The present invention relates generally to a vehicle sound system for a vehicle and, more particularly, to a vehicle sound system that utilizes multiple microphones in a vehicle.
Use of microphones in vehicle sound systems is common and known. Examples of such known systems are described in U.S. Pat. Nos. 7,657,052; 6,420,975; 6,278,377 and 6,243,003, which are hereby incorporated herein by reference in their entireties.
The present invention provides a sound processing system or voice acquisition system for a vehicle that utilizes multiple microphones to capture or receive sound signals from a person speaking in the vehicle and from other areas inside or outside the vehicle cabin, and that utilizes multiple speakers to generate output signals to enhance the sound heard by other passengers or occupants in the vehicle.
According to an aspect of the present invention, a sound system of a vehicle comprises a plurality of microphones disposed in a cabin of a vehicle and a plurality of speakers disposed in the cabin of the vehicle at or near respective seats of the vehicle. A sound processor is operable to process microphone output signals of the microphones to determine a voice signal of a speaking occupant in the vehicle at or near one of the microphones. The sound processor generates a processor output signal that is provided to at least some of the speakers. Responsive to the processor output signal, some of the speakers generate sound representative of the voice signal of the speaking occupant to direct the sound towards at least some of the other occupants in the vehicle, while one or more speakers at or near the seat occupied by the speaking occupant do not generate sound representative of the voice signal of the speaking occupant so as to not direct the sound towards the speaking occupant.
Optionally, a user input may be actuatable to select two or more occupants of the vehicle for a conversation, with one of the selected occupants being the speaking occupant. Responsive to the processor output signal, speakers at or near the seat occupied by another selected occupant (a non-speaking selected occupant) generate sound representative of the voice signal of the speaking occupant to direct the sound towards the other selected occupant, while speakers at or near a seat occupied by a non-selected occupant (whether that non-selected occupant is speaking or not) do not generate sound representative of the voice signal of the speaking occupant so as to not direct the sound towards the non-selected occupant. The selected occupants may alternate as to who is speaking, with the system generating the processor output signal responsive to the then-speaking selected occupant.
Optionally, a plurality of cameras may be disposed in the vehicle and having respective fields of view towards respective ones of the seats of the vehicle to capture image data representative of a face area of an occupant sitting at the respective seat. One of the cameras captures images of a face of the speaking occupant for display of the speaking occupant's face on one or more video display screens in the vehicle, such as for viewing by the other occupants (or other selected occupants if a selection of particular conversation members has been made).
Optionally, one or more microphones may be disposed exterior of the cabin of the vehicle, and the sound processor may reduce noise in the processor output signal responsive to the exterior microphones. Optionally, the sound processor may be operable to determine a noise of interest from the signals of the exterior microphones, and the sound processor may control the speakers to generate sound representative of the noise of interest at least towards a driver of the equipped vehicle. The noise of interest may comprise at least one of (i) a siren of an emergency vehicle and (ii) a horn of another vehicle. Optionally, the sound processor may control the speakers so that the sound representative of the noise of interest is heard by the driver as if emanating from a direction towards the source of the sound of interest.
These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
Noise in vehicles are caused by several noise sources such as, for example, wind noise, engine noise, noise caused by the tires rolling over the ground and/or squeaking and rattling of interior components of the vehicle. Passive noise suppression for in cabin systems such as in aircrafts and vehicles are known. The typical solution is to install noise dampening material (such as shown in
Active noise cancellation systems for head phones are well known (see, for example, http://en.wikipedia.org/wiki/Noise-cancelling_headphones). Basically, these are based on destructive interference (or anti sound, or counter noise). Active noise (and vibration) cancellation is also in use to reduce vibration and noise generated by wind generators and airplanes. The efficiency also increases when the structural born noise becomes reduced.
