “front,” “rear,” “left,” “right,” “vertical,” “horizontal,” “top,” “bottom,” “inner,” “outer,” “clockwise,” “counterclockwise,” “axial,” “radial,” and “circumferential” should be construed to refer to the orientation as then described or as shown in the drawings under discussion. These relative terms are for convenience and simplicity of description, and do not indicate or imply that the present disclosure have a particular orientation and be constructed or operated in a particular orientation. Thus, these terms cannot be constructed to limit the present disclosure.


In addition, terms such as “first” and “second” are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of indicated technical features. Thus, the feature defined with “first” and “second” may comprise one or more of this feature. In the description of the present disclosure, “a plurality of” means two or more than two, unless specified otherwise.


In the present disclosure, unless specified or limited otherwise, the terms “mounted,” “connected,” “coupled,” “fixed” and the like are used broadly, and may be, for example, fixed connections, detachable connections, or integral connections; may also be mechanical or electrical connections; may also be direct connections or indirect connections via intervening structures; may also be inner communications or mutual interaction of two elements, which can be understood by those skilled in the art according to specific situations.


In the present disclosure, unless specified or limited otherwise, a structure in which a first feature is “on” or “below” a second feature may include an embodiment in which the first feature is in direct contact with the second feature, and may also include an embodiment in which the first feature and the second feature are not in direct contact with each other, but are contacted via an additional feature formed therebetween. Furthermore, a first feature “on,” “above,” or “on top of a second feature may include an embodiment in which the first feature is right or obliquely “on,” “above,” or “on top of” the second feature, or just means that the first feature is at a height higher than that of the second feature; while a first feature “below,” “under,” or “on bottom of” a second feature may include an embodiment in which the first feature is right or obliquely “below,” “under,” or “on bottom of” the second feature, or just means that the first feature is at a height lower than that of the second feature.


Reference throughout this specification to “an embodiment,” “some embodiments,” “an example,” “a specific example,” or “some examples,” means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of the phrases in various places throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples. In addition, different embodiments or examples described in the specification and features of the various embodiments or examples may be combined by those skilled in the art without mutual contradictions.


Although embodiments of the present disclosure have been shown and described, it would be appreciated by those skilled in the art that the above embodiments are only exemplary, and cannot be construed to limit the present disclosure, and changes, modifications, alternatives and variations can be made in the embodiments without departing from the scope of the present disclosure.

Claims
  • 1. A drive assembly for a vehicle running board, comprising: a mounting base attachable to a vehicle;a running board holder configured to attach to a running board step at a first end of the running board holder and comprising a hinge linking portion disposed on a second end of the running board holder opposite the first end;a first connecting portion rotatably connected with the mounting base and with the running board holder, the first connecting portion comprising a first link rod, the first link rod having two hinge portions disposed at one end of the first link rod and spaced apart to rotatably couple to the hinge linking portion on opposing sides of the hinge linking portion to form a first hinge joint between the first connecting portion and the running board holder; anda second connecting portion rotatably connected with the mounting base and with the running board holder, the second connecting portion comprising a second link rod, the second link rod having two hinge portions disposed at one end of the second link rod and spaced apart to rotatably couple to the hinge linking portion on the opposing sides of the hinge linking portion to form a second hinge joint between the second connecting portion and the running board holder,wherein the mounting base, the first connecting portion, the second connecting portion and the running board holder constitute a linkage to make the running board holder movable between an extended position and a retracted position,wherein the first connecting portion comprises a third link rod rotatably coupled to the first link rod and to the mounting base,wherein the first connecting portion comprises a support portion that is connected at a third hinge joint between the third link rod and the first link rod, wherein the support portion is in a fixed connection with the second connecting portion,wherein the support portion includes a sliding block and a sliding plate with an opening to provide a sliding groove, wherein the sliding plate is in the fixed connection with the second connecting portion, and wherein the sliding block protrudes from the third hinge joint and is slidably embedded in the sliding groove.
  • 2. The drive assembly of claim 1, wherein the second connecting portion comprises a fourth link rod rotatably coupled to the second link rod and to the mounting base.
  • 3. The drive assembly of claim 2, wherein the second connecting portion comprises a second support portion that is connected at a fourth hinge joint between the fourth link rod and the second link rod, wherein the second support portion is in a fixed connection with the first connecting portion.
