This application claims priority to PCT/SE2003/001728, filed Nov. 10, 2003 and GB 0300610.3, filed Jan. 10, 2003.
The present invention relates to a vehicle seat, and more particularly relates to a vehicle seat provided with an air-bag unit.
It is known to provide motor vehicle seats with one or more air-bags configured so that the air-bag may be inflated in a side impact crash situation, in order to provide lateral protection to an occupant of the seat. A typical such known type of arrangement comprises an air-bag module mounted to the back-rest of a vehicle seat, the air-bag module being arranged so that the air-bag is inflated in a forwards direction relative to the back-rest, such that the air-bag is deployed to the side of an occupant of the seat. In this manner, the inflated air-bag extends between the occupant and the side panel, door or window of the motor vehicle.
The above-mentioned type of vehicle seat and “side air-bag” arrangement can suffer from disadvantages. For example, in current side air-bag systems of the general type described above, there can be a significant distance separating an occupant of the seat and the air-bag during the early stages of deployment of the air-bag. If this is the case, then it is possible for the occupant of the seat, whose body moves relative to the seat in the event of a side impact crash situation by virtue of its inertia, may not immediately bear against the inflating air-bag.
Also, it is important for a side air-bag mounted to the back-rest of a vehicle seat to deploy in a manner which does not interfere with a person occupying the seat in an abnormal position, such as, for example, where the occupant may be leaning to one side so that part of the occupant's body lies in front of the air-bag rather than to the side of the air-bag. A conventional side air-bag inflating in a forwards direction could directly contact a seat occupant sitting in such a position.
The present invention therefore seeks to provide an improved vehicle seat.
Accordingly, the present invention provides a vehicle seat having a squab (or seat cushion) and a back-rest, the back-rest including a frame covered with upholstery; and an air-bag unit with an inflatable air-bag connected to an inflator to inflate the air-bag; the air-bag unit being mounted to the back-rest frame so as to be located inboard of part of the frame with the inflator being positioned to direct gas into the air-bag in a generally forward direction relative to the back-rest. The air-bag unit arranged in this manner will cause the air-bag to inflate so that at least part of the air-bag lies between the frame and an occupant of the seat; wherein the air-bag unit is mounted such that the inflator is located adjacent the rear-most region of the frame, so that a significant length of air-bag bears against the frame as the air-bag is inflated.
Preferably, the air-bag unit comprises a cover within which the air-bag is initially packed, the cover defining a break-line configured to break upon inflation of the air-bag such that the inflating air-bag bursts out of the cover; the cover being configured such that part of the cover engages the back-rest frame upon inflation of the air-bag so as to extend substantially forwardly of the frame and to define a support against which the air-bag bears upon inflation. Advantageously, the above-mentioned part of the cover is configured to engage the frame so as also to extend inwardly of the frame. Conveniently, the part of the cover comprises a reinforcing rib.
Preferably, the air-bag unit of this invention includes an inner air-bag and an outer air-bag, the inner air-bag being provided inside the outer air-bag, and both airbags being connected to the inflator so that they are both inflated together upon actuation of the air-bag unit. Advantageously, the outer air-bag is larger than the inner air-bag in the sense that it extends further forwards from the inflator when fully inflated.
Conveniently, the inner and outer air-bags are initially provided in a packed condition in which the inner bag and at least part of the outer bag are folded together in a substantially zigzag manner about fold lines lying substantially parallel to the axis of the back-rest extending away from the squab.
Advantageously, the inner and outer air-bags are initially provided in a packed condition in which the inner bag and at least part of the outer bag are spirally rolled together about an axis of the back-rest extending away from the squab.
Preferably, part of the outer air-bag extending past the forwardmost extent of the inner air-bag is initially spirally rolled about an axis substantially parallel to the axis of the backrest extending away from the squab. Conveniently, part of the outer air-bag extending past the forwardmost extent of the inner air-bag is initially folded in a substantially zig-zag manner about fold lines lying substantially parallel to the axis of the back-rest extending away from the squab.
Advantageously, the air-bag unit comprises a single air-bag having two inflatable chambers, the first of said chambers being located immediately adjacent the inflator, and the second chamber being located forwardly of the first chamber so as to be spaced from the inflator by the first chamber, the air-bag being configured such that upon actuation of the air-bag unit, the first said chamber is inflated substantially fully before the second chamber begins to inflate substantially. Conveniently, the two chambers are separated by a tear-seam configured to rupture or tear when the first chamber becomes inflated to a predetermined gas pressure, so as to then allow the second chamber to be inflated.
Preferably, the two chambers are separated by a seam having one or more apertures along its length to allow the passage of gas therethrough. Advantageously, a vent hole is provided in the air-bag in the region of the forwardmost part of the second chamber.