In cabin noise cancellation systems, it is also known to perform active cabin noise suppression (see, for example, http://www.autotrends.org/2012/09/28/innovative-bose-and-noise-cancellation-technology/). These systems monitor the noise inside the vehicle using microphones (or acceleration detectors) and attempt to cancel the noise by generating an identical signal that is 180 degrees out-of-phase with the detected signal. An example of such a noise cancellation system 24 is shown in
For suppressing low frequencies and reducing vibrations, it had been found useful to place microphones or acceleration detectors and sound speakers or accelerators close to the noise causing devices of the vehicle, such as the muffler system or the engine (see, for example, http://www.honda.co.nz/technology/driving/anc/ and http://www.heise.de/autos/artikel/Antischall-sorgt-fuer-neuen-Motorsound-796760.html?bild=2;view=bildergalerie). For example, the Honda Legend is equipped with an active noise cancellation system.
For generating the counter noise (180 degrees out of phase) in 3 dimensional (3D) air space, a temporary equalizing is necessary. The noise cancellation only works locally when the counter noise is generated in a way that it arrives in timely fashion to a listener's ear when the (causing) noise arrives. This is much more complicated compared to headphone noise cancellation since the 3D time and space-wise expansion of a sound wave front has to be considered (lateral run times). The group propagation time of low frequencies is lower than these of high frequencies. Sound waves leave loudspeakers concentrically, as the timely coherent wave front is concentric. The amplitude may be emitted in a coil shape, distance wise. The wave front's speed is independent from the speaker system, just from the air density and humidity (and the gases components).
When using multiple loudspeakers, the single wave fronts superpose to each other. When controlled in a timely correct fashion with similar sound signals, a wave front which is less concentric but more straight forms out (according to Huygen's principle), see
By fine tuning of the phase timing of loudspeakers that are in different positions, the common wave front's direction can be controlled. It is known to use these properties to virtually widen the acoustic room. It sounds like a sound source would be placed beyond the cabin's borderlines (outside).
A known way of equalizing the counter noise is the use of adaptive filters, often applied on DSPs (see, for example, http://www.intechopen.com/books/adaptive-filtering-applications/applications-of-adaptive-filtering).
Reflective waves are practically too chaotic to become detected and counter generated, by that these are not eliminable and no full noise elimination is possible.
For human voice conception, the signal to noise ratio (SNR) is crucial. By that the lowering of the absolute noise level (whether by active or passive noise suppression) is beneficial to the SNR. On the other hand, the SNR can be improved when the (voice-) signal amplitude gets raised by amplification, while the noise doesn't get amplified (or is less amplified).
It is known from automotive applications to utilize spectral subtraction on single microphone systems to diminish the noise level (see, for example, http://www.ant.uni-bremen.de/sixcms/media.php/102/4975/COST_1992_simmer.pdf). It is also known from vehicle hands free smart phone applications to use a microphone with a sensitivity direction coil, directed to the position where the driver is usually located.
It is also known from vehicle hands free smart phone applications to use two microphones, one for picking up the voice plus the unavoidable noise (preferably under use of a microphone with a coil directed to the mouth) and one picking up the noise alone (reference signal) without the speech or vocal signal. The difference in both signals is the desired speech signal. It is common to use two channel adaptive filtering to filter out the speech signal with the noise subtracted.
It is also known that hearing disability aids utilize more than one microphone, or multiple microphones or a microphone array (see, for example, http://www.rehab.research.va.gov/jour/87/24/4/pdf/schwander.pdf). Also the use of coherence functions were published (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3246289/).
Several more methods have been suggested for voice separation or detection, such as blind source separation (BSS) using Independent Component Analysis (ICA) and beam forming done on microphone arrays. It has also been suggested to use a two stage BSS for speech separation with an initialization stage and an iterative estimation stage for obtaining the parameters of transfer functions between a microphone array and an voice output (such as, for example, a speech channel) of a mobile phone application for noise suppression (see, for example, http://www.nttdocomo.co.jp/english/binary/pdf/corporate/technology/rd/technical_journal/bn/vol9_4/vol9_4_031en.pdf).
Untypical in automotive applications, such as hands free telephoning, voice vehicle commanding, is to have microphones or microphone arrays not only for picking up the driver's voice but to also have microphones or microphone arrays to capture the voices of the other passengers of a vehicle.