  • 4. The drive assembly of claim 3, wherein the second support portion includes a second sliding block and a second sliding plate with an opening to provide a second sliding groove, wherein the second sliding plate is in the fixed connection with the first connecting portion, and wherein the second sliding block protrudes from the fourth hinge joint and is slidably embedded in the second sliding groove.
  • 5. The drive assembly of claim 1, comprising a damping block disposed on the first connecting portion or the running board holder, wherein the damping block abuts between the first connecting portion and the running board holder when the running board holder is in at least one of the extended position and the retracted position.
  • 6. The drive assembly of claim 5, wherein the running board holder comprises a main body that is wider in at least one dimension than the hinge linking portion disposed on the second end of the running board holder that provides a wedged bevel at an interface between the main body and the hinge linking portion, and wherein at least a part of the two hinge portions of the first link rod is provided with the damping block, such that, when the running board holder is in the extended position, the damping block abuts against the wedged bevel.
  • 7. The drive assembly of claim 1, wherein the first connection portion includes a first rotation shaft that couples the two hinge portions of the first link rod to the hinge linking portion of the running board holder to form the first hinge joint between the first connecting portion and the running board holder, and wherein the second connection portion includes a second rotation shaft that couples the two hinge portions of the second link rod to the hinge linking portion of the running board holder to form the second hinge joint between the first connecting portion and the running board holder.
  • 8. The drive assembly of claim 1, comprising a driving part connected with the first connecting portion or with the second connecting portion to drive the first connecting portion or the second connecting portion, respectively, to rotate with respect to the mounting base.
  • 9. A running board assembly for a vehicle, comprising: a running board step;a drive assembly; anda second drive assembly attached to the running board step at a location spaced apart from where the drive assembly is attached to the running board step,the drive assembly comprising: a mounting base attachable to the vehicle;a running board holder attached to the running board step at a first end of the running board holder and comprising a hinge linking portion disposed on a second end of the running board holder opposite the first end;a first connecting portion rotatably connected with the mounting base and with the running board holder, the first connecting portion comprising a first link rod, the first link rod having two hinge portions disposed at one end of the first link rod and spaced apart to rotatably couple to the hinge linking portion on opposing sides of the hinge linking portion to form a first hinge joint between the first connecting portion and the running board holder; anda second connecting portion rotatably connected with the mounting base and with the running board holder, the second connecting portion comprising a second link rod, the second link rod having two hinge portions disposed at one end of the second link rod and spaced apart to rotatably couple to the hinge linking portion on the opposing sides of the hinge linking portion to form a second hinge joint between the second connecting portion and the running board holder,wherein the mounting base, the first connecting portion, the second connecting portion and the running board holder constitute a linkage to make the running board holder movable between an extended position and a retracted position,wherein the first connecting portion comprises a third link rod rotatably coupled to the first link rod and to the mounting base, and wherein the second connecting portion comprises a fourth link rod rotatably coupled to the second link rod and to the mounting base.
  • 10. The running board assembly of claim 9, wherein each of the drive assembly and the second drive assembly is individually driven by one driving part.
  • 11. The running board assembly of claim 9, wherein the first connecting portion comprises a support portion that is connected at a third hinge joint between the third link rod and the first link rod, wherein the support portion is in a fixed connection with the second connecting portion.
  • 12. The running board assembly of claim 9, wherein the second connecting portion comprises a support portion that is connected at a fourth hinge joint between the fourth link rod and the second link rod, wherein the support portion is in a fixed connection with the first connecting portion.
  • 13. The running board assembly of claim 9, wherein the drive assembly comprises a damping block disposed on the first connecting portion or the running board holder, wherein the damping block abuts between the first connecting portion and the running board holder when the running board holder is in at least one of the extended position and the retracted position.
  • 14. The running board assembly of claim 9, wherein the running board holder comprises a main body that is wider in at least one dimension than the hinge linking portion disposed on the second end of the running board holder that provides a wedged bevel at an interface between the main body and the hinge linking portion, and wherein at least a part of the two hinge portions of the first link rod is provided with the damping block, such that, when the running board holder is in the extended position, the damping block abuts against the wedged bevel.
