Vehicle seat and associated air conditioning apparatus

Information

  • Patent Grant
  • 7213876
  • Patent Number
    7,213,876
  • Date Filed
    Monday, November 28, 2005
    18 years ago
  • Date Issued
    Tuesday, May 8, 2007
    17 years ago
Abstract
A vehicle seat with a backrest (16) that has a backrest cushion (18) and a rear backrest cover (20), and an air-handling device that is associated with the backrest (16) and is connected to an air distribution device (30, 32) in the seat. The rear backrest cover (20) is at least partially air permeable, and covers at least one passage (27) of the air-handling device (23). The air exchanged between the environment and the air-handling device (23) passes for the most part through the air-permeable regions of the backrest cover (20).
Description
TECHNICAL FIELD

The invention relates to a vehicle seat and, more particularly, concerns a vehicle seat having a backrest cushion and cover, and an air-handling device associated with the backrest and connected to an air distribution device in the seat.


BACKGROUND OF THE INVENTION

Air conditioned seats are known from the automotive industry and aircraft construction. A customary arrangement consists of a seat provided with at least one device for the supply of air whose seat and backrest surfaces are each provided on the side facing the passengers with air outlets or with an air-permeable fabric structure. The air supply device typically includes a fan arranged in the seat surface and one in the backrest surface, each of which draws in air from the environment and directs it through air ducts in the seat to the surfaces facing a person sitting in the seat.


U.S. Pat. No. 6,048,024 describes a ventilated seat that is equipped with a fan device beneath a seat surface and one in a backrest surface. Each of the fan devices draws air out of the seat through openings in the seat and backrest surfaces and discharges it to the environment.


A ventilated vehicle seat is also known from DE 196 34 370 A1. The vehicle seat includes a backrest that has a backrest cushion and a backrest cover that covers the rear side thereof. The backrest further includes a ventilating device for the backrest cushion that has a hollow space extending between the backrest cushion and the backrest cover and, located in the hollow space, a fan with a fan inlet and fan outlet. The fan is arranged in the bottom part of the hollow space closer to the underside of the backrest, and its fan input is connected to an air shaft that runs along the backrest cover to the underside of the backrest where it has an air inlet.


Such conventional conditioned seats have drawbacks in that the fans and air ducts create undesirable levels of noise. Thus, there exists a need for an air conditioned seat, or an air conditioning apparatus for a ventilated seat, that is characterized by simple, low-noise and draft-free air circulation.


SUMMARY OF THE INVENTION

The present invention provides a vehicle seat with a backrest cushion and a rear backrest cover, and an air-handling device associated with the backrest and connected to an air-distribution device in the seat. The rear backrest cover is at least partially air permeable in that it covers at least one passage of the air-handling device, and the air exchange between the environment and the air-handling device passes, to a great extent, through the air-permeable regions of the backrest cover. The backrest cover can, in particular, take the form of a woven or knitted textile which covers a ventilating fan arranged in the backrest. With a large-area textile backrest cover of air-permeable upholstery material of this nature, a significant reduction in bothersome intake noise can be achieved since it is possible to eliminate air ducts of any sort in the backrest such as are necessary in conventional backrest covers of rigid plastic.


In one embodiment, at least one fan is located in a lower region of the backrest near the floor. Accordingly, at least one lower region of the backrest cover near the floor is air permeable. Normally, uncooled air that is obtained and drawn in from lower regions of the passenger compartment is used for seat ventilation. These regions near the floor have the lowest temperatures in strong sunlight. Thus, the temperatures in vehicles parked in the blazing sun rise to over 40.degree. C. in the interior of the backrest and over 65.degree. C. in the head space, while temperatures in the foot space rarely rise above 30.degree. C. Hence the air drawn in by the fan generally is significantly cooler than the air in the vicinity of the outlet openings at the backrest. Alternatively, essentially the entire backrest cover can be designed to be air permeable so that the air is also drawn in from higher regions of the vehicle interior. Since the airflow normally becomes weaker as the distance to the fan increases, even in this design the bulk of the intake air is obtained from lower regions near the floor.


