The present invention relates generally to a vehicle sensing system for a vehicle and, more particularly, to a vehicle sensing system that utilizes one or more sensors at a vehicle to provide a field of sensing at or around the vehicle.
Use of imaging sensors or ultrasonic sensors or radar sensors in vehicle sensing systems is common and known. Examples of such known systems are described in U.S. Pat. Nos. 8,013,780 and 5,949,331 and/or U.S. publication No. US-2010-0245066 and/or International Publication No. WO 2011/090484, which are hereby incorporated herein by reference in their entireties.
The present invention provides a driver assistance system or sensing system for a vehicle that utilizes a sensor module disposed at the vehicle to sense a respective region exterior of the vehicle, with the sensor module comprising one or more radar sensors and at least one camera disposed in a common housing. A field of sensing of the radar sensor(s) is encompassed by a portion of a field of view of the at least one camera. The system includes a control, where outputs of the radar sensor(s) and the at least one camera are communicated to the control, and where the control, responsive to processing of the outputs of the radar sensor(s), detects the presence of one or more objects exterior the vehicle and within the field of sensing of at least one of at least one radar sensor, and where the control, responsive to processing of the output of the at least one camera, classifies the detected object.
According to an aspect of the present invention, a sensing system of a vehicle includes a sensor module disposed at a vehicle. The sensor module includes first and second radar sensors and a camera. A field of sensing of the first radar sensor is encompassed by a portion of a field of view of the camera and a field of sensing of the second radar sensor is encompassed by another portion of the field of view of the camera. Outputs of the radar sensors and the camera are communicated to a control. The control, responsive to processing of the outputs of the radar sensors, detects the presence of an object exterior the vehicle and within the field of sensing of at least one of the radar sensors. The control, responsive to detection of an object via processing of the outputs of the radar sensors, processes the output of the camera to classify the detected object.
The sensor module may comprise a circuit board with the first and second radar sensors and the camera disposed at the circuit board, and with the camera disposed at the circuit board at a location between the first and second radar sensors. Physical orientation of the second radar sensor at the circuit board relative to the camera may be different from physical orientation of the first radar sensor at the circuit board relative to the camera. For example, one may be oriented for horizontal resolution and one may be oriented for vertical resolution (where they are oriented with their antenna arrays rotated about 90 degrees relative to one another).
The sensor module may be disposed at a rear of the vehicle such that the camera views rearward of the vehicle. During a reversing maneuver of the vehicle, a display device of the vehicle may display video images derived from the output of the camera.
These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
A vehicle sensing system, such as a driver or driving assist system, object detection system, parking assist system and/or alert system, operates to capture sensing data exterior of the vehicle and may process the captured data to detect objects at or near the vehicle and in the predicted path of the vehicle, such as to assist a driver of the vehicle in maneuvering the vehicle in a forward or rearward direction or to assist the driver in parking the vehicle in a parking space. The system includes a processor that is operable to receive sensing data from multiple sensors and to provide an output to a control that, responsive to the output, generates an alert or controls an accessory or system of the vehicle, or highlights or overlays an alert on a display screen (that may be displaying video images captured by a single rearward viewing camera or multiple cameras providing forward, side or 360 degree surround views of the area surrounding the vehicle during a reversing or low speed maneuver of the vehicle).
Referring now to the drawings and the illustrative embodiments depicted therein, a vehicle 10 includes an driver assistance system or sensing system 12 that includes at least one radar sensor unit, such as a forward facing radar sensor unit 14 (and the system may optionally include multiple exterior facing sensors, such as cameras or other sensors, such as a rearward facing sensor at the rear of the vehicle, and a sideward/rearward facing sensor at respective sides of the vehicle), which sense regions exterior of the vehicle. The sensing system 12 includes a control or electronic control unit (ECU) or processor that is operable to process data captured by the sensor or sensors and may detect objects or the like. The data transfer or signal communication from the sensor to the ECU may comprise any suitable data or communication link, such as a vehicle network bus or the like of the equipped vehicle.