The present invention provides a system that utilizes both active noise cancellation techniques and human voice conception/separation techniques to provide an enhanced sound system for an automobile cabin. The system of the present invention may utilize microphones and speakers and sound processing or digital sound processing techniques, such as by utilizing aspects of the systems described in U.S. Pat. Nos. 7,657,052; 6,420,975; 6,278,377 and/or 6,243,003, which are hereby incorporated herein by reference in their entireties
The system of the present invention may use at least one and preferably more microphones (in suitable distances to one another) disposed at respective seats of the vehicle and with a sensitivity coil for each vehicle passenger, directed towards the passengers accordingly or to have microphone arrays under use of beam forming methods directing the beam to the according passengers (voices). The system may, responsive to signals of or from the microphones representative of the received voices, amplify that according passenger's voice (the speaking occupant's voice) to get emitted by loudspeakers near the other occupied vehicle seats and directed to the other passenger's heads or virtually placing the amplified speakers voice near to the real position, or virtually behind the passenger or virtually close to his or her displayed image as discussed below. This may be done while not using the speakers at or near the speaking occupant's seat so that those speakers do not emit the amplified voice of the speaking occupant. The system may incorporate or combine an active noise cancelation system or music entertainment system or music entertainment system.
Optionally, the system may activate and use loudspeakers at only those seats that are currently occupied by a driver or passenger (such as by being at least in part responsive to an interior cabin monitoring system or seat occupant detector system or the like, such as by utilizing aspects of the monitoring or detecting systems described in U.S. Pat. Nos. 8,258,932; 6,485,081; 6,166,625 and/or 5,877,897, which are hereby incorporated herein by reference in their entireties). In such a configuration, the speakers of occupied seats would be used to generate sound outputs while the speakers of non-occupied seats would not be used to generate sound outputs. Optionally, responsive to such a seat occupancy determination, the microphones and speakers at determined unoccupied seats may be turned off or not used by the system to reduce processing.
Optionally, the system may activate and use selected microphones and loudspeakers only at selected seats that have been selected by a user of the system (such as the driver or one of the passengers of the vehicle actuating a user input to select particular occupants/seats for a conversation), whereby the speaker's voice (if the speaker is one of the selected occupants) will be output to others of the selected seats and occupants, while not being output to non-selected seats and occupants. Thus, for example, and with reference to
Thus, the system of the present invention allows for selected users or seat occupants to carry on a conversation while non-selected users or occupants are effectively kept out of the conversation. The system of the present invention also provides for video display of images of the speaking person (as discussed below) and may display such video only at a display screen or screens that is/are viewable by the selected users. The system thus provides enhanced communication between occupants in a vehicle and provides for selective communication between only those occupants that are selected to be part of the communication.
Optionally, one or more display devices may be disposed in the vehicle (such as shown in
Optionally, the system may have a mute function to suppress one or more or all passengers' voices and music on the drivers or other passenger's request (such as pushing a mute button). The mute function may be done by stopping the voice amplification and music playback or instead may actively suppress other speakers' voices sound by actively emitting noise eliminating counter noise at the specific (listening) person's head area, similar to the active suppression of ambient noise. Such a function may be beneficial for a stressed parent, trying to concentrate on driving while the children are yelling or for passengers who may want to sleep while other passenger may speak or listen to music. Optionally, there may be different music or film soundtrack playback at every seat, by actively eliminating the incoming sound from the sound sources of other seats at each specific seat.
When a person speaks, the person's voice sound waves depart evenly in all directions (assuming that there is no additional (substantial) air flow) at essentially the same speed (depending on the air density, humidity and gas composition, the sound wave propagation time may vary and typically higher frequency sound waves' propagation times are slightly less than those of lower frequency sound waves), by that the voice signal expands through the (air-) space away from the speakers mouth concentrically (such as like as a bubble shape). In
In this visualization, the sound wave's phase is not visualizable. By controlling the point of time and phase of each sound wave, the cognitive direction of the sound source can be controlled, as well the eventually wanted elimination of sound (such as shown in
Optional microphones (such as microphones 21a-d in
Optionally, there may be a couple of microphones or an array of microphones installed for better filtering the voice of a specific speaker from the ambient noise under use of known art voice separation and beam forming methods as discussed above.