In another embodiment of the invention, an air-permeable spacer layer, which can take the form of a knit spacer for example, can be provided between the intake opening of the at least one fan and the fabric backrest cover. In this way, it is possible to prevent the fabric backrest cover from penetrating the blower region of the fan. Furthermore, this knit spacer can provide for radial redirection of the intake air and prevent the fan, which preferably is of relatively simple design, from drawing in air from only a small area of the backrest.


With the embodiment of the backrest cover according to the invention, the design of the backrest need not be changed, or need only be changed minimally, from that of conventional vehicle seats. Nor is the feel or texture thereof significantly changed or impaired. The back of the backrest cover is preferably made opaque so that the fan is not seen by the rear seat passengers.


The elimination of a rigid backrest cover with air ducts integrated therein or covered thereby makes possible a relatively slim vehicle seat that, despite the air conditioning apparatus located therein, in no way limits the foot room for an additional passenger located behind the air conditioned vehicle seat.


In another embodiment of the invention, the fabric backrest cover has a filter effect for the indrawn air so that particles and dust are kept out of the blower region. Since relatively large particles and dust should not be emitted from the vehicle seat air outlets toward the passenger, these undesirable foreign materials would deposit in the backrest of the seat and build up there after a relatively long period of operation. With a relatively heavy accumulation of dirt after a fairly long period of time, this would increasingly degrade the flow conditions in the air ducts, which would also impair the air conditioning effect. These disadvantages can be prevented by an appropriately fine-meshed design of the textile fabric of the backrest cover.


Even with a very thin fabric, the backrest cover according to the invention makes possible good noise suppression for the rear seat passengers, since there are no hollow spaces in air ducts, which could constitute a source for resonances. Moreover, only relatively low flow velocities occur, so for this reason as well, scarcely any bothersome noise emissions occur. Radiated noise can be further reduced by providing the textile fabric of the backrest cover with a noise-suppressing structure and possibly by making it somewhat thicker. Under certain circumstances, such a noise-suppressing structure can even have a noise-absorbing effect, thus effectively reducing the noise level in the vehicle interior.


The diffuse intake over at least a lower region or over nearly the entire rear side of the backrest has the result that no high local flow velocities arise at an air inlet. Any noticeable intake draft is avoided in this way.


The present invention itself, together with further objects and attendant advantages, will be best understood by reference to the following detailed description, taken in conjunction with the accompanying drawing.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of this invention reference should now be had to the embodiment illustrated in greater detail in the accompanying figure and described below by way of examples of the invention wherein:



FIG. 1 shows a schematic cross-sectional representation of a vehicle seat according to one embodiment of the present invention.



FIG. 2 shows a schematic cross-sectional representation of a horizontal seat surface of a vehicle seat according to another embodiment of the present invention.





DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

While the present invention is described with regard to a motor vehicle seat, it may be adapted and utilized for other seating applications including airplane seats and theater seating, for example. Additionally, in the following description, various operating parameters and components are described for one constructed embodiment. These specific parameters and components are included as examples and are not meant to be limiting.



FIG. 1 shows a schematic representation of an air conditioned seat 10 in accordance with one embodiment of the invention. The seat 10 comprises an approximately horizontal seat surface 12 and a backrest 16 that is attached thereto in either a fixed or rotatable manner. To ensure the desired seating comfort, the seat surface 12 has a resilient seat cushion 14 and the backrest 16 has a resilient backrest cushion 18. In particular, the seat cushion 14 and backrest cushion 18 may be made of foam or the like. If desired, a spring core may also be provided in each of these. An underside of the seat surface 12 is anchored to a floor—possibly in a sliding manner—by means of a seat frame (not shown). Such a seat 10 in accordance with the invention may be used for example in a vehicle, such as a motor vehicle, or also in an airplane.


Provided in a lower, rear region of the backrest 16 is an air-handling device 23. In this example, the air-handling device is a fan 22, which draws air from the environment and conveys it through a flexible bellows 36 to an air distribution structure 32 within the backrest cushion 18 of the backrest 16. From there, the air is conveyed through air ducts 30 to regions near the surface of the backrest 16, where further regions may, for example, be provided with air distribution structures 32 through which the air is conveyed to air outlets 34 or to an air-permeable fabric 40. In the case of leather upholstery, in particular, air outlets 34 only are typically employed. Conversely, in the case of fabric upholstery, an air-permeable fabric 40 through which the air can pass to the outside is used on the surface of the backrest 16.