Conveniently, the air-bag unit comprises a single air-bag configured such that the forwardmost region of the air-bag remote from the inflator is folded inwardly of itself to define a re-entrant portion. Preferably, adjacent regions of the re-entrant portion of the air-bag are initially stitched together by stitching to define a tear-seam configured to tear or rupture upon inflation of the air-bag.
Advantageously, the air-bag is initially provided in a packed condition in which at least part of the air-bag is folded in a substantially zigzag manner about fold lines lying substantially parallel to the axis of the back-rest extending away from the squab. Conveniently, the air-bag is initially provided in a packed condition in which at least part of the air-bag is initially spirally rolled about an axis substantially parallel to the axis of the backrest extending away from the squab.
Preferably, the air-bag unit comprises an inboard air-bag and an outboard air-bag, the inboard air-bag being located inboard of the outboard air-bag and the outboard air-bag being located between the inboard air-bag and said part of the frame, both of said air-bags being connected to the same inflator. Advantageously, the two said air-bags are sized such that the inboard air-bag extends a greater distance between said part of the frame and the seat occupant than the outboard air-bag.
Conveniently, the two said air-bags are sized such that the outboard air-bag extends further from the inflator. Preferably, the inboard and outboard air-bags are initially provided in a packed condition in which the inboard bag and at least part of the outboard bag are folded together in a substantially zigzag manner about fold lines lying substantially parallel to the axis of the back-rest extending away from the squab.
Conveniently, the inboard and outboard air-bags are initially provided in a packed condition in which the inboard bag and at least part of the outboard bag are spirally rolled together about an axis substantially parallel to the axis of the back-rest extending away from the squab. Advantageously, part of the outboard air-bag extending past the forwardmost extent of the inboard air-bag is initially spirally rolled about an axis substantially parallel to the axis of the backrest extending away from the squab.
Preferably, part of the outboard air-bag extending past the forwardmost extent of the inboard air-bag is initially folded in a substantially zig-zag manner about fold lines lying substantially parallel to the axis of the back-rest extending away from the squab.
So that the present invention may be more readily understood, and so that further features thereof may be appreciated, embodiments of the invention may now be described, by way of example, with reference to the accompanying drawings, in which:
Referring initially to
The upholstery 4 and 7 of the squab 2 and the back-rest 5 respectively typically comprises foam material covered with an outer covering of fabric, plastic or leather. The upholstery 4 and 7 may additional comprises springs in a conventional manner.
As illustrated most clearly in
As illustrated most clearly in
In the region of the outboard bolster 14 illustrated in
Returning again to consider
As seen most clearly in
The air-bag unit 22 also comprises a pair of inflatable air-bags 28 and 29, made from fabric material, one air-bag 28 (the inner air-bag) is located inside the other air-bag 29 (the outer air-bag), and both extend generally forwardly from the inflator 23 into the main part of the cavity 18. The inner and outer air-bags 28 and 29 are both mounted between the arcuate region 26 of the mounting bracket 24 and a deflector shield 30 having a generally C-shaped cross-section. The nut and bolt fastener 27 mounting the inflator 23 to the mounting bracket 24 passes through the deflector shield 30, the inner air-bag 28 and the outer air-bag 29, to hold all of these components tightly together. The deflector shield 30 serves to protect the fabric of the inner and outer air-bags 28 and 29 from gas generated by the inflator 23 under high pressure, in the event that the air-bag unit 1 is actuated.
As illustrated in
As mentioned above, the inner and outer air-bags 28 and 29 are initially packed through a combination of zig-zag folds and roll folding. In particular, it will be seen that the outer air-bag 29 is larger than the inner air-bag 28 in the sense that the outer air-bag 29 extends further forwards from the inflator 23, than does the inner air-bag 28. It can therefore be seen that the inner air-bag 28 terminates at a position indicated at 34, in the initial packed condition illustrated in
Turning now to consider
As they inflate, the air-bags 28 and 29 rupture the housing 31, along the predefined tear line 32A, so as to burst out of the housing 31. Then, the inflating air-bags 28 and 29 also burst through the break line 19 of the bolster upholstery so as to urge the regions of the upholstery 20 and 21 immediately adjacent the break line apart.
Because the inner air-bag 28 is smaller than the outer air-bag 29, the smaller air-bag 28 reaches a fully-inflated condition significantly earlier during actuation of the air-bag arrangement 22, than does the outer air-bag 29.
Subsequent expulsion of gas from the inflator 23 causes the forwardmost rolled region of the outer air-bag 29 to unfurl forwardly and towards the seat occupant 16 in an inboard manner, in order to provide a fully deployed air-bag extending substantially completely between the occupant 16 and the side surface 17 of the motor vehicle. Because the outer air-bag 29 inflates in this forwards and inwardly-directed manner, it serves to prevent, or at least reduce, the risk of injuring a seat occupant 16 who might, for example, be sitting in an abnormal position, in which part of the occupant's body extends across the bolster 14 of the back-rest 5.