Some automotive radars use MIMO (Multiple Input Multiple Output) techniques to create an effective virtual antenna aperture, which is significantly larger than the real antenna aperture, and delivers much better angular resolution than conventional radars, such as, for example, conventional scanning radars. MIMO techniques may be used to create virtual antenna apertures, not only from linear arrays of real antennas but also from two dimensional arrays of real antennas. For example, the antenna array of a MIMO sensor may comprise two transmitting antennas and two or more receiving antennas, arranged either in a one-dimensional array or as in a two-dimensional array. Thus, the antenna array may consist of four antennas (arranged as a 2×2 array MIMO virtual antenna) or any other combination of transmitting and receiving antennas, whose product is the number of virtual antennas, such as, for example, 16 virtual antennas (4×4 array) or more or less than 16 virtual antennas.
For vision systems having an exterior viewing camera, the challenge is that the OEM system level requirements may specify that objects need to be detected and classified between 0 m . . . 18 m with a resolution in the 10 cm range. In order to ‘see’ enough of the object in the close range (0 . . . 2 m), a camera lens with about a 185 degree opening angle is needed producing a fisheye image. The large opening angle of the lens in combination with an imager with limited resolution (such as around 1 MP, which are spread in an angle to cover the desired wide field of view) causes a very poor resolution in the long range. For example, at 10 m range the pixel resolution is around 1.2 m, meaning that distance measurement with enough precision beyond 10 m is difficult to nearly impossible.
For a radar sensing system with a 16 virtual receiver configuration, the angular resolution is approximately 10 degrees. The spot size of a slice of the radar's field of view would be approximated by the equation (angular resolution×range)/57. Thus, at one meter, the spot slice is about 17 cm. As the range is extended, the spot size would increase.
If a radar sensor with horizontal slices and another radar sensor with vertical slices are utilized to cover an FOV, the intersection of their slices one from each sensor permits a 17 square cm spot in 2-D for fine resolution over the common FOV. The BSD (blind spot detection) corner sensors would allow for conversion of the spot to a cube for three dimensional (3D) and terrain monitoring.
Corner radar sensors may be used for detection and cameras may be used for classification. For example, the radar sensors mounted at the corners of the vehicle are used for the object detection and the rearward viewing camera may be used for classification (and optionally for display of video images derived from and representative of image data captured by the rearward viewing camera). The radar sensors can be used for measurement of object height and object location. A higher accuracy is achieved in the FOV where the radar sensors overlap. However, a radar blindspot may occur at the center area of the vehicle (see
The present invention provides an integrated radar sensor and camera that are integrated into the same or common housing (see
For example, the radar and camera data may be fused for an automatic emergency braking (AEB) system of the vehicle. The machine vision/image processing of the camera does not require object detection anymore, therefore is of less risk for smart camera implementations (less processing performance required). If the camera and radar are packaged together, there is less integration effort for the OEM, also wiring is minimized.
Optionally, the system may integrate radar sensor(s) in stereo three dimensional (3D) configuration and a camera into a common housing. The radar sensors are positioned such that their horizontal and vertical azimuths are intersecting. It is envisioned that the radar sensors have common horizontal and vertical fields of view or fields of sensing and common azimuth resolution. Each radar sensor is used for object detection and object localization, with a vertical opening angle of about 150 degrees, a range of about 30+m, and a range resolution of 7.5 cm. The radar sensor allows measuring of the height of objects and creation of a terrain map. The pitch of the radar sensor mounting (see
It is envisioned that the sensors' horizontal planes are rotated greater than about 90 degrees relative to each other, providing intersecting beams in range, velocity, azimuth and elevation for all detections, creating radar data cubes of known size for all volumes in 3D space within the combined field of view of at least three sensors on the vehicle. Camera, radar and machine vision/image processing is used for object classification (such as, for example, pedestrians, vehicles, bicycles, and/or the like). The captured radar data and camera/image data is fused for automatic emergency braking (AEB) applications.