The filtering of voice signals from ambient noise by lateral delay can be done by superposing the signals of different microphones which are in different distances to a speaker from one another. Since the ambient noise is always different at different points in time and the voice signal is always similar, the noise evens out and the SNR increases by that. This is visualized in the examples shown in
Optionally, such a system may use a head tracking system (such as described in U.S. patent application Ser. No. 14/675,929, filed Apr. 1, 2015 and published Oct. 15, 2015 as U.S. Publication No. US-2015-0296135, which is hereby incorporated herein by reference in its entirety) or a vehicle surveillance system (such as described in U.S. patent application Ser. No. 14/675,926, filed Apr. 1, 2015 and published Oct. 15, 2015 as U.S. Publication No. US-2015-0294169, which is hereby incorporated herein by reference in its entirety), which may track each passenger's head position. By that, the lateral sound filtering may be tuned more exactly to specifically capture the voice of a specific speaker and leave out the ambient noise. Optionally, the voice filtering system may be used as another sensor for the head tracking system or may be incorporated into the head tracking system. The signal may be sufficient for dedicating a speaker's head box while speaking.
The voice amplification may be chosen dynamically depending on the ambient in cabin noise level.
The system may actively suppress audio back coupling to suppress echoing and howling such as experienced from megaphones by known algorithms.
The system may lower the amplifications of the microphones close to the other passengers while one passenger is speaking to lower the ambient noise amplification and back coupling.
Optionally, the system may additionally have microphones 21 installed outside of the vehicle 10 (see
The sound playback of the determined sound source of interest or crucial sound source may be amplified during all other playbacks, or voice amplifications may be diminished or switched off. The playback of the crucial sound source may be virtually set into that direction and/or distance the sound source is in reality (for example, if an ambulance is ahead of the equipped vehicle and in a left lane approaching the vehicle, the speakers at the left front region of the cabin may be used to output the sound or other speakers may be used in a manner that makes the sound appear to emanate from the left front region of the cabin). Optionally, the crucial sound source's real position may be transmitted by a car2car or a car2X system, for artificially simulating the sound source (and its position), which may not be in hearing range already or barely hearable within the noise outside.
The vehicle vision system and/or driver assist system and/or object detection system that may also be used in conjunction with the voice acquisition or sound system of the present invention may operate to capture images exterior of the vehicle and may process the captured image data to display images and to detect objects at or near the vehicle and in the predicted path of the vehicle, such as to assist a driver of the vehicle in maneuvering the vehicle in a rearward direction. The vision system includes an image processor or image processing system that is operable to receive image data from one or more cameras and provide an output to a display device for displaying images representative of the captured image data. Optionally, the vision system may provide a top down or bird's eye or surround view display and may provide a displayed image that is representative of the subject vehicle, and optionally with the displayed image being customized to at least partially correspond to the actual subject vehicle.
As shown in
The system includes an image processor operable to process image data captured by the camera or cameras, such as for detecting objects or other vehicles or pedestrians or the like in the field of view of one or more of the cameras. For example, the image processor may comprise an EyeQ2 or EyeQ3 image processing chip available from Mobileye Vision Technologies Ltd. of Jerusalem, Israel, and may include object detection software (such as the types described in U.S. Pat. Nos. 7,855,755; 7,720,580 and/or 7,038,577, which are hereby incorporated herein by reference in their entireties), and may analyze image data to detect vehicles and/or other objects. Responsive to such image processing, and when an object or other vehicle is detected, the system may generate an alert to the driver of the vehicle and/or may generate an overlay at the displayed image to highlight or enhance display of the detected object or vehicle, in order to enhance the driver's awareness of the detected object or vehicle or hazardous condition during a driving maneuver of the equipped vehicle.