  • 15. A drive assembly for a vehicle running board, comprising: a mounting base attachable to a vehicle;a running board holder configured to attach to a running board step at a first end of the running board holder and comprising a hinge linking portion disposed on a second end of the running board holder opposite the first end;a first connecting portion rotatably connected with the mounting base and with the running board holder, the first connecting portion comprising a first link rod, the first link rod having two hinge portions disposed at one end of the first link rod and spaced apart to rotatably couple to the hinge linking portion on opposing sides of the hinge linking portion to form a first hinge joint between the first connecting portion and the running board holder; anda second connecting portion rotatably connected with the mounting base and with the running board holder, the second connecting portion comprising a second link rod, the second link rod having two hinge portions disposed at one end of the second link rod and spaced apart to rotatably couple to the hinge linking portion on the opposing sides of the hinge linking portion to form a second hinge joint between the second connecting portion and the running board holder,wherein the mounting base, the first connecting portion, the second connecting portion and the running board holder constitute a linkage to make the running board holder movable between an extended position and a retracted position,wherein the first connecting portion comprises a third link rod rotatably coupled to the first link rod and to the mounting base, and wherein the second connecting portion comprises a fourth link rod rotatably coupled to the second link rod and to the mounting base.
  • 16. The drive assembly of claim 15, comprising a damping block disposed on the first connecting portion or the running board holder, wherein the damping block abuts between the first connecting portion and the running board holder when the running board holder is in at least one of the extended position and the retracted position.
  • 17. The drive assembly of claim 16, wherein the running board holder comprises a main body that is wider in at least one dimension than the hinge linking portion disposed on the second end of the running board holder that provides a wedged bevel at an interface between the main body and the hinge linking portion, and wherein at least a part of the two hinge portions of the first link rod is provided with the damping block, such that, when the running board holder is in the extended position, the damping block abuts against the wedged bevel.
  • 18. The drive assembly of claim 15, wherein the first connection portion includes a first rotation shaft that couples the two hinge portions of the first link rod to the hinge linking portion of the running board holder to form the first hinge joint between the first connecting portion and the running board holder, and wherein the second connection portion includes a second rotation shaft that couples the two hinge portions of the second link rod to the hinge linking portion of the running board holder to form the second hinge joint between the first connecting portion and the running board holder.