The fan 22 can take the form, in particular, of an axial fan that draws air in through an air intake opening 26 oriented perpendicular to the rear of the backrest 16 and exhausts it in the same direction through an air outlet 28 toward the flexible bellows 36. The air intake opening 26 defines an intake passage 27 for the air-handling device 23. The bellows 36 is preferably rigidly connected to a fan housing 24 so that the fan 22 can be adequately fixed in the backrest 16 by this connection alone. Alternatively, a radial fan may be used as the air-handling device 23.


At least in a lower region of the backrest 16 near the floor, the rear backrest cover 20 is permeable to the air drawn in by the fan 22. In the example embodiment shown, essentially the entire backrest cover 20 is designed to be air permeable, which is indicated by the plurality of parallel arrows running perpendicular to the rear of the backrest 16. Between the air intake opening 26 of the fan 22 and the backrest cover 20 can be arranged a spacer textile 38 that firstly can ensure better air distribution, even in the radial direction, and secondly can prevent the backrest cover from getting into rotating parts of the fan 22. This spacer textile 38 can take the form of a mesh-type or weave-like knit spacer, which if desired can also accomplish additional attachment of the fan housing 24 in the backrest 16.


The air-distributing and air-directing function of the spacer textile 38 is characterized by a vertical downward arrow that indicates air circulation within the backrest 16 in a radial direction toward the fan 22. Also visible are two arrows perpendicular to a center axis of the fan housing 24, which indicate the radial intake of air through the spacer textile 38 toward the air intake opening 26 of the fan 22. The spacer textile 38 or the knit spacer can accomplish the result that the air conveyed by the fan 22 into the air distribution structures 32 is also drawn in from higher regions and possibly over the full area of the rear of the backrest 16.


The backrest cover 20 can in particular take the form of a woven or knitted textile that is air permeable and opaque. Intake noise from the fan 22 is substantially suppressed due to the large-area air intake through large regions of the rear backrest cover 20, since no resonance-producing air ducts are needed in the intake region. Moreover, the large-area distribution of the air intake ensures that no objectionable drafts are noticeable to the rear seat passengers.


In addition to the functions mentioned, the weave or knit of the backrest cover 20 can fulfill additional functions, for example a filter function to protect the interior spaces of the seat 10 from particles and dust, which could otherwise accumulate in the seat 10 and cause problems after a relatively long period of operation. Moreover, the backrest cover 20 can be designed as a noise-suppressing cover that firstly shields the noises emitted by the fan 22 and secondly can absorb road noise occurring in the vehicle.


A similar air distribution structure is provided in the seat surface 12. Here, too, multiple air ducts 30 are arranged within a seat cushion 14, through which the air that has been drawn in by an air-handling device 23—in particular a fan 22—is conveyed to the surface upon which a person can sit. In regions near the top of the seat surface 12, air distribution structures 32 are provided, each of which communicates with an air duct 30. Here, too, the air can pass to the outside, again through air outlets 34 or through an air-permeable fabric 40. An air distribution structure 32 on the underside of the seat surface 12 communicates at the top with the air ducts 30. At the bottom, it opens into an air outlet of the fan 22, which draws in the air axially from below.



FIG. 2 shows a schematic cross-sectional representation of a horizontal seat surface 12 in two or more air ducts 30 connect the air distribution structure 32 near the top of the seat surface 12 to the air distribution structure 32 on the underside of the seat surface 12.


The air conditioning apparatus can be set up to blow ambient air toward the seat surface. It can also be operated in the reverse direction, however, to draw air away from a seated passenger.


While the invention has been described in connection with one or more embodiments, it is to be understood that the specific mechanisms and techniques which have been described are merely illustrative of the principles of the invention, numerous modifications may be made to the methods and apparatus described without departing from the spirit and scope of the invention as defined by the appended claims.

