This application claims the benefit of priority from German Patent Application No. 10 2010 010 290.3, filed on Mar. 4, 2010, which is hereby incorporated by reference in its entirety.
The invention relates to a vehicle seat with an upper seat part comprising a seat part and a backrest, and a lower seat part, in which case a height-adjustable seat frame with at least two scissor arms connected to each other in an articulated manner is arranged between the upper seat part and the lower seat part.
It is customary for vehicle seats frequently to have height-adjustable seat frames which are assembled from two or more scissor arms. In this case the scissor arms are connected to each other in an articulated manner in the middle region thereof, so that they can be extended towards the top and the bottom, which is accompanied at the same time by a displacement of at least one end of each scissor arm, preferably in the horizontal direction.
A displacement in this way in a displacement direction preferably orientated horizontally takes place in such a way that at least one of the ends of the scissor arms has rolls which roll along inside a guide rail which likewise extends preferably horizontally and wherein the scissor arms are connected to the upper seat part at one end and the lower seat part at the other end. An attachment of rolls in this way frequently has the drawback that they have to be produced in an expensive manner since they frequently have to be produced from metal or from plastics material with a metal bearing and have to be connected to the ends of the scissor arms by means of a plurality of assembly steps. In addition, in the event of wear of the rolls and/or the guide rails which are frequently preferably made U-shaped in their cross-section and which surround the rolls, it is necessary to exchange the rolls in a time-consuming and costly manner.
A further drawback is that the rolls as well as the guide rails have to be produced with a high degree of fitting accuracy in order to ensure a virtually clearance-free rolling of the rolls inside the guide rail and thus to make the vehicle seat safe in the event of an accident.
In this way the object of the invention is to make available a vehicle seat with an upper seat part and a lower seat part as well as a seat frame arranged between them, which will allow an inexpensive and rapid production of a seat frame attached between the upper seat part and the lower seat part as well as a rapid assembly of the seat frame with the remaining components of the vehicle seat.
This object is attained according to the features of claim 1.
An essential aspect of the invention lies in the fact that in the case of a vehicle seat with an upper seat part comprising a seat part and a backrest and a lower seat part, in which case a height-displaceable seat frame with at least two scissor arms connected to each other in an articulated manner is arranged between the upper seat part and the lower seat part, at least one first end of at least one of the scissor arms is connected to at least one slide element for the displacement—sliding in at least one displacement direction—of the first end inside at least one guide rail. On account of the arrangement of slide elements instead of rolls it is advantageously made possible for an inexpensive and rapid production of these elements, for example of plastics material, which run along the guide rails. In addition, a rapid connection of these slide elements to ends of the scissor arms is made possible.
A slide element of this type advantageously comprises at least one substantially cuboidal element, wherein this element slides with at least two mutually opposed first surfaces along sliding faces 13a, 13b of the guide rail 7 which preferably has a U-shaped cross-sectional profile along a plane B-B, as shown in
In accordance with a preferred embodiment the first surfaces are designed in such a way that each first surface has a flat first face situated in the central region of the first surface and—as viewed in the displacement direction—at least one flat or curved second face situated behind the first face and at least one flat or curved third face situated in front of the first face.
The second face—as viewed in the displacement direction—is designed to extend sloping from the first face towards a first end of the first surface. The third face, on the other hand—as viewed in a direction opposed to the displacement direction—is designed to extend sloping from the first face towards a second end of the first surface.
The design of such second and third faces prevents tilting of the slide element designed in a cuboidal manner from taking place in the event of displacement of the slide element in the forward and reverse directions, i.e. in the displacement direction.
In fact, on account of these sloping second and third faces, jamming of the slide element can be prevented even in the case of a rapid displacement in the displacement direction inside the guide rail, since when sliding forwards the slide element slides on the upper second face and the lower third face by slight turning of the slide element suspended in an articulated manner and when sliding backwards it slides on the upper third faces and the lower second face. This leads to the slide element not remaining suspended and no jerking taking place, as could happen in the event of tilting of an exactly cuboidal element, if little clearance is present between the sliding faces of the guide rail and the slide element. In this way, tilting and jerking during the displacement movement are prevented by a slight rotation of the slide element which is arranged so as to be rotatable on the first end of a scissor arm by means of a shaft extending perpendicularly to the guide rail.
In accordance with a further development of the invention the first and/or second and/or third face—as viewed perpendicularly to the displacement direction—has or have sloping faces starting from the central region of the face towards edge regions of the element. As a result, it is also possible for an undesired lateral tilting of the slide element to be prevented.