  • 19. The drive assembly of claim 15, comprising a driving part connected with the first connecting portion or with the second connecting portion to drive the first connecting portion or the second connecting portion, respectively, to rotate with respect to the mounting base.
Priority Claims (2)
Number Date Country Kind
2018 1 0805743 Jul 2018 CN national
2018 2 1161957 U Jul 2018 CN national
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application is a continuation of and claims priority to U.S. application Ser. No. 16/199,517 filed Nov. 26, 2018, which claims priority to and benefits of Chinese Patent Application Serial No. 201810805743.4, filed with the State Intellectual Property Office of P.R. China on Jul. 20, 2018, and Chinese Patent Application Serial No. 201821161957.4, filed with the State Intellectual Property Office of P.R. China on Jul. 20, 2018. The entire content of the aforementioned patent documents are incorporated herein by reference for all purposes.

US Referenced Citations (412)
Number Name Date Kind
7591 Burdett Aug 1850 A
634385 Wolfe et al. Oct 1899 A
724155 Besse Mar 1903 A
752031 Chadwick Feb 1904 A
817224 Clifford Apr 1906 A
955658 Mitchell et al. Apr 1910 A
1063643 Blake et al. Jun 1913 A
1169140 Fassett et al. Jan 1916 A
1176538 Warner Mar 1916 A
1182169 Hansen May 1916 A
1222127 Perri Apr 1917 A
1239892 Dunderdale Sep 1917 A
1242828 Lyle Oct 1917 A
1250604 Lorenc Dec 1917 A
1268335 Fairchild Jun 1918 A
1364697 Branch Jan 1921 A
1437648 Gore Dec 1922 A
1449031 Blake Mar 1923 A
1471972 Miller Oct 1923 A
1621479 Cleveland et al. Mar 1927 A
1755942 Woolson Apr 1930 A
1800162 Stroud Apr 1931 A
2029745 Stiner Feb 1936 A
2041640 Goss May 1936 A
2118557 Hamilton May 1938 A
2122040 Machovec Jun 1938 A
2125085 Pool Jul 1938 A
2197266 Fredell Apr 1940 A
2209576 McDonald Jul 1940 A
2246986 Pellegrini Jun 1941 A
2436961 Gabriel Mar 1948 A
2487921 Culver Nov 1949 A
2492068 Schofield et al. Dec 1949 A
2566401 Bustin Sep 1951 A
2575615 Crump Nov 1951 A
2583894 Shuck Jan 1952 A
2645504 Branstrator et al. Jul 1953 A
2669613 Despard Feb 1954 A
2678832 Wright May 1954 A
2682671 Faure Jul 1954 A
2764422 McDonald Sep 1956 A
2774494 Malmström Dec 1956 A
2825582 McDonald Mar 1958 A
2921643 Vanderveld Jan 1960 A
2925876 Wagner Feb 1960 A
2998265 Kozicki Aug 1961 A
3008533 Haberle Nov 1961 A
3012633 Magee Dec 1961 A
3039562 Wagner Jun 1962 A
3095216 Browne et al. Jun 1963 A
3164394 Husko Jan 1965 A
3172499 Stairs Mar 1965 A
3266594 Antosh et al. Aug 1966 A
3329443 Lowder et al. Jul 1967 A
3392990 Wolf Jul 1968 A
3488066 Hansen Jan 1970 A
3494634 De Paula Feb 1970 A
3515406 Endsley Jun 1970 A
3517942 Cuffe et al. Jun 1970 A
3522396 Norden Jul 1970 A
3528574 Denner et al. Sep 1970 A
3572754 Fowler Mar 1971 A
3608957 Maneck Sep 1971 A
3650423 O'Brien Mar 1972 A
3671058 Kent Jun 1972 A
3745595 Nagy Jul 1973 A
3756622 Pyle et al. Sep 1973 A
3762742 Bucklen Oct 1973 A
3784227 Rogge Jan 1974 A
3799288 Manuel Mar 1974 A
3807757 Carpenter et al. Apr 1974 A
3833240 Weiler Sep 1974 A
3853369 Holden Dec 1974 A