The vehicle may include any type of sensor or sensors, such as imaging sensors or radar sensors or lidar sensors or ladar sensors or ultrasonic sensors or the like. The imaging sensor or camera may capture image data for image processing and may comprise any suitable camera or sensing device, such as, for example, a two dimensional array of a plurality of photosensor elements arranged in at least 640 columns and 480 rows (at least a 640×480 imaging array, such as a megapixel imaging array or the like), with a respective lens focusing images onto respective portions of the array. The photosensor array may comprise a plurality of photosensor elements arranged in a photosensor array having rows and columns. Preferably, the imaging array has at least 300,000 photosensor elements or pixels, more preferably at least 500,000 photosensor elements or pixels and more preferably at least 1 million photosensor elements or pixels. The imaging array may capture color image data, such as via spectral filtering at the array, such as via an RGB (red, green and blue) filter or via a red/red complement filter or such as via an RCC (red, clear, clear) filter or the like. The logic and control circuit of the imaging sensor may function in any known manner, and the image processing and algorithmic processing may comprise any suitable means for processing the images and/or image data.
The camera or cameras may comprise any suitable cameras or imaging sensors or camera modules, and may utilize aspects of the cameras or sensors described in U.S. Publication No. US-2009-0244361 and/or U.S. Pat. Nos. 8,542,451; 7,965,336 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties. The imaging array sensor may comprise any suitable sensor, and may utilize various imaging sensors or imaging array sensors or cameras or the like, such as a CMOS imaging array sensor, a CCD sensor or other sensors or the like, such as the types described in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,715,093; 5,877,897; 6,922,292; 6,757,109; 6,717,610; 6,590,719; 6,201,642; 6,498,620; 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 6,806,452; 6,396,397; 6,822,563; 6,946,978; 7,339,149; 7,038,577; 7,004,606; 7,720,580 and/or 7,965,336, and/or International Publication Nos. WO/2009/036176 and/or WO/2009/046268, which are all hereby incorporated herein by reference in their entireties.
Optionally, the vision system may include a display for displaying images captured by one or more of the imaging sensors for viewing by the driver of the vehicle while the driver is normally operating the vehicle. Optionally, for example, the vision system may include a video display device disposed at or in the interior rearview mirror assembly of the vehicle, such as by utilizing aspects of the video mirror display systems described in U.S. Pat. No. 6,690,268 and/or U.S. Publication No. US-2012-0162427, which are hereby incorporated herein by reference in their entireties. The video mirror display may comprise any suitable devices and systems and optionally may utilize aspects of the compass display systems described in U.S. Pat. Nos. 7,370,983; 7,329,013; 7,308,341; 7,289,037; 7,249,860; 7,004,593; 4,546,551; 5,699,044; 4,953,305; 5,576,687; 5,632,092; 5,677,851; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,508; 6,222,460; 6,513,252 and/or 6,642,851, and/or European patent application, published Oct. 11, 2000 under Publication No. EP 0 1043566, and/or U.S. Publication No. US-2006-0061008, which are all hereby incorporated herein by reference in their entireties.
Optionally, the vision system (utilizing the forward facing camera and a rearward facing camera and other cameras disposed at the vehicle with exterior fields of view) may be part of or may provide a display of a top-down view or birds-eye view system of the vehicle or a surround view at the vehicle, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2010/099416; WO 2011/028686; WO 2012/075250; WO 2013/019795; WO 2012/075250; WO 2012/145822; WO 2013/081985; WO 2013/086249 and/or WO 2013/109869, and/or U.S. Publication No. US-2012-0162427, which are hereby incorporated herein by reference in their entireties.
Optionally, the display or displays and any associated user inputs may be associated with various accessories or systems, such as, for example, a tire pressure monitoring system or a passenger air bag status or a garage door opening system or a telematics system or any other accessory or system of the mirror assembly or of the vehicle or of an accessory module or console of the vehicle, such as an accessory module or console of the types described in U.S. Pat. Nos. 7,289,037; 6,877,888; 6,824,281; 6,690,268; 6,672,744; 6,386,742 and/or 6,124,886, and/or U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties.
Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.
The present application is a continuation of U.S. patent application Ser. No. 14/807,011, filed Jul. 23, 2015, now U.S. Pat. No. 9,800,983, which claims the filing benefits of U.S. provisional application Ser. No. 62/028,497, filed Jul. 24, 2014, which is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62028497 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14807011 | Jul 2015 | US |
Child | 15790175 | US |