The second and third face can be arranged in the form of a flat face with an angle in a range of from 0.05° to 5.0° with respect to a plane of the sliding face of the guide rail. Such angles, of which 0.2° is preferably used as the angular dimension, have proven successful in their order of magnitude since the non-jamming sliding of the slide elements inside the guide rail, which embrace the slide element at least on the top side and underside, is possible on the one hand and as little clearance as possible is provided between the sliding faces of the guide rail and the surfaces of the slide element even in a sliding state on the other hand.
In accordance with a further embodiment the first surfaces are designed in such a way that every first surface has two flat faces which—as viewed in the displacement direction—extend sloping from a central region of the first surface towards a first and second end of the first surface. On account of such a design in the manner of a gabled roof—when viewed from the side or in cross-section—of the surface of the slide element, a reduction of the face portions from three or—if faces sloping at the side are desired—nine to a total of two faces or—if faces sloping at the side are desired—also to a total of six face portions respectively.
In contrast to the first embodiment of the invention named above, enlarged sliding faces, namely the fifth faces, are available during a sliding movement and in this respect there is a lower degree of wear as compared with the previously named embodiment with three or nine face portions respectively. In this case it is nevertheless a drawback that a greater degree of clearance has to be present between the sliding faces of the guide rails and the surface of the slide element, since the angle between the fifth faces and a plane of the sliding face of the guide rail has to be selected from a range of from 0.1° to 15.0° in order to ensure a satisfactory operation of the sliding movement.
The slide elements are attached in a rotatable manner in each case to the first end of the scissor arm by at least one shaft, which extends perpendicularly to the guide rail and which is likewise preferably made horizontal, and they engage in a recess which is preferably provided centrally in the slide element to this end and which need not necessarily pass through the whole of the slide element, but extends for example only as far as half the width of the slide element.
Further advantageous embodiments are set out in the sub-claims.
Advantages and useful features may be seen in the following description in conjunction with the drawing. In the drawing
a and 5b are a side view together with a cut-away illustration of the slide element for the vehicle seat according to the first embodiment of the invention with a first angular setting of the slide element;
a and 6b are a side view of the slide element for the vehicle seat according to the first embodiment of the invention with a second angular setting of the slide element;
a and 7b are a side view of the slide element for a vehicle seat according to a second embodiment of the invention together with a cut-away illustration;
a and 8b are a side view with a cut-away illustration of the slide element for the vehicle seat according to a third embodiment of the invention in a first angular setting of the slide element;
a and 9b are a side view and a cut-away illustration of the slide element for a vehicle seat according to the third embodiment of the invention in a second angular setting of the slide element;
a are a diagrammatic illustration of a frame of the vehicle seat with a slide element of the second embodiment during an upwardly directed movement of the seat frame;
a are a diagrammatic illustration of the seat frame illustrated in
a are a diagrammatic illustration of the seat frame illustrated in
The vehicle seat 1 is formed from the seat part 2 and the backrest 3 and comprises the seat frame 4 which is situated between an upper seat part—which is formed from the seat part 2 and the backrest 3 as well as an upper frame in the manner of a framework which inter alia has a guide rail 7—and a lower seat part which can likewise be constructed in the manner of a framework or from two separate rails 11, and inter alia contains a guide rail 8.
In addition, the seat frame 4 comprises two scissor arms 5, 6 which are connected to each other in a rotatable manner by means of a shaft which preferably extends transversely to the direction of the vehicle seat or the sitting direction of the person who is using the vehicle seat.
The scissor arms 5, 6 can be connected in a fixed manner at their rear end or—as viewed in the plane of the drawing—at their right-hand end to the lower seat part rail 11 and a portion of the upper seat part with which the guide rail 7 is associated. Alternatively, they can be displaceable in the displacement direction 10 and in a direction opposed to the displacement direction 10. A fixed locking of at least the right-hand or rear end of the scissor arm 6 is preferred.
According to the invention a front end 5a and 6a of the scissor arms 5, 6 is connected to slide elements 12 and can be displaced in the displacement direction 10 or in a direction opposed to the displacement direction 10 by means of these slide elements which are preferably produced from plastics material and which have a high degree of hardness. This is necessary if the seat is to undergo height-displacement, i.e. the two scissor arms are to be deflected towards the top or the bottom and are thus also to be displaced in the direction of the displacement direction or in a direction opposed to this displacement direction by means of the slide elements.
