The present invention relates generally to a vehicle sensing system for a vehicle and, more particularly, to a vehicle sensing system that utilizes one or more sensors at a vehicle to provide a field of sensing around the vehicle.
Use of imaging sensors or ultrasonic sensors or radar sensors in vehicle sensing systems is common and known. Examples of such known systems are described in U.S. Pat. Nos. 8,013,780 and 5,949,331 and/or U.S. publication No. US-2010-0245066 and/or International Publication No. WO 2011/090484, which are hereby incorporated herein by reference in their entireties.
Ultrasonic sensors and system have been used for over twenty years for detection of objects in close proximity to the front and rear of vehicles. In order to provide coverage across the entire area forward or rearward of the vehicle, sensors are typically spaced between 50-90 cm apart across the front and rear bumpers of the vehicle. Through the use of triangulation, the ultrasonic signal transmitted by a single sensor may be received by any of the sensors, including the sensor originally transmitting. Ultrasonic sensors typically are unable to detect objects closer than 17 cm from the sensor. This relates to the sensor being used as both transmitter and receiver. The sensor's settling time, (the duration required for vibration of the transducer to end after the end of the transmit cycle), is about 1 ms. During this time, the sensor is unable to detect objects. Advanced electronic methods have recently decreased this range where objects cannot be detected to 10 cm, for large objects exceeding the residual vibrations magnitude within the last 0.4 ms of the settling time. Systems are unable to report objects closer than this range.
The present invention provides a driver assistance system or sensing system for a vehicle that utilizes one or more short range ranging sensors (such as ultrasonic sensors or the like having a sensing range of less than around 50 m, or less than around 25 m or less than around 15 m) disposed at the vehicle to sense respective regions exterior of the vehicle, with the sensors or sensor units comprising a plurality of sensors disposed along each side of the vehicle, with the plurality of sensors including at least (i) a first sensor disposed at a forward portion of the side of the vehicle such that a principal axis of the first sensor's field of sensing is rearward and sideward and at an angle relative to the body with a side boundary of the first sensor's field of sensing being parallel to or intersecting the side of the vehicle, and (ii) a second sensor disposed at a rearward portion of the side of the vehicle such that a principal axis of the second sensor's field of sensing is forward and sideward and at an angle relative to the body with a side boundary of the second sensor's field of sensing being parallel to or intersecting the side of the vehicle. Outputs of or sensor data sensed by the sensors (when sensing with different fields or zones of sensing) are communicated to a control and, responsive to the outputs of the sensor unit, the control determines the presence of one or more objects exterior the vehicle and within the field of sensing or zone of sensing of at least one of the sensors. The control may adjust the field or zone of sensing of the sensors by adjusting at least one of signal gain and signal threshold levels to obtain predetermined shaping of the field or zone of sensing.
These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
A vehicle sensing system, such as a driver assist system, object detection system, parking assist system and/or alert system, operates to capture sensing data exterior of the vehicle and may process the captured data to detect objects at or near the vehicle and in the predicted path of the vehicle, such as to assist a driver of the vehicle in maneuvering the vehicle in a forward or rearward direction or to assist the driver in parking the vehicle in a parking space. The system includes a processor that is operable to receive sensing data from multiple sensors and to provide an output to a control that, responsive to the output, generates an alert or controls an accessory or system of the vehicle, or highlights or overlays an alert on a display screen (that may be displaying video images captured by a single rearward viewing camera or multiple cameras providing forward, side or 360 degree surround views of the area surrounding the vehicle during a reversing or low speed maneuver of the vehicle).
Systems have migrated from being disposed at the rear of the vehicle only (4 sensors) to being disposed at both the front and rear of the vehicle (8 sensors) to 12 sensors capable of supplementing the detection of objects at the corners of vehicles and adding additional features such as automated parking. To support future features for autonomous vehicles, complete coverage, such as for the entire 360 degrees surrounding the vehicle, is required.