3863890 Ruffing Feb 1975 A
3865399 Way Feb 1975 A
3869022 Wallk Mar 1975 A
3869169 Johnson et al. Mar 1975 A
3887217 Thomas Jun 1975 A
3889997 Schoneck Jun 1975 A
3891261 Finneman Jun 1975 A
3913497 Maroshick Oct 1975 A
3915475 Casella et al. Oct 1975 A
3957284 Wright May 1976 A
3961809 Clugston Jun 1976 A
3980319 Kirkpatrick Sep 1976 A
3981515 Rosborough Sep 1976 A
3986724 Rivinius Oct 1976 A
3997211 Graves Dec 1976 A
4020920 Abbott May 1977 A
4053172 McClure Oct 1977 A
4058228 Hall Nov 1977 A
4068542 Brand et al. Jan 1978 A
4073502 Frank et al. Feb 1978 A
4089538 Eastridge May 1978 A
4098346 Stanfill Jul 1978 A
4106790 Weiler Aug 1978 A
4110673 Nagy et al. Aug 1978 A
4116457 Nerem et al. Sep 1978 A
4124099 Dudynskyj Nov 1978 A
4145066 Shearin Mar 1979 A
4164292 Karkau Aug 1979 A
4168764 Walters Sep 1979 A
4174021 Barlock Nov 1979 A
4180143 Clugston Dec 1979 A
4185849 Jaeger Jan 1980 A
4188889 Favrel Feb 1980 A
4194754 Hightower Mar 1980 A
4205862 Tarvin Jun 1980 A
4219104 MacLeod Aug 1980 A
4231583 Learn Nov 1980 A
4275664 Reddy Jun 1981 A
4325668 Julian et al. Apr 1982 A
4369984 Hagen Jan 1983 A
4424751 Blochlinger Jan 1984 A
4440364 Cone et al. Apr 1984 A
4462486 Dignan Jul 1984 A
4536004 Brynielsson et al. Aug 1985 A
4542805 Hamlin et al. Sep 1985 A
4570962 Chavira Feb 1986 A
4623160 Trudell Nov 1986 A
D287001 Jarvie et al. Dec 1986 S
4676013 Endo Jun 1987 A
4679810 Kimball Jul 1987 A
4696349 Harwood et al. Sep 1987 A
D292904 Bielby Nov 1987 S
4708355 Tiede Nov 1987 A
4711613 Fretwell Dec 1987 A
4720116 Williams et al. Jan 1988 A
4733752 Sklar Mar 1988 A
4757876 Peacock Jul 1988 A
4846487 Criley Jul 1989 A
4858888 Cruz et al. Aug 1989 A
4909700 Fontecchio et al. Mar 1990 A
4911264 McCafferty Mar 1990 A
4926965 Fox May 1990 A
4930973 Robinson Jun 1990 A
4958979 Svensson Sep 1990 A
4982974 Guidry Jan 1991 A
4991890 Paulson Feb 1991 A
D316394 Carr Apr 1991 S
5005667 Anderson Apr 1991 A
5005850 Baughman Apr 1991 A
5007654 Sauber Apr 1991 A
5028063 Andrews Jul 1991 A
5039119 Baughman Aug 1991 A
5085450 DeHart, Sr. Feb 1992 A
5137294 Martin Aug 1992 A
5154125 Renner et al. Oct 1992 A
5195609 Ham et al. Mar 1993 A
5199731 Martin Apr 1993 A
5228707 Yoder Jul 1993 A
5228761 Huebschen et al. Jul 1993 A
5238300 Slivon et al. Aug 1993 A
5253973 Fretwell Oct 1993 A
D340905 Orth et al. Nov 1993 S
5257767 McConnell Nov 1993 A
5257847 Yonehara Nov 1993 A
5261779 Goodrich Nov 1993 A
5280934 Monte Jan 1994 A
5284349 Bruns et al. Feb 1994 A
5286049 Khan Feb 1994 A
5342073 Poole Aug 1994 A
5358268 Hawkins Oct 1994 A
5375864 McDaniel Dec 1994 A
5423463 Weeks Jun 1995 A
5425615 Hall et al. Jun 1995 A
5439342 Hall et al. Aug 1995 A
5462302 Leitner Oct 1995 A
5478124 Warrington Dec 1995 A
5498012 McDaniel et al. Mar 1996 A
5501475 Bundy Mar 1996 A
5505476 Maccabee Apr 1996 A
5513866 Sisson May 1996 A
5538100 Hedley Jul 1996 A
5538265 Chen et al. Jul 1996 A
5538269 McDaniel et al. Jul 1996 A
5547040 Hanser et al. Aug 1996 A
5549312 Garvert Aug 1996 A
5584493 Demski et al. Dec 1996 A
5601300 Fink et al. Feb 1997 A
5624127 Arreola et al. Apr 1997 A
5697623 Bermes et al. Dec 1997 A
5697626 McDaniel Dec 1997 A
5727840 Ochiai et al. Mar 1998 A