It should be appreciated that the inboard location of the air-bag unit 22 relative to the beam 10 offers significant advantages during inflation of the air-bags 28 and 29. In particular, it will be seen that because the inflator is located adjacent the rear region of the beam 10 near rear edge flange 13, as the air-bags 28 and 29 are inflated, a significant length of air-bag lies alongside the beam 10 and bears against the inner surface of the beam 10. This prevents the inflating air-bags 28 and 29 from moving outboard in this region and hence ensures that the inflating air-bags are located sufficiently close to the occupant 16. Engagement of the rib 32 carried by the cover 31 with the end flange 12 also contributes to this technical advantage because it prevents the cover moving past the forwardly and inwardly directed position illustrated in
Turning now to consider
The rear and front chambers 41 and 42 are separated from one another by a seam 43 which serves to secure together the two adjacent layers of fabric defining the air-bag 40. The seam 43 can take one of two different configurations. The first of these is a tear-seam arrangement in which the seam 43 is specially configured so as to rupture or tear when the rear chamber 41 becomes inflated to a predetermined gas pressure, so as then to allow gas produced by the inflator 23 to pass into the front chamber 42, so that the front chamber 42 can then also become inflated. It should therefore be appreciated that during the initial stages of inflation of the air-bag 40, the rear chamber 41 is separated from the front chamber 42, such that the rear chamber 41 is the only chamber to be inflated. However, when the gas pressure within the rear chamber 41 reaches a predetermined level at which with the rear chamber 41 becomes inflated to a sufficient degree to couple with the seat occupant 16 (in a similar way to the inflation of the inner air-bag 28 of the previously-described embodiment), the tear-seam 43 will rupture or tear, thereby allowing the front chamber 42 also to become inflated and to extend forwardly between the seat occupant 16 and the side surface 17 of the motor vehicle in generally the same manner as the outer air-bag 29 of the above-described embodiment.
Rather than using the tear-seam of the type described above, the seam 43 could be provided as a permanent seam, having a number of predefined gas outlet apertures 44 formed therealong. In such an arrangement, the gas outlet apertures 44 are sized and spaced from one another such that the rear chamber 41 becomes substantially fully inflated, before the front chamber 42. In either of the embodiments described with reference to
The inboard air-bag 60 is located so as to inflate generally between the outboard air-bag 61 and the seat occupant 16, whilst the outboard air-bag 61 is located so as to inflate between the inboard air-bag 60 and the beam 10. The inboard air-bag 60 is sized such that when it is fully inflated (as illustrated generally in
Whilst the above-described embodiments use rolling or zig-zag folding to pack the air-bags, it should be appreciated that other convenient packing configurations could be used.
The features disclosed in the foregoing description, or the following claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilised for realising the invention in diverse forms thereof.
Number | Date | Country | Kind |
---|---|---|---|
0300610.3 | Jan 2003 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE03/01728 | 11/10/2003 | WO | 00 | 6/22/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/062970 | 7/29/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5499840 | Nakano | Mar 1996 | A |
5503428 | Awotwi et al. | Apr 1996 | A |
5536038 | Bollaert et al. | Jul 1996 | A |
5556128 | Sinnhuber et al. | Sep 1996 | A |
5765863 | Storey et al. | Jun 1998 | A |
5779263 | Lane, Jr. et al. | Jul 1998 | A |
5803485 | Acker et al. | Sep 1998 | A |
5944341 | Kimura et al. | Aug 1999 | A |
5944342 | White, Jr. et al. | Aug 1999 | A |
5957486 | Taguchi et al. | Sep 1999 | A |
6045151 | Wu | Apr 2000 | A |
6062593 | Satani et al. | May 2000 | A |
6155593 | Kimura et al. | Dec 2000 | A |
6206466 | Komatsu | Mar 2001 | B1 |
6341797 | Seo | Jan 2002 | B1 |
6352304 | Sorgenfrei | Mar 2002 | B1 |
6450528 | Suezawa et al. | Sep 2002 | B1 |
6578911 | Harada et al. | Jun 2003 | B2 |
7004496 | Bossecker et al. | Feb 2006 | B2 |
7134686 | Tracht et al. | Nov 2006 | B2 |
7232150 | Nagayama | Jun 2007 | B2 |
7311325 | Tracht et al. | Dec 2007 | B2 |
Number | Date | Country |
---|---|---|
195 29 829 | Oct 1996 | DE |
197 30 148 | Jan 1998 | DE |
199 50 702 | Apr 2001 | DE |
0 818 365 | Jan 1998 | EP |
818 365 | Jan 1998 | EP |
0 826 565 | Mar 1998 | EP |
940 299 | Sep 1999 | EP |
10-100764 | Apr 1998 | JP |
2000-85515 | Mar 2000 | JP |
2001-114060 | Apr 2001 | JP |
WO 2004094199 | Nov 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060255572 A1 | Nov 2006 | US |