Claims
  • 1. A vehicle seat, comprising: a ventilated component selected from a seat component, a back rest component, and combinations thereof, the ventilated component comprising a cushion and an air permeable trim cover located over an occupant side of the cushion;an air handling device comprising at least one fan;an air distribution system comprising at least one first air distribution structure, at least one second air distribution structure, and at least one air duct for each second air distribution structure, wherein: the at least first air distribution structure is located away from the occupant side of the cushion and comprises a spacer textile;the at least one second air distribution structure is located between the trim cover and cushion and comprises a spacer textile; andthe at least one air duct for each second air distribution structure is located in the cushion and fluidly connects the first and second air distribution structures wherein the air handling device operates to draw air through the trim cover and through the air distribution system.
  • 2. The vehicle seat of claim 1 further comprising at least two air ducts for each second air distribution structure.
  • 3. The vehicle seat of claim 2 further comprising at least two second air distribution structures.
  • 4. The vehicle seat of claim 3 wherein the air handling device comprises an axial fan or a radial fan.
  • 5. The vehicle seat of claim 4 further comprising a bellows between the fan and the first air distribution structure.
  • 6. The vehicle seat of claim 5 wherein the trim cover comprises leather.
  • 7. The vehicle seat of claim 5 wherein the trim cover comprises fabric.
  • 8. The vehicle seat of claim 1 further comprising at least three second air distribution structures.
  • 9. The vehicle seat of claim 8 further comprising one air duct for each distribution structure.
  • 10. The vehicle seat of claim 9 wherein the fan is an axial fan or a radial fan.
  • 11. The vehicle seat of claim 10 further comprising a bellows between the fan and the first air distribution structure.
  • 12. The vehicle seat of claim 11 wherein the trim cover comprises leather.
  • 13. The vehicle seat of claim 11 wherein the trim cover comprises fabric.
  • 14. A vehicle seat, comprising: a ventilated component selected from a seat component, a back rest component, and combinations thereof, the ventilated component comprising a cushion and an air permeable trim cover located over an occupant side of the cushion;an air handling device comprising at least one axial or radial fan;an air distribution system comprising a first air distribution structure, at least two second air distribution structures, and at least two air ducts for each second air distribution structure, wherein: the at least first air distribution structure is located away from the occupant side of the cushion and comprises a spacer textile;the at least one second air distribution structure is located between the trim cover and cushion and comprises a spacer textile; andthe at least two air ducts for each second air distribution structure is located in the cushion and fluidly connects the first and second air distribution structures wherein the air handling device operates to draw air through the trim cover and through the air distribution system.
  • 15. A vehicle seat, comprising: a ventilated component selected from a seat component, a back rest component, and combinations thereof, the ventilated component comprising a cushion and an air permeable trim cover located over an occupant side of the cushion;an air handling device comprising at least one fan;an air distribution system comprising at least one first air distribution structure, at least three second air distribution structures, and at least one air duct for each second air distribution structure, wherein: the at least first air distribution structure is located away from the occupant side of the cushion;the at least three second air distribution structures are located between the trim cover and cushion; andthe at least one air duct for each second air distribution structure is located in the cushion and fluidly connects the first and second air distribution structures wherein the air handling device operates to draw air through the trim cover and through the air distribution system.
  • 16. The vehicle seat of claim 15 wherein the first or second air distribution structures comprise a spacer textile.
  • 17. A vehicle seat, comprising: a ventilated component selected from a seat component, a back rest component, and combinations thereof, the ventilated component comprising a cushion, an air distribution system and an air permeable trim cover located over an occupant side of the cushion;an air handling device comprising at least one fan that operates to draw air through trim cover and through the air distribution system;wherein the air distribution system comprises at least one first air distribution structure, at least one second air distribution structure, and at least one air duct for each second air distribution structure, wherein: the at least first air distribution structure is located away from the occupant side of the cushion;the at least two second air distribution structure is located between the trim cover and cushion; andthe at least one air duct for each second air distribution structure is located in the cushion and fluidly connects the first and second air distribution structures.
  • 18. The vehicle seat of claim 17 wherein the first or second air distribution structures comprise a spacer textile.
Priority Claims (1)
Number Date Country Kind
102 59 621 Dec 2002 DE national
CLAIM OF PRIORITY

The present application is a divisional of U.S. application Ser. No. 10/738,495, filed Dec. 17, 2003, now U.S. Pat. No. 6,976,734, which in turn claims priority to German application 102 59 621.2, filed on Dec. 18, 2002.