As shown in a cut-away illustration A in
The slide element, which is preferably produced from hard plastics material in order to have satisfactory sliding properties with respect to the guide rail 7 and 8 which is preferably produced from metal, is illustrated in a side view in
It is evident from the side view—reproduced in FIG. 2—of the slide element for a vehicle seat according to the first embodiment of the invention that the first surfaces 18 with a first end 18a and a second end 18b have a central first face 14a and 14b which—if the vehicle seat momentarily has a horizontal orientation—are likewise orientated horizontally. Starting from these central first faces 14a and 14b—as viewed in the displacement direction 10—a second face 16a and 16b is arranged behind the first flat face 14a and 14b which constitutes a slope of the cuboidal element and thus slopes starting from the first face 14a and 14b in the direction of the first end 18a of the first surface 18.
A third face 15a and 15b is likewise arranged which—as viewed in the displacement direction—is arranged in front of the first face 14a and 14b and extends in a sloping manner starting from the first face 14a and 14b in the direction of the second end 18b of the first surface 18.
As a result of the design of these three faces 14a, 15a and 16a, and 14b, 15b and 16b respectively it is advantageously made possible for the slide element to be able to rotate slightly during the displacement movement about a shaft, which is mounted centrally in a recess 17 in the slide element, without in this case becoming stuck inside the guide rail which is preferably made U-shaped in cross-section or without becoming jammed inside this guide rail. This is because a rotation which takes place in the horizontal direction on account of the displacement force will result in sliding of the slide element on the faces 15b and 16a during a displacement movement directed forwards in the displacement direction 10 and sliding on the faces 15a and 16b during a displacement movement directed in a direction opposed to the displacement direction 10. This always ensures, in a reliable manner, sliding between the sliding faces 13a and 13b of the guide rail and the slide element 12 whilst retaining a slight clearance or interspace or play between the sliding faces of the guide rail and the surfaces 18 of the slide element.
It is evident from the side view—shown in FIG. 2—of the slide element according to the first embodiment and the perspective illustration as reproduced in
As a result, it is evident from the illustrations of
It is additionally evident from
These faces which slope towards the lateral edge regions of the slide element advantageously make it likewise possible for jamming in the lateral direction and simplified assembly of the slide element into the guide rail to take place. In addition, during the sliding movements this makes it possible for contamination caused by particles or chips resulting from the wear of the sliding faces to be forced into the lateral regions between the sliding faces 13a and 13b of the guide rail as well as the faces 23a, 24a, 25a as well as 23b, 24b, 25b, without obstructing the actual sliding movement or obstructing or impairing the actual sliding faces 20b, 21b and 22b or—transferred to the other faces—14a, 15a and 16a as well as 14b, 15b and 16b.
In addition, in order to save weight and for stabilization purposes the slide element has recesses 26, 27 which can be designed in any desired manner.
The slide element for the vehicle seat in the first embodiment is shown in
The first faces 14a or—as is evident from this illustration according to FIG. 4—20a can be for example a face situated centrally and with a dimension of 7 mm by 7 mm.
A side view and a cut-away illustration with the slide element for a vehicle seat according to the first embodiment are shown in
A shaft (not shown in detail in this case), which is connected to first ends 5a, 6a of the scissor arms 5, 6 and which arranges the slide element on the first end in a pivotable manner, is arranged inside the recess 17.
It is likewise evident from this illustration that the first faces 14a and 14b are momentarily in direct contact with the sliding faces 13a and 13b of the guide rail.
In the enlarged illustration A as shown in
In
In the illustration A enlarged in
The slide element for a vehicle seat according to a second embodiment of the invention is shown in
It is likewise evident from the illustrations as shown in
The slide element for a vehicle seat according to a third embodiment of the invention is shown in a side view and in a cut-away illustration in
In the case of an angle of 0° on the other hand, as is shown in the illustration according to
The seat frame with slide elements according to the second embodiment of the invention during an upwardly directed movement of the seat frame is shown in a diagrammatic illustration in
An enlarged illustration of a slide element 12 with respect to the sliding face of the guide rail is shown in
The seat frame 4 during a downwardly directed movement in accordance with the arrow 52 is shown in a diagrammatic illustration in
A cut-away view of a slide element in this position with respect to the sliding face 13a of the guide rail is shown in
The seat frame as shown in
All the features disclosed in the application documents are claimed as being essential to the invention, insofar as they are novel either individually or in combination as compared with the prior art.