5779208 McGraw Jul 1998 A
5842709 Maccabee Dec 1998 A
5876051 Sage Mar 1999 A
5897125 Bundy Apr 1999 A
5937468 Wiedeck et al. Aug 1999 A
5941342 Lee Aug 1999 A
5957237 Tigner Sep 1999 A
5980449 Benson et al. Nov 1999 A
5988970 Holtom Nov 1999 A
6012545 Faleide Jan 2000 A
6027090 Liu Feb 2000 A
6042052 Smith et al. Mar 2000 A
6055780 Yamazaki May 2000 A
6065924 Budd May 2000 A
6082693 Benson et al. Jul 2000 A
6082751 Hanes et al. Jul 2000 A
6112152 Tuttle Aug 2000 A
6135472 Wilson et al. Oct 2000 A
6149172 Pascoe et al. Nov 2000 A
6158756 Hansen Dec 2000 A
6168176 Mueller Jan 2001 B1
6170842 Mueller Jan 2001 B1
6179312 Paschke et al. Jan 2001 B1
6179546 Citrowske Jan 2001 B1
6203040 Hutchins Mar 2001 B1
6213486 Kunz et al. Apr 2001 B1
6224317 Kann May 2001 B1
6264222 Johnston et al. Jul 2001 B1
6270099 Farkash Aug 2001 B1
6325397 Pascoe Dec 2001 B1
6352295 Leitner Mar 2002 B1
6357992 Ringdahl et al. Mar 2002 B1
6375207 Dean Apr 2002 B1
6412799 Schrempf Jul 2002 B1
6422342 Armstrong et al. Jul 2002 B1
6425572 Lehr Jul 2002 B1
6430164 Jones et al. Aug 2002 B1
6435534 Stone Aug 2002 B1
6439342 Boykin Aug 2002 B1
6460915 Bedi et al. Oct 2002 B1
6471002 Weinermen Oct 2002 B1
6511086 Schlicht Jan 2003 B2
6511402 Shu Jan 2003 B2
6513821 Heil Feb 2003 B1
6533303 Watson Mar 2003 B1
6536790 Ojanen Mar 2003 B1
6588783 Fichter Jul 2003 B2
6612596 Jeon et al. Sep 2003 B2
6641158 Leitner Nov 2003 B2
6659484 Knodle et al. Dec 2003 B2
6663125 Cheng Dec 2003 B1
6746033 McDaniel Jun 2004 B1
6769704 Cipolla Aug 2004 B2
6810995 Warford Nov 2004 B2
6812466 O'Connor et al. Nov 2004 B2
6830257 Leitner Dec 2004 B2
6834875 Leitner Dec 2004 B2
6840526 Anderson et al. Jan 2005 B2
6874801 Fichter Apr 2005 B2
6880843 Greer, Jr. Apr 2005 B1
6912912 Reichinger et al. Jul 2005 B2
6918624 Miller et al. Jul 2005 B2
6926295 Berkebile et al. Aug 2005 B2
6938909 Leitner Sep 2005 B2
6942233 Leitner et al. Sep 2005 B2
6942272 Livingston Sep 2005 B2
6948903 Ablabutyan et al. Sep 2005 B2
6951357 Armstrong et al. Oct 2005 B2
6955370 Fabiano et al. Oct 2005 B2
6959937 Schneider et al. Nov 2005 B2
6966597 Tegtmeier Nov 2005 B2
6971652 Bobbert et al. Dec 2005 B2
6997469 Lanoue et al. Feb 2006 B2
7000932 Heil et al. Feb 2006 B2
7007961 Leitner Mar 2006 B2
7017927 Henderson et al. Mar 2006 B2
7055839 Leitner Jun 2006 B2
7090276 Bruford et al. Aug 2006 B1
7111859 Kim et al. Sep 2006 B2
7118120 Lee Oct 2006 B2
7163221 Leitner Jan 2007 B2
7258386 Leitner Aug 2007 B2
7287771 Lee Oct 2007 B2
7360779 Crandall Apr 2008 B2
7367574 Leitner May 2008 B2
7380807 Leitner Jun 2008 B2
7398985 Leitner et al. Jul 2008 B2
7413204 Leitner Aug 2008 B2
7416202 Fichter Aug 2008 B2
7487986 Leitner Feb 2009 B2
7516703 Tazreiter Apr 2009 B2
7566064 Leitner et al. Jul 2009 B2
7584975 Leitner Sep 2009 B2
7594672 Piotrowski Sep 2009 B2
7621546 Ross Nov 2009 B2
7637519 Leitner Dec 2009 B2
7673892 Kuntze Mar 2010 B2
7717444 Fichter May 2010 B2
7740261 Leitner Jun 2010 B2
7793596 Hirtenlehner Sep 2010 B2
7823896 VanBelle Nov 2010 B2
7874565 Duncan Jan 2011 B2
D634687 Vukel Mar 2011 S
7900944 Watson Mar 2011 B2
7909344 Bundy Mar 2011 B1
7934737 Okada May 2011 B2
7976042 Watson et al. Jul 2011 B2