US Referenced Citations (268)
Number Name Date Kind
374424 Ober Dec 1887 A
390154 Beach Sep 1888 A
1370832 Mollberg Aug 1921 A
1439681 Alkire et al. Dec 1922 A
1475912 Williams Nov 1923 A
1514329 Metcalf Nov 1924 A
1537460 Campbell et al. May 1925 A
1541213 Harley Jun 1925 A
1593066 Gaston Jul 1926 A
1664636 Mayer Apr 1928 A
1837515 Bachrach Dec 1931 A
1936960 Bowman Nov 1933 A
2022959 Gordon Dec 1935 A
2103553 Reynolds Dec 1937 A
2158801 Petterson May 1939 A
2336089 Gould Dec 1943 A
2493303 McCullough Jan 1950 A
2544506 Kronhaus Mar 1951 A
2703134 Mossor Mar 1955 A
2749906 O'Connor Jun 1956 A
2758532 Awe Aug 1956 A
2782834 Vigo Feb 1957 A
2791956 Guest May 1957 A
2826135 Benzick Mar 1958 A
2912832 Clark Nov 1959 A
2931286 Fry, Sr. et al. Apr 1960 A
2976700 Jackson Mar 1961 A
2978972 Hake Apr 1961 A
2992604 Trotman et al. Jul 1961 A
2992605 Trotman et al. Jul 1961 A
3030145 Kottemann Apr 1962 A
3101037 Taylor Aug 1963 A
3101660 Taylor Aug 1963 A
3127931 Johnson Apr 1964 A
3131967 Spaulding May 1964 A
3136577 Richard Jun 1964 A
3137523 Karner Jun 1964 A
3162489 Trotman Dec 1964 A
3209380 Watsky Oct 1965 A
3486177 Marshack Dec 1969 A
3529310 Olmo Sep 1970 A
3550523 Segal Dec 1970 A
3552133 Lukomsky Jan 1971 A
3628829 Hellig Dec 1971 A
3638255 Sterrett Feb 1972 A
3653589 McGrath Apr 1972 A
3653590 Elsea Apr 1972 A
3681797 Messner Aug 1972 A
3684170 Roof Aug 1972 A
3732944 Kendall May 1973 A
3736022 Radke May 1973 A
3738702 Jacobs Jun 1973 A
3757366 Sacher Sep 1973 A
3770318 Fenton Nov 1973 A
3778851 Howorth Dec 1973 A
3948246 Jenkins Apr 1976 A
4002108 Drori Jan 1977 A
4043544 Ismer Aug 1977 A
4044221 Kuhn Aug 1977 A
4060276 Lindsay Nov 1977 A
4065936 Fenton et al. Jan 1978 A
4072344 Li Feb 1978 A
4141585 Blackman Feb 1979 A
4175297 Robbins et al. Nov 1979 A
4245149 Fairlie Jan 1981 A
4259896 Hayashi et al. Apr 1981 A
4268272 Taura May 1981 A
4335725 Geldmacher Jun 1982 A
4379352 Hauslein et al. Apr 1983 A
4391009 Schild et al. Jul 1983 A
4413857 Hayashi Nov 1983 A
4509792 Wang Apr 1985 A
4563387 Takagi et al. Jan 1986 A
4572430 Takagi et al. Feb 1986 A
4589656 Baldwin May 1986 A
4665707 Hamilton May 1987 A
4671567 Frobose Jun 1987 A
4685727 Cremer et al. Aug 1987 A
4712832 Antolini et al. Dec 1987 A
4729598 Hess Mar 1988 A
4777802 Feher Oct 1988 A
4847933 Bedford Jul 1989 A
4853992 Yu Aug 1989 A
4866800 Bedford Sep 1989 A
4905475 Tuomi Mar 1990 A
4923248 Feher May 1990 A
4946220 Wyon et al. Aug 1990 A
4964674 Wetmann et al. Oct 1990 A
4981324 Law Jan 1991 A
4997230 Spitalnick Mar 1991 A
5002336 Feher Mar 1991 A