Number | Date | Country | Kind |
---|---|---|---|
10 2010 010 290 | Mar 2010 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
2118456 | Whedon | May 1938 | A |
3300203 | Carter et al. | Jan 1967 | A |
3752432 | Lowe | Aug 1973 | A |
4151973 | Sedlock | May 1979 | A |
4213594 | Pietsch et al. | Jul 1980 | A |
4286765 | Delgleize et al. | Sep 1981 | A |
4350317 | Aondetto | Sep 1982 | A |
4408744 | Thompson | Oct 1983 | A |
4451079 | Takahashi | May 1984 | A |
4477050 | Thompson et al. | Oct 1984 | A |
4573657 | Sakamoto | Mar 1986 | A |
4645169 | Mischer | Feb 1987 | A |
4679760 | Dotzler et al. | Jul 1987 | A |
4684100 | Grassl | Aug 1987 | A |
4729539 | Nagata | Mar 1988 | A |
4773671 | Inagaki | Sep 1988 | A |
4784434 | Iwami | Nov 1988 | A |
4856763 | Brodersen et al. | Aug 1989 | A |
4943037 | Brodersen et al. | Jul 1990 | A |
4993778 | Colin et al. | Feb 1991 | A |
5058852 | Meier et al. | Oct 1991 | A |
5125631 | Brodersen et al. | Jun 1992 | A |
5211369 | Hoemer | May 1993 | A |
5251864 | Itou | Oct 1993 | A |
5364060 | Donovan et al. | Nov 1994 | A |
5521821 | Shimizu et al. | May 1996 | A |
5533703 | Grassl et al. | Jul 1996 | A |
5553911 | Bodin et al. | Sep 1996 | A |
5582385 | Boyle et al. | Dec 1996 | A |
5735509 | Gryp et al. | Apr 1998 | A |
5765802 | Bostrom et al. | Jun 1998 | A |
5791738 | Niezoldt | Aug 1998 | A |
5794911 | Hill | Aug 1998 | A |
5871198 | Bostrom et al. | Feb 1999 | A |
5957426 | Brodersen | Sep 1999 | A |
5967604 | Yoshida et al. | Oct 1999 | A |
5971116 | Franklin | Oct 1999 | A |
6042093 | Garelick | Mar 2000 | A |
6340201 | Higuchi | Jan 2002 | B1 |
6478102 | Puterbaugh et al. | Nov 2002 | B1 |
6543755 | Monson et al. | Apr 2003 | B2 |
6616116 | Rochau et al. | Sep 2003 | B1 |
6637735 | Monson et al. | Oct 2003 | B2 |
6763550 | Regnier | Jul 2004 | B2 |
6802408 | Krammer | Oct 2004 | B2 |
7044553 | Ropp | May 2006 | B2 |
7152839 | Mullinix et al. | Dec 2006 | B2 |
7168671 | Bostrom et al. | Jan 2007 | B2 |
7185867 | Hill et al. | Mar 2007 | B2 |
7712836 | Deml | May 2010 | B2 |
7810884 | Lorey et al. | Oct 2010 | B2 |
7886882 | Behmenburg et al. | Feb 2011 | B2 |
7942248 | St. Clair et al. | May 2011 | B2 |
8118287 | Schordine | Feb 2012 | B2 |
20010035600 | St. Clair | Nov 2001 | A1 |
20020011699 | St. Clair | Jan 2002 | A1 |
20060278805 | Haller | Dec 2006 | A1 |
20070278723 | Shoemaker et al. | Dec 2007 | A1 |
20080000738 | Zdeb | Jan 2008 | A1 |
20080000739 | Behmenburg et al. | Jan 2008 | A1 |
20080088165 | Deml | Apr 2008 | A1 |
20080156602 | Hiemenz et al. | Jul 2008 | A1 |
20080197684 | Ott et al. | Aug 2008 | A1 |
20090134595 | Haller et al. | May 2009 | A1 |
20090179390 | Wurmthaler et al. | Jul 2009 | A1 |
20090184448 | Hiser | Jul 2009 | A1 |
20090256293 | Ward | Oct 2009 | A1 |
20090283944 | Schordine | Nov 2009 | A1 |
20100052356 | Lewis, II | Mar 2010 | A1 |
20100072800 | Weber et al. | Mar 2010 | A1 |
20100102493 | Deml et al. | Apr 2010 | A1 |
20100117428 | Deml et al. | May 2010 | A1 |
20110001033 | Kohl et al. | Jan 2011 | A1 |
20110001342 | Deml et al. | Jan 2011 | A1 |
20110022265 | Sekiya | Jan 2011 | A1 |
20110226930 | Enns et al. | Sep 2011 | A1 |
20110278894 | Lorey | Nov 2011 | A1 |
20120025577 | Kolb | Feb 2012 | A1 |
20120043798 | Haller et al. | Feb 2012 | A1 |
20120049421 | Haller et al. | Mar 2012 | A1 |
20120086159 | Kolb | Apr 2012 | A1 |