It has been proposed to use ultrasonic sensors in a similar fashion along the sides of the vehicle. This solution is only partially viable due to the lack of potential locations for packaging the sensors, coverage degradation due to size of the wheel wells, and the like. Packaging in a typical fashion, with the sensor being approximately perpendicular to the body or fascia surface, also leaves a large percentage of the area in close proximity to the vehicle (such as within about one foot of the vehicle body) without detection capability. For certain vehicles, such as light commercial vehicles (LCV), the number of sensors required can result in an additional 6-8 sensors at each side of the vehicle to provide limited coverage.
Although not unique to LCVs, the size and configuration of these vehicles make them especially susceptible to collision with obstacles located along the side of the vehicle or within the drive path (such as a drive tunnel or sweep of the vehicle body when turning), such as shown in
Existing systems use tracking of objects first seen in the front or rear sensing field of view (FOV) or field of sensing to provide warnings or alerts to the vehicle driver of objects along the side of the vehicle. This technique can provide information to a driver when initially approaching a parking location, but cannot detect objects that are placed next to a vehicle after the vehicle is parked. Additionally, due to the large size of a LCV, low objects may not appear in the field of view of the driver's mirrors, presenting a risk for collisions as the vehicle's drive tunnel may intersect with the position of these objects when turning the vehicle (see
Ultrasonic sensing systems have provided the ability to obtain an accurate X-Y positioning for objects at or near the front and rear of a vehicle. The system of the present invention provides a means of attaining X-Y positioning along the side of a vehicle, using a quantity of sensors greatly reduced from typical approaches. In addition, the system provides a method of eliminating the potential effects of detection of the body structure of the vehicle and associated false detection reports, while maintaining reporting capability for objects within about 10 cm of the body side. An added benefit is the ability to add information regarding the height of objects detected in the area of coverage.
The system of the present invention comprises a plurality of sensors positioned along the sides (including front, rear, driver and passenger sides or regions) of a vehicle to provide 360 degrees of coverage. The present invention positions certain sensors at an angle to the body, whereby the edge of the sensor's field of view is either parallel to or intersects the body. This method provides superior coverage of the area adjacent to the vehicle. It is envisioned that the sensors positioned adjacent to the wheel wells are packaged in a wheel flare, mud flaps or other decorative trim element to obtain the required orientation. The sensors may sense and detect objects near to the vehicle, such as having a sensing range of less than around 50 m, or less than around 25 m or less than around 15 m. The sensors may comprise ultrasonic sensors or radar sensors or lidar sensors or the like.
Multiple horizontal and vertical fields of view/sensing are created using a combination of signal gain and/or threshold adjustments. Using a comparative method and the signature response of the body side, the response due to the return echo from the body side can be cancelled to obtain a clear image of the area adjacent to the side of a vehicle, and localization of objects along the entire side of the vehicle. Comparing responses from multiple signal gain and/or threshold settings in the vertical FOV provides the ability to discriminate between low profile objects, such as, for example, curbs, poles, walls and the like.
In accordance with the present invention, and such as shown in
Where the sensors are positioned to have the horizontal FOV intersect the body side of the vehicle, cancellation of the return echo received at the sensors is achieved by comparing echo responses of the sensor within a series of transmit-receive cycles. Within these cycles, the shape and included angle of the FOV is altered by adjusting the signal gain and/or thresholds. Using a comparative method and the signature response of the body side, the response due to the return echo from the body side can be cancelled to obtain a clear image of the area adjacent to the side of a vehicle, and localization of objects along the entire side of the vehicle.
Additionally, the shape and included angle of the FOV in the vertical axis can also be altered by adjusting the signal gain and/or thresholds. By adjusting the signal gain and/or thresholds, a vertical FOV of reduced area 6 (
Thus, the present invention provides a sensing system that positions sensors at an angle to the vehicle body, such that the edge (or boundary or side extent) of the sensor's field of view or sensing is parallel to or intersecting the body of the vehicle at which the sensor is disposed. The method of adjusting the sensor field of view or zone of sensing using signal gain and/or signal threshold levels obtains predetermined shaping of the field of view. The system includes sensors positioned such that a warning zone is provided for objects along the entire length of a vehicle. The system may provide or generate multiple fields of view of the horizontal and vertical coverage areas around the vehicle.