5004294 Lin Apr 1991 A
5016302 Yu May 1991 A
5076643 Colasanti et al. Dec 1991 A
5102189 Saito et al. Apr 1992 A
5106161 Meiller Apr 1992 A
5117638 Feher Jun 1992 A
5138851 Mardikian Aug 1992 A
5160517 Hicks et al. Nov 1992 A
5211697 Kienlein et al. May 1993 A
5226188 Liou Jul 1993 A
5292577 Van Kerrebrouck et al. Mar 1994 A
5335381 Chang Aug 1994 A
5354117 Danielson et al. Oct 1994 A
5356205 Calvert et al. Oct 1994 A
5370439 Lowe et al. Dec 1994 A
5372402 Kuo Dec 1994 A
5382075 Shih Jan 1995 A
5385382 Single, II et al. Jan 1995 A
5403065 Callerio Apr 1995 A
5408711 McClelland Apr 1995 A
5411318 Law May 1995 A
5416935 Nieh May 1995 A
5450894 Inoue et al. Sep 1995 A
5516189 Ligeras May 1996 A
5524439 Gallup et al. Jun 1996 A
5561875 Graebe Oct 1996 A
5590428 Roter Jan 1997 A
5597200 Gregory et al. Jan 1997 A
5613729 Summer, Jr. Mar 1997 A
5613730 Buie et al. Mar 1997 A
5626021 Karunasiri et al. May 1997 A
5626386 Lush May 1997 A
5626387 Yeh May 1997 A
5639145 Alderman Jun 1997 A
5645314 Liou Jul 1997 A
5692952 Chih-Hung Dec 1997 A
5701621 Landi et al. Dec 1997 A
5715695 Lord Feb 1998 A
5787534 Hargest et al. Aug 1998 A
5833309 Schmitz Nov 1998 A
5833321 Kim et al. Nov 1998 A
5887304 von der Heyde Mar 1999 A
5897162 Humes et al. Apr 1999 A
5902014 Dinkel et al. May 1999 A
5918930 Kawai et al. Jul 1999 A
5921100 Yoshinori et al. Jul 1999 A
5921314 Schuller et al. Jul 1999 A
5921858 Kawai et al. Jul 1999 A
5924766 Esaki et al. Jul 1999 A
5924767 Pietryga Jul 1999 A
5927817 Ekman et al. Jul 1999 A
5934748 Faust et al. Aug 1999 A
6003950 Larsson Dec 1999 A
6019420 Faust et al. Feb 2000 A
6048024 Wallman Apr 2000 A
6049927 Thomas et al. Apr 2000 A
6059018 Yoshinori et al. May 2000 A
6059362 Lin May 2000 A
6062641 Suzuki et al. May 2000 A
6064037 Weiss et al. May 2000 A
6068332 Faust et al. May 2000 A
6079485 Esaki et al. Jun 2000 A
6085369 Feher Jul 2000 A
6105667 Yoshinori et al. Aug 2000 A
6109688 Wurz et al. Aug 2000 A
6119463 Bell Sep 2000 A
6124577 Fristedt Sep 2000 A
6145925 Eksin et al. Nov 2000 A
6147332 Holmberg et al. Nov 2000 A
6164719 Rauh Dec 2000 A
6179706 Yoshinori et al. Jan 2001 B1
6186592 Orizaris et al. Feb 2001 B1
6189966 Faust et al. Feb 2001 B1
6196627 Faust et al. Mar 2001 B1
6223539 Bell May 2001 B1
6224150 Eksin et al. May 2001 B1
6237675 Oehring et al. May 2001 B1
6254179 Kortume et al. Jul 2001 B1
6263530 Feher Jul 2001 B1
6273810 Rhodes et al. Aug 2001 B1
6277023 Schwarz Aug 2001 B1
6278090 Fristedt et al. Aug 2001 B1
6291803 Fourrey Sep 2001 B1
6300150 Venkatasubramanian Oct 2001 B1