8038164 Stahl et al. Oct 2011 B2
8042821 Yang Oct 2011 B2
D649100 Cheng Nov 2011 S
8052162 Yang Nov 2011 B2
8056913 Kuntze et al. Nov 2011 B2
8070173 Watson Dec 2011 B2
8136826 Watson Mar 2012 B2
8146935 Adams Apr 2012 B1
8157277 Leitner et al. Apr 2012 B2
8177247 Carr May 2012 B1
8205901 Yang et al. Jun 2012 B2
D665713 Pochurek et al. Aug 2012 S
8262113 Chafey et al. Sep 2012 B1
8297635 Agoncillo et al. Oct 2012 B2
D671874 Kekich et al. Dec 2012 S
8342550 Stickles et al. Jan 2013 B2
8342551 Watson et al. Jan 2013 B2
8360455 Leitner et al. Jan 2013 B2
8408571 Leitner et al. Apr 2013 B2
8419034 Leitner et al. Apr 2013 B2
8469380 Yang Jun 2013 B2
8602431 May Dec 2013 B1
8827294 Leitner Sep 2014 B1
8833782 Huotari Sep 2014 B2
8844957 Leitner et al. Sep 2014 B2
D720674 Stanesic et al. Jan 2015 S
8936266 Leitner et al. Jan 2015 B2
8944451 Leitner et al. Feb 2015 B2
9156406 Stanesic et al. Oct 2015 B2
9272667 Smith Mar 2016 B2
9302626 Leitner et al. Apr 2016 B2
9346404 Bundy May 2016 B1
9346405 Leitner et al. May 2016 B2
9511717 Smith Dec 2016 B2
9522634 Smith Dec 2016 B1
9527449 Smith Dec 2016 B2
9550458 Smith Jan 2017 B2
9561751 Leitner et al. Feb 2017 B2
9573467 Chen Feb 2017 B2
9656609 Du et al. May 2017 B2
9669766 Du et al. Jun 2017 B2
9669767 Du Jun 2017 B2
9688205 Du Jun 2017 B2
9701249 Leitner et al. Jul 2017 B2
9764691 Stickles Sep 2017 B2
9809172 Stanesic et al. Nov 2017 B2
9834147 Smith Dec 2017 B2
9902328 Mazur Feb 2018 B1
9944231 Leitner Apr 2018 B2
10053017 Leitner et al. Aug 2018 B2
10065486 Smith et al. Sep 2018 B2
10077016 Smith et al. Sep 2018 B2
10081302 Frederick et al. Sep 2018 B1
10106069 Rasekhi Oct 2018 B2
10106086 Eckstein et al. Oct 2018 B1
10106087 Stojkovic et al. Oct 2018 B2
10106088 Smith Oct 2018 B2
10118557 Pribisic Nov 2018 B2
10124735 Du Nov 2018 B2
10124839 Povinelli et al. Nov 2018 B2
10144345 Stinson et al. Dec 2018 B2
10150419 Derbis Dec 2018 B2
10155474 Salter et al. Dec 2018 B2
10173595 Ulrich Jan 2019 B1
10183623 Kirshnan et al. Jan 2019 B2
10183624 Leitner et al. Jan 2019 B2
10189517 Povinelli et al. Jan 2019 B2
10195997 Smith Feb 2019 B2
10207598 Reynolds et al. Feb 2019 B2
10214963 Simula et al. Feb 2019 B2
10384614 Du Aug 2019 B1
20030011164 Cipolla Jan 2003 A1
20030038446 Anderson et al. Feb 2003 A1
20030090081 Oakley May 2003 A1
20030094781 Jaramillo et al. May 2003 A1
20030132595 Fabiano Jul 2003 A1
20030200700 Leitner Oct 2003 A1
20040100063 Henderson et al. May 2004 A1
20040108678 Berkebile et al. Jun 2004 A1
20040135339 Kim Jul 2004 A1
20050035568 Lee et al. Feb 2005 A1
20050146157 Leitner Jul 2005 A1
20050280242 Fabiano et al. Dec 2005 A1
20060214386 Watson Sep 2006 A1
20060219484 Ogura Oct 2006 A1
20060284440 Leitner Dec 2006 A1
20080042396 Watson Feb 2008 A1
20080100023 Ross May 2008 A1
20080116653 Piotrowski May 2008 A1
20080271936 Kuntze Nov 2008 A1
20090250896 Watson Oct 2009 A1
20090295114 Yang et al. Dec 2009 A1
20100044993 Watson Feb 2010 A1
20110115187 Leitner et al. May 2011 A1
20120025485 Yang et al. Feb 2012 A1
20130154230 Ziaylek Jun 2013 A1
20150097353 Rasmussen et al. Apr 2015 A1
20150197199 Kuo Jul 2015 A1
20150321612 Leitner et al. Nov 2015 A1