The system may use the warning zone to provide warnings to a driver or to limit motion of a vehicle or vehicle elements, such as a door, sliding door or liftgate for objects that could present a risk of collision or damage to the vehicle. The system may utilize comparisons of the multiple horizontal zones of sensing and/or a memorized signature response of the body to cancel reflections due to the vehicle to obtain a clear image of objects adjacent to the vehicle. The system may utilize comparisons of the multiple vertical fields/zones of view/sensing to classify low objects such as curbs, posts, and walls. The system thus provides a combination of sensors positioned substantially perpendicular to a vehicle's outer surface and sensors at an angle to the body, such that the edge or side boundary of the field of view/sensing is parallel to or intersecting the body of a vehicle, such that 360 degrees of coverage is provided around the entire vehicle and in close proximity to the body.
Because of cycle time impact, the system may include means of storing multiple settings in the chip or ASIC. Thus, the sensor may include integrated memory for storing multiple configuration settings of gains and thresholds. The gain or threshold may be adjusted or selected from the stored settings to provide the desired sensing.
Although described as having a plurality of ultrasonic sensors or sensor units disposed at the vehicle, the system of the present invention may utilize any suitable type of sensors, such as radar sensors, Lidar sensors, or the like. The means to adapt for the vehicle body response may be adjusted according to the type of sensors implemented in the sensing system.
Thus, a sensing system in accordance with the present invention comprises a plurality of sensors disposed along a side of a body of a vehicle. The sensors include a first sensor (such as sensor 1 in
The sensing system of the present invention may utilize aspects of the systems described in U.S. Pat. Nos. 9,689,967; 9,599,702; 9,575,160; 8,013,780 and/or 5,949,331 and/or International Publication No. WO 2011/090484 and/or U.S. Publication No. US-2010-0245066 and/or U.S. patent application Ser. No. 15/584,265, filed May 2, 2017, Ser. No. 15/467,247, filed Mar. 23, 2017, Ser. No. 15/446,220, filed Mar. 1, 2017, and/or Ser. No. 15/420,238, filed Jan. 31, 2017, which are hereby incorporated herein by reference in their entireties.
Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.
The present application claims the filing benefits of U.S. provisional application Ser. No. 62/349,874, filed Jun. 14, 2016, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5767793 | Agravante | Jun 1998 | A |
5949331 | Schofield et al. | Sep 1999 | A |
6587186 | Bamji et al. | Jul 2003 | B2 |
6674895 | Rafii et al. | Jan 2004 | B2 |
6678039 | Charbon | Jan 2004 | B2 |
6690268 | Schofield et al. | Feb 2004 | B2 |
6690354 | Sze | Feb 2004 | B2 |
6693517 | McCarthy et al. | Feb 2004 | B2 |
6710770 | Tomasi et al. | Mar 2004 | B2 |
6825455 | Schwarte | Nov 2004 | B1 |
6876775 | Torunoglu | Apr 2005 | B2 |
6906793 | Bamji et al. | Jun 2005 | B2 |
6919549 | Bamji et al. | Jul 2005 | B2 |
7053357 | Schwarte | May 2006 | B2 |
7157685 | Bamji et al. | Jan 2007 | B2 |