20120090930 | Haller | Apr 2012 | A1 |
20120091773 | Lorey | Apr 2012 | A1 |
20120126592 | Kaessner et al. | May 2012 | A1 |
20120153689 | Haller et al. | Jun 2012 | A1 |
20120153695 | Haller et al. | Jun 2012 | A1 |
20120187615 | Haller et al. | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
100493951 | Jun 2009 | CN |
1 898 307 | Aug 1964 | DE |
15 55 056 | Mar 1970 | DE |
19 16 403 | Oct 1970 | DE |
21 13 579 | Oct 1972 | DE |
28 06 247 | Aug 1979 | DE |
28 11 034 | Sep 1979 | DE |
28 51 129 | Jun 1980 | DE |
32 42 287 | May 1984 | DE |
35 17 345 | Nov 1986 | DE |
38 24 272 | Mar 1990 | DE |
41 01 221 | Jul 1992 | DE |
696 06 732 | Apr 1995 | DE |
197 56 252 | Jul 1998 | DE |
197 41 602 | Mar 1999 | DE |
603 20 456 | Dec 2002 | DE |
699 08 290 | May 2004 | DE |
10 2005 028 725 | Jan 2006 | DE |
10 2006 016 047 | Apr 2006 | DE |
10 2005 003 833 | Jun 2006 | DE |
10 2005 011 856 | Aug 2006 | DE |
10 2007 030 467 | Jan 2009 | DE |
10 2008 016 685 | Jun 2009 | DE |
10 2008 010 719 | Aug 2009 | DE |
10 2008 045 492 | Mar 2010 | DE |
10 2008 052 960 | Apr 2010 | DE |
10 2008 056 200 | May 2010 | DE |
10 2009 020 034 | Nov 2010 | DE |
10 2009 040 010 | Jan 2011 | DE |
0 054 880 | Dec 1981 | EP |
0 054 947 | Dec 1981 | EP |
0 089 794 | Sep 1983 | EP |
0 448 340 | Sep 1991 | EP |
0 739 766 | Oct 1996 | EP |
1 035 258 | Sep 2000 | EP |
2 420 404 | Feb 2012 | EP |
1 166 258 | Oct 1969 | GB |
1199577 | Jul 1970 | GB |
1 383 922 | Feb 1974 | GB |
2 014 522 | Aug 1979 | GB |
63220026 | Sep 1988 | JP |
1237471 | Sep 1989 | JP |
09136611 | May 1997 | JP |
2007 062 539 | Mar 2007 | JP |
WO 2004110808 | Dec 2004 | WO |
Entry |
---|
Search Report for European Patent Application No. 11177689.4, mailed Dec. 14, 2011. |
Office Action for German Patent Application No. 10 2010 035 888.6 mailed Jun. 9, 2011. |
Office Action for German patent application No. 10 2010 048 210.2, mailed Jul. 7, 2011. |
Office Action for German patent application No. 10 2010 051 325.3, mailed Oct. 10, 2011. |
Office Action for German Patent Application No. 10 2010 055 342.5, mailed Oct. 6, 2011. |
Extended European Search Report for parallel European Patent Application No. 11 19 5031, mailed Apr. 5, 2012. |
Office Action for German Patent Application No. 10 2010 055 344.1, mailed Oct. 5, 2011. |
Examination Report dated Aug. 24, 2012, from the German Patent Office for German Patent Application No. 10 2010 026 569.1. |
First Office Action dated Mar. 29, 2012 for Chinese Patent Application No. 201010244916.3. |
First Office Action dated Mar. 29, 2012 for Chinese Patent Application No. 201010244916.3, English translation. |
Office Action, Chinese Patent Application No. 201110052443.1, dated Dec. 30, 2012. |
Office Action, Chinese Patent Application No. 201110052443.1, dated Dec. 30, 2012, English Translation. |
Examination Report for German Patent Application No. 10 2011 009 530.6 dated May 4, 2012. |
Extended European Search Report for European Patent Application No. 12 159 863.5, dated Jul. 4, 2012. |
Office Action for German Patent Application No. 10 2011 015 364.0, mailed Feb. 6, 2012. |
Extended European Search Report for parallel European Patent Application No. 11 19 5039, mailed Apr. 5, 2012. |
European Search Report for European Patent Application No. 12 159 863.5, mailed Jul. 10, 2013. |
Number | Date | Country | |
---|---|---|---|
20110278894 A1 | Nov 2011 | US |