6321996 Odebrecht et al. Nov 2001 B1
6415501 Schlesselman Jul 2002 B1
6425637 Gardner et al. Jul 2002 B1
6434328 Rutherford Aug 2002 B2
6478369 Aoki et al. Nov 2002 B1
6481801 Schmale Nov 2002 B1
6483087 Gardner et al. Nov 2002 B2
6491578 Yoshinori et al. Dec 2002 B2
6497275 Elliot Dec 2002 B1
6501055 Rock et al. Dec 2002 B2
6505886 Gielda et al. Jan 2003 B2
6511125 Gendron Jan 2003 B1
6539725 Bell Apr 2003 B2
6541737 Eksin et al. Apr 2003 B1
RE38128 Gallup et al. Jun 2003 E
6578910 Andersson et al. Jun 2003 B2
6592181 Stiller et al. Jul 2003 B2
6598405 Bell Jul 2003 B2
6604785 Bargheer et al. Aug 2003 B2
6606866 Bell Aug 2003 B2
6619736 Stowe et al. Sep 2003 B2
6625990 Bell Sep 2003 B2
6626386 Stiner et al. Sep 2003 B1
6626455 Webber et al. Sep 2003 B2
6626488 Pfahler Sep 2003 B2
6629724 Ekern et al. Oct 2003 B2
6629725 Kunkel et al. Oct 2003 B1
6682140 Minuth et al. Jan 2004 B2
6685553 Aoki Feb 2004 B2
6687937 Harker Feb 2004 B2
6719624 Hayashi et al. Apr 2004 B2
6722148 Aoki et al. Apr 2004 B2
6761399 Bargheer et al. Jul 2004 B2
6767621 Flick et al. Jul 2004 B2
6786541 Haupt et al. Sep 2004 B2
6786545 Bargheer et al. Sep 2004 B2
6793016 Aoki et al. Sep 2004 B2
6808230 Buss et al. Oct 2004 B2
6817675 Buss et al. Nov 2004 B2
6826792 Lin Dec 2004 B2
6828528 Stöwe et al. Dec 2004 B2
6848742 Aoki et al. Feb 2005 B1
6857697 Brennan et al. Feb 2005 B2
6869139 Brennan et al. Mar 2005 B2
6869140 White et al. Mar 2005 B2
6871696 Aoki et al. Mar 2005 B2
6886352 Yoshinori et al. May 2005 B2
6892807 Fristedt et al. May 2005 B2
6893086 Bajic et al. May 2005 B2
6929322 Aoki et al. Aug 2005 B2
6957545 Aoki Oct 2005 B2
6976734 Stoewe Dec 2005 B2
7040710 White et al. May 2006 B2
20010035669 Andersson et al. Nov 2001 A1
20020003363 Buss et al. Jan 2002 A1
20020017102 Bell Feb 2002 A1
20020067058 Pfahler Jun 2002 A1
20020092308 Bell Jul 2002 A1
20020096915 Haupt et al. Jul 2002 A1
20020096931 White et al. Jul 2002 A1
20020105213 Rauh et al. Aug 2002 A1
20020108381 Bell Aug 2002 A1
20020139123 Bell Oct 2002 A1
20020140258 Ekern et al. Oct 2002 A1
20020148234 Bell Oct 2002 A1
20020148235 Bell Oct 2002 A1
20020148236 Bell Oct 2002 A1
20020148345 Hagiwari Oct 2002 A1
20020150478 Aoki Oct 2002 A1
20030005706 Bell Jan 2003 A1
20030024924 Fristedt Feb 2003 A1
20030029173 Bell et al. Feb 2003 A1
20030079770 Bell May 2003 A1
20030084935 Bell May 2003 A1
20030102699 Aoki et al. Jun 2003 A1
20030150229 Aoki et al. Aug 2003 A1
20040036326 Bajic Feb 2004 A1
20040104607 Takeshi et al. Jun 2004 A1
20040118555 Fristedt Jun 2004 A1