Optionally, the radar sensors may operate collaboratively, where the transmitted signals from each transmit antenna of radar sensor #1 are received and processed by all receive antenna of both radar sensor #1 and radar sensor #2, thereby increasing effective aperture, accuracy and resolution of the system.
The machine vision/image processing of the camera-captured image data does not require object detection, and thus is of less risk for smart camera implementations (less processing performance required). If the camera and radar are packaged together, there is less integration effort for the OEM, while also minimizing or reducing wiring requirements.
As shown in
The system may utilize sensors, such as radar or lidar sensors or the like. The sensing system may utilize aspects of the systems described in U.S. Pat. Nos. 9,753,121; 9,689,967; 9,599,702; 9,575,160; 9,146,898; 9,036,026; 8,027,029; 8,013,780; 6,825,455; 7,053,357; 7,408,627; 7,405,812; 7,379,163; 7,379,100; 7,375,803; 7,352,454; 7,340,077; 7,321,111; 7,310,431; 7,283,213; 7,212,663; 7,203,356; 7,176,438; 7,157,685; 6,919,549; 6,906,793; 6,876,775; 6,710,770; 6,690,354; 6,678,039; 6,674,895 and/or 6,587,186, and/or International Publication No. WO 2011/090484 and/or U.S. Publication Nos. US-2017-0222311 and/or US-2010-0245066, and/or U.S. patent application Ser. No. 15/647,339, filed Jul. 12, 2017, Ser. No. 15/619,627, filed Jun. 12, 2017, Ser. No. 15/584,265, filed May 2, 2017, Ser. No. 15/467,247, filed Mar. 23, 2017, Ser. No. 15/446,220, filed Mar. 1, 2017, and/or Ser. No. 15/675,919, filed Aug. 14, 2017, and/or International PCT Application No. PCT/IB2017/054120, filed Jul. 7, 2017, which are hereby incorporated herein by reference in their entireties.
Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.
The present application claims the filing benefits of U.S. provisional applications, Ser. No. 62/398,094, filed Sep. 22, 2016, and Ser. No. 62/378,849, filed Aug. 24, 2016, which are hereby incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3778823 | Sato | Dec 1973 | A |
5949331 | Schofield et al. | Sep 1999 | A |
6587186 | Bamji et al. | Jul 2003 | B2 |
6674895 | Rafii et al. | Jan 2004 | B2 |
6678039 | Charbon | Jan 2004 | B2 |
6690268 | Schofield et al. | Feb 2004 | B2 |
6690354 | Sze | Feb 2004 | B2 |
6693517 | McCarthy et al. | Feb 2004 | B2 |
6710770 | Tomasi et al. | Mar 2004 | B2 |
6825455 | Schwarte | Nov 2004 | B1 |
6876775 | Torunoglu | Apr 2005 | B2 |
6906793 | Bamji et al. | Jun 2005 | B2 |
6919549 | Bamji et al. | Jul 2005 | B2 |
7053357 | Schwarte | May 2006 | B2 |
7157685 | Bamji et al. | Jan 2007 | B2 |
7176438 | Bamji et al. | Feb 2007 | B2 |
7203356 | Gokturk et al. | Apr 2007 | B2 |
7212663 | Tomasi | May 2007 | B2 |
7283213 | O'Connor et al. | Oct 2007 | B2 |
7310431 | Gokturk et al. | Dec 2007 | B2 |
7321111 | Bamji et al. | Jan 2008 | B2 |
7340077 | Gokturk et al. | Mar 2008 | B2 |
7352454 | Bamji et al. | Apr 2008 | B2 |