7176438 | Bamji et al. | Feb 2007 | B2 |
7203356 | Gokturk et al. | Apr 2007 | B2 |
7212663 | Tomasi | May 2007 | B2 |
7283213 | O'Connor et al. | Oct 2007 | B2 |
7310431 | Gokturk et al. | Dec 2007 | B2 |
7321111 | Bamji et al. | Jan 2008 | B2 |
7340077 | Gokturk et al. | Mar 2008 | B2 |
7352454 | Bamji et al. | Apr 2008 | B2 |
7375803 | Bamji | May 2008 | B1 |
7379100 | Gokturk et al. | May 2008 | B2 |
7379163 | Rafii et al. | May 2008 | B2 |
7405812 | Bamji | Jul 2008 | B1 |
7408627 | Bamji et al. | Aug 2008 | B2 |
7580795 | McCarthy et al. | Aug 2009 | B2 |
8013780 | Lynam | Sep 2011 | B2 |
8027029 | Lu | Sep 2011 | B2 |
8698894 | Briggance | Apr 2014 | B2 |
9036026 | Dellantoni et al. | May 2015 | B2 |
9146898 | Ihlenburg | Sep 2015 | B2 |
9193321 | Dingman | Nov 2015 | B2 |
9575160 | Davis et al. | Feb 2017 | B1 |
9599702 | Bordes et al. | Mar 2017 | B1 |
9689967 | Stark et al. | Jun 2017 | B1 |
9753121 | Davis et al. | Sep 2017 | B1 |
20030034883 | Sato | Feb 2003 | A1 |
20060139181 | Danz | Jun 2006 | A1 |
20060206243 | Pawlicki | Sep 2006 | A1 |
20090147083 | Pawlicki | Jun 2009 | A1 |
20090242310 | Touge | Oct 2009 | A1 |
20100001897 | Lyman | Jan 2010 | A1 |
20100002081 | Pawlicki | Jan 2010 | A1 |
20100245066 | Sarioglu | Sep 2010 | A1 |
20110103650 | Cheng | May 2011 | A1 |
20120062743 | Lynam | Mar 2012 | A1 |
20120218412 | Dellantoni | Aug 2012 | A1 |
20130063600 | Pawlicki | Mar 2013 | A1 |
20130093613 | Itoh | Apr 2013 | A1 |
20130215271 | Lu | Aug 2013 | A1 |
20130222592 | Gieseke | Aug 2013 | A1 |
20140218529 | Mahmoud | Aug 2014 | A1 |
20140219506 | Foltin | Aug 2014 | A1 |
20140375476 | Johnson | Dec 2014 | A1 |
20150124096 | Koravadi | May 2015 | A1 |
20150158499 | Koravadi | Jun 2015 | A1 |
20150185319 | Matsuura | Jul 2015 | A1 |
20150251599 | Koravadi | Sep 2015 | A1 |
20150352953 | Koravadi | Dec 2015 | A1 |
20160036917 | Koravadi et al. | Feb 2016 | A1 |
20160098612 | Viviani | Apr 2016 | A1 |
20160200240 | Quinlan | Jul 2016 | A1 |
20160210853 | Koravadi | Jul 2016 | A1 |
20170129489 | Pawlicki et al. | May 2017 | A1 |
20170212231 | Iwai | Jul 2017 | A1 |
20170222311 | Hess et al. | Aug 2017 | A1 |
20170254873 | Koravadi | Sep 2017 | A1 |
20170276788 | Wodrich | Sep 2017 | A1 |
20170315231 | Wodrich | Nov 2017 | A1 |
20180015875 | May et al. | Jan 2018 | A1 |
20180045812 | Hess | Feb 2018 | A1 |
20180059236 | Wodrich et al. | Mar 2018 | A1 |
20180065623 | Wodrich et al. | Mar 2018 | A1 |
20180067194 | Wodrich et al. | Mar 2018 | A1 |
20180105176 | Pawlicki et al. | Apr 2018 | A1 |
20180231635 | Woehlte | Aug 2018 | A1 |
20180231657 | Woehlte | Aug 2018 | A1 |
20180299533 | Pliefke et al. | Oct 2018 | A1 |
20190061760 | Pawlicki et al. | Feb 2019 | A1 |
20190072666 | Duque Biarge et al. | Mar 2019 | A1 |
20190072667 | Duque Biarge et al. | Mar 2019 | A1 |
20190072668 | Duque Biarge et al. | Mar 2019 | A1 |
20190072669 | Duque Biarge et al. | Mar 2019 | A1 |
20190217775 | May et al. | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
2011090484 | Jul 2011 | WO |
2018007995 | Jan 2018 | WO |
Number | Date | Country | |
---|---|---|---|
20170356994 A1 | Dec 2017 | US |
Number | Date | Country | |
---|---|---|---|
62349874 | Jun 2016 | US |