20040139758 Toshifumi et al. Jul 2004 A1
20040189061 Hartwick et al. Sep 2004 A1
20040195870 Bohlender et al. Oct 2004 A1
20040245811 Bevan et al. Dec 2004 A1
20050072165 Bell Apr 2005 A1
20050200179 Bevan et al. Sep 2005 A1
20050257541 Kadle et al. Nov 2005 A1
20050264086 Lofy et al. Dec 2005 A1
20060048518 Bell Mar 2006 A1
20060103183 White et al. May 2006 A1
20060130490 Petrovski Jun 2006 A1
20060197363 Lofy et al. Sep 2006 A1
20060208540 Lofy et al. Sep 2006 A1
20060214480 Terech Sep 2006 A1
Foreign Referenced Citations (83)
Number Date Country
1266925 Jul 1960 CA
2393970 Jun 2001 CA
3513909 Oct 1986 DE
37 05 756 Oct 1988 DE
41 12 631 Apr 1992 DE
19503291 Aug 1996 DE
19634370 Mar 1998 DE
19654370 Mar 1998 DE
197 36 951 Mar 1999 DE
197 37 636 Mar 1999 DE
19805174 Jun 1999 DE
198 10 936 Sep 1999 DE
199 20 451 Dec 1999 DE
199 54 97 Jan 2001 DE
100 01 314 Jul 2001 DE
100 24 880 Sep 2001 DE
10013492 Sep 2001 DE
10030708 Jan 2002 DE
10144839 Mar 2003 DE
10241571 Mar 2004 DE
10261902 Aug 2004 DE
10316732 Oct 2004 DE
10338525 Mar 2005 DE
10346064 Apr 2005 DE
0 128 534 Dec 1984 EP
0 280 213 Aug 1988 EP
0 517 615 Dec 1992 EP
411375 May 1994 EP
0809576 May 1999 EP
0 936 105 Aug 1999 EP
0 730 720 Jul 2000 EP
1088696 Sep 2000 EP
1050429 Nov 2000 EP
1123834 Feb 2001 EP
1266794 Dec 2002 EP
1 075 984 May 2003 EP
1323573 Jul 2003 EP
1349746 Aug 2005 EP
1266925 Sep 1960 FR
2599683 Jun 1986 FR
2630056 Oct 1989 FR
2694527 Feb 1994 FR
2845318 Apr 2004 FR
1171509 Jul 1989 JP
5277020 Oct 1993 JP
8285423 Nov 1996 JP
10044756 Feb 1998 JP
2000125990 Feb 2000 JP
2001071800 Mar 2001 JP
2002125801 May 2002 JP
2002225539 Aug 2002 JP
2002234332 Aug 2002 JP
2003042594 Feb 2003 JP
2004224108 Aug 2004 JP
2004283403 Oct 2004 JP
202556 Mar 1966 SE
0102983 Mar 2003 SE
WO 9112150 Aug 1991 WO
WO 9409684 May 1994 WO
WO 9605475 Feb 1996 WO
WO 9709908 Mar 1997 WO
WO 9900268 Jan 1999 WO
WO 0206914 Jan 2002 WO
WO 2005042299 May 2002 WO
WO 02005341 Jul 2002 WO
WO 03015583 Feb 2003 WO
WO 03051666 Jun 2003 WO
WO 03077710 Sep 2003 WO
WO 03101777 Dec 2003 WO
WO 03106215 Dec 2003 WO
WO 2004082989 Mar 2004 WO
WO 2004028857 Apr 2004 WO
WO 2004078517 Sep 2004 WO
WO 2004091966 Oct 2004 WO
WO 2004091967 Oct 2004 WO
WO 2004096601 Nov 2004 WO
WO 2004096602 Nov 2004 WO
WO 2005021320 Mar 2005 WO
WO 2005035305 Apr 2005 WO
WO 2005042301 May 2005 WO
WO 2005047056 May 2005 WO
WO 2005068253 Jul 2005 WO
WO 2005110806 Nov 2005 WO
Related Publications (1)
Number Date Country
20060103184 A1 May 2006 US
Divisions (1)
Number Date Country
Parent 10738495 Dec 2003 US
Child 11287840 US