7375803 | Bamji | May 2008 | B1 |
7379100 | Gokturk et al. | May 2008 | B2 |
7379163 | Rafii et al. | May 2008 | B2 |
7405812 | Bamji | Jul 2008 | B1 |
7408627 | Bamji et al. | Aug 2008 | B2 |
7580795 | McCarthy et al. | Aug 2009 | B2 |
8013780 | Lynam | Sep 2011 | B2 |
8027029 | Lu et al. | Sep 2011 | B2 |
8698894 | Briggance | Apr 2014 | B2 |
8855849 | Ferguson | Oct 2014 | B1 |
9036026 | Dellantoni et al. | May 2015 | B2 |
9146898 | Ihlenburg et al. | Sep 2015 | B2 |
9575160 | Davis et al. | Feb 2017 | B1 |
9599702 | Bordes et al. | Mar 2017 | B1 |
9689967 | Stark et al. | Jun 2017 | B1 |
9753121 | Davis et al. | Sep 2017 | B1 |
20050267683 | Fujiwara | Dec 2005 | A1 |
20080169963 | White | Jul 2008 | A1 |
20100001897 | Lyman | Jan 2010 | A1 |
20100245066 | Sarioglu et al. | Sep 2010 | A1 |
20120062743 | Lynam et al. | Mar 2012 | A1 |
20120218412 | Dellantoni et al. | Aug 2012 | A1 |
20130063257 | Schwindt | Mar 2013 | A1 |
20130215271 | Lu | Aug 2013 | A1 |
20130222592 | Gieseke | Aug 2013 | A1 |
20130241766 | Kishigami | Sep 2013 | A1 |
20140062762 | Kurono | Mar 2014 | A1 |
20140218529 | Mahmoud et al. | Aug 2014 | A1 |
20140375476 | Johnson et al. | Dec 2014 | A1 |
20150124096 | Koravadi | May 2015 | A1 |
20150158499 | Koravadi | Jun 2015 | A1 |
20150251599 | Koravadi | Sep 2015 | A1 |
20150352953 | Koravadi | Dec 2015 | A1 |
20160036917 | Koravadi et al. | Feb 2016 | A1 |
20160116573 | Appia | Apr 2016 | A1 |
20160210853 | Koravadi | Jul 2016 | A1 |
20160291146 | Wang | Oct 2016 | A1 |
20170129489 | Pawlicki et al. | May 2017 | A1 |
20170222311 | Hess et al. | Aug 2017 | A1 |
20170254873 | Koravadi | Sep 2017 | A1 |
20170276788 | Wodrich | Sep 2017 | A1 |
20170315231 | Wodrich | Nov 2017 | A1 |
20170328997 | Silverstein | Nov 2017 | A1 |
20170356994 | Wodrich et al. | Dec 2017 | A1 |
20180015875 | May et al. | Jan 2018 | A1 |
20180045812 | Hess | Feb 2018 | A1 |
20180065623 | Wodrich et al. | Mar 2018 | A1 |
20180067194 | Wodrich et al. | Mar 2018 | A1 |
20180105176 | Pawlicki et al. | Apr 2018 | A1 |
20180231635 | Woehlte | Aug 2018 | A1 |
20180231657 | Woehlte | Aug 2018 | A1 |
20180299533 | Pliefke et al. | Oct 2018 | A1 |
20190061760 | Pawlicki et al. | Feb 2019 | A1 |
20190072666 | Duque Biarge et al. | Mar 2019 | A1 |
20190072667 | Duque Biarge et al. | Mar 2019 | A1 |
20190072668 | Duque Biarge et al. | Mar 2019 | A1 |
20190072669 | Duque Biarge et al. | Mar 2019 | A1 |
20190217775 | May et al. | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
102007039834 | Feb 2009 | DE |
2011090484 | Jul 2011 | WO |
2018007995 | Jan 2018 | WO |
Entry |
---|
Nissan North America, Inc., “2012 Pathfinder Owner's Manual”, 2011 (Year: 2011). |
Machine translation of specificaiton of DE101007039834 (Year: 2009). |
Machine translation of claims of DE102007039834 (Year: 2009). |
Number | Date | Country | |
---|---|---|---|
20180059236 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
62398094 | Sep 2016 | US | |
62378849 | Aug 2016 | US |