1. Technical Field
This invention relates to occupant seats for automotive vehicles and specifically to an occupant seat with a rotating angle adjustment.
2. Background Art
A primary goal in the design of automotive vehicle interiors is to achieve the most comfortable and safe seating positions for vehicle occupants having a wide range of body sizes and types. Many different types of adjustable seat mechanisms have been proposed to allow a seat occupant to vary one or more characteristics such as the seat height, forward/rear position, seat bottom angle, and seat back angle.
Limited space is available in the passenger compartments of most vehicles, and particularly in the rear seating rows. It would be desirable to provide a seat assembly that allows occupants the ability to adjust the tilt angle of the seat cushion and the seat back using a single control which provides a large range of motion to increase comfort and safety.
In a disclosed embodiment a vehicle seat assembly comprises a seat bottom having forward and rear edges, a mounting structure for securing the seat bottom to a vehicle interior and engaging the seat bottom to permit movement of the forward edge along a first arcuate path and movement of the rear edge along a second arcuate path, the arcuate paths having a common center of curvature located above the seat bottom, and a seat back attached to the seat bottom for rotation about an axis adjacent the seat bottom rear edge. The seat bottom is movable relative to the mounting structure along the arcuate paths in a rocking or rotating manner, while the angle between the seat bottom and seat back is unaffected by the rocking movement.
In another disclosed embodiment a vehicle seat assembly comprises a seat bottom having a forward edge and a rear edge, and a mounting structure supporting the seat bottom adjacent the forward and rear edges. The mounting structure comprises a forward guide track movably engaging the forward edge of the seat bottom and a rear guide track movably engaging the rear edge of the seat bottom, the two guide tracks defining arcuate paths having a common center of curvature located above the seat bottom. The seat bottom is moveable along the two guide tracks simultaneously so as to achieve a rocking or rotating movement about the center of curvature.
In another disclosed embodiment a vehicle seat assembly comprises a seat bottom having a forward edge and a rear edge; a seat back attached to the seat bottom for rotation about an axis adjacent the seat bottom rear edge; a seat mounting structure for securing the seat bottom to a vehicle interior, the mounting structure comprising a forward guide track defining a first arcuate path and a rear guide track defining a second arcuate path; a forward follower attached to the seat bottom adjacent to the forward edge and engaging the forward guide track for movement there along; and a rear follower attached to the seat bottom adjacent the rear edge and engaging the rear guide track for movement there along, the first and second arcuate paths having a common center of curvature located above the seat bottom.
Embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings in which:
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
Referring to
A horizontal reference line is labeled as H. A seat bottom reference line is labeled as S and indicates a mean or assumed angle of the seat bottom structure. A seat back reference line is labeled as B and indicates a mean or assumed angle of the seat back structure. The angle between horizontal reference line H and seat bottom reference line S is identified as u, and is variable in a manner to be described below. The angle between seat back reference line B and seat bottom reference line S is identified as 13, and may be varied by a seat occupant (not shown) using a manually operated control such as a knob or lever (not shown) or a powered mechanism (not shown) in a manner that is well known in the art.
Seat assembly 10 further comprises a mounting structure comprising a forward bracket 18 and a rear bracket 20 for mounting the seat to a vehicle interior structure 22. Forward bracket 18 includes an arc-shaped, slot-like guide track 24 that receives a follower 26 attached to seat bottom 12 adjacent a forward edge thereof. In the embodiment shown in
Rear bracket 20 includes an arc-shaped rear guide track or slot 30 and a toothed rack 32 disposed just below the slot. A rear follower 34 is attached to seat bottom 12 adjacent the rear edge thereof and engages the rear slot 30. A pinion gear 36 is attached to rear follower 34 and/or seat bottom 12 so that the teeth of the pinion engage rack 32 as the follower rides in slot 30. An adjustment wheel or knob 40 may be rotated by a seat occupant to rotate pinion 36. Knob 40 is show as coaxial with and directly connected to pinion 36, but the two may be mechanically interconnected in any appropriate fashion.
Forward and rear slots 24, 30 define arc-shaped paths along which the respective followers 26, 34 simultaneously travel. This travel results in a rotating or rocking movement of seat assembly 10 and a consequent change in angle α. Because both followers are located on seat bottom 12, adjustments or changes to angle α may be made with no resulting change in angle β.
The forward and rear arc-shaped paths 24, 30 follow a common are A having a center-of-curvature 38 located above seat bottom 12. The are A defines the respective centerlines of are-shaped paths 24, 30 as is moer clearly shown in the enlarged views of
The relative locations of center-of-curvature 38, seat assembly 10, and the SGRP may be expressed by the dimensions indicated on
Seat assembly 10 may by infinitely adjustable between the two extreme positions, or a number of discrete positions may be provided. Seat assembly 10 rocks or rotates about center-or-curvature 38 between the two positions without any related change in the angle β between seat bottom 12 and seat back 14. When in the upright position, seat bottom reference line SU is oriented at an angle αU relative to horizontal reference line H. When in the reclined position, seat bottom reference line SR is oriented at an angle αR relative to horizontal reference line H.
With the relative dimensions as shown in
The embodiment shown in
As seen in
It will be apparent to a person of average skill in the art that the rocking or rotating motion of seat assembly 10 about center-of-curvature 38 may be achieved by any number of alternatives to the mechanism disclosed in
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4355778 | Hess et al. | Oct 1982 | A |
5244252 | Serber | Sep 1993 | A |
5366269 | Beauvais | Nov 1994 | A |
5437494 | Beauvais | Aug 1995 | A |
5449218 | Beauvais et al. | Sep 1995 | A |
5735574 | Serber | Apr 1998 | A |
6776454 | Aubert et al. | Aug 2004 | B1 |
7052088 | Aramburu Echeverria | May 2006 | B2 |
7780230 | Serber | Aug 2010 | B2 |
20060138797 | Wang et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
1331130 | Jul 2003 | EP |
7315084 | Dec 1995 | JP |
Number | Date | Country | |
---|---|---|---|
20120104819 A1 | May 2012 | US |