20150321613 Leitner et al. Nov 2015 A1
20160039346 Yang Feb 2016 A1
20160193964 Stanesic et al. Jul 2016 A1
20170008459 Leitner et al. Jan 2017 A1
20170036607 Du et al. Feb 2017 A1
20170144606 Smith May 2017 A1
20170190308 Smith Jun 2017 A1
20170246993 Smith Aug 2017 A1
20170267182 Leitner Sep 2017 A1
20170355315 Leitner Dec 2017 A1
20180141497 Smith May 2018 A1
20180201194 Stanesic Jul 2018 A1
20180257572 Du et al. Sep 2018 A1
20180281687 Derbis et al. Oct 2018 A1
20180326911 Leitner Nov 2018 A1
20190009725 Stojkovic et al. Jan 2019 A1
20190047477 Crandall Feb 2019 A1
20190054961 Ngo Feb 2019 A1
20190071021 Pribisic Mar 2019 A1
20190071042 Smith Mar 2019 A1
20190084482 Long et al. Mar 2019 A1
20190084628 Povinelli et al. Mar 2019 A1
Foreign Referenced Citations (90)
Number Date Country
1021826 Nov 1977 CA
2082177 May 1994 CA
2218280 Jun 1999 CA
2332193 Sep 2001 CA
2370618 Nov 2007 CA
2174368 Aug 1994 CN
2806241 Aug 2006 CN
101279594 Oct 2008 CN
202806579 Mar 2013 CN
104192070 Dec 2014 CN
105083137 Nov 2015 CN
105128751 Dec 2015 CN
108791086 Nov 2018 CN
208232903 Dec 2018 CN
208325054 Jan 2019 CN
208344082 Jan 2019 CN
1042403 Oct 1958 DE
1220276 Jun 1966 DE
2555468 Jun 1977 DE
7922488 Jul 1982 DE
3151621 Jul 1983 DE
3932142 Apr 1990 DE
8910933 Oct 1990 DE
0066493 Dec 1982 EP
373842 Jun 1990 EP
0418615 Mar 1991 EP
0559624 Aug 1995 EP
0966367 Sep 1998 EP
0901783 Mar 1999 EP
1116840 Jul 2001 EP
1213185 Dec 2004 EP
3002157 Apr 2016 EP
3176038 Jan 2019 EP
3237254 Feb 2019 EP
1271901 Sep 1961 FR
1350593 Dec 1963 FR
2225612 Aug 1974 FR
2651739 Mar 1991 FR
2764254 Dec 1998 FR
191315077 Aug 1913 GB
254426 Jul 1926 GB
340162 Dec 1930 GB
381672 Oct 1932 GB
745918 Mar 1956 GB
934387 Aug 1963 GB
936846 Sep 1963 GB
987846 Mar 1965 GB
1430813 Apr 1976 GB
1471256 Apr 1977 GB
2045699 Nov 1980 GB
2055705 Mar 1981 GB
2129378 May 1984 GB
2201511 Sep 1988 GB
2288014 Oct 1995 GB
201741011829 Oct 2018 IN
63-255144 Oct 1988 JP
H04138944 May 1992 JP
H04339040 Nov 1992 JP
H04342629 Nov 1992 JP
H05310061 Nov 1993 JP
H05310081 Nov 1993 JP
H08132967 May 1996 JP
H10287182 Oct 1998 JP
2018-177089 Nov 2018 JP
2019-001222 Jan 2019 JP
2000-0003099 Jan 2000 KR
2017001699 Aug 2018 MX
2017001700 Aug 2018 MX
2017006328 Aug 2018 MX
2017008032 Sep 2018 MX
2017010183 Sep 2018 MX
403594 Nov 1973 SU
783097 Nov 1980 SU
198805759 Aug 1988 WO
199500359 Jan 1995 WO
1997027139 Jul 1997 WO
199843856 Oct 1998 WO
2000047449 Aug 2000 WO
2001000441 Jan 2001 WO
2003039910 May 2003 WO
2003039920 May 2003 WO
2003066380 Aug 2003 WO
2003069294 Aug 2003 WO
2006050297 May 2006 WO
2009103163 Aug 2009 WO
2017176226 Oct 2017 WO
2018148643 Aug 2018 WO
2018197393 Nov 2018 WO
2019009131 Jan 2019 WO
2019034493 Feb 2019 WO
Non-Patent Literature Citations (2)
Entry
International Search Report and Written Opinion of the International Searching Authority for PCT International Application No. PCT/CN2015/097930 dated May 10, 2016.
U.S. Office Action dated Dec. 20, 2019 for U.S. Appl. No. 16/655,149, filed Oct. 16, 2019. (11 pages).
Related Publications (1)
Number Date Country
20200023779 A1 Jan 2020 US
Continuations (1)
Number Date Country
Parent 16199517 Nov 2018 US
Child 16510775 US