The present disclosure relates to starter systems for internal combustion engines and is particularly relevant to starter systems for commercial vehicles and other large applications.
There have been many recent significant developments in starter systems for passenger vehicles. For example, it is now common for an electronic control unit (ECU) of such passenger vehicles to stop the engine and subsequently and automatically actuate the vehicle starter to restart the vehicle. In such vehicles where the ECU of the vehicle controls the operation of the starter system, the ECU may be programmed to limit or prevent damage to the starter system due to various operator actions.
Commercial vehicles and equipment such as the semi-truck of a tractor-trailer combination, heavy equipment, commercial buses and other large vehicles as well as large stationary generator sets often utilize a less sophisticated starter system. The manufacturers of such large vehicles and equipment often source the engine from a separate manufacturer. The engine manufacturer often designs such engines for wide applicability instead of for a single application. As a result, the engine manufacturers will often provide a relatively simple starting system. Many such starter systems are susceptible to thermal damage due to misuse by the operator of the vehicle/application.
There remains a need for cost-effective solutions which limit or prevent the possibility of harm to the starting system due to user misuse in such starting systems.
The present disclosure provides a cost-effective starting motor assembly which can limit damage to the starting system due to operator misuse and without requiring the vehicle to have a special wiring harness.
The invention provides, in some embodiments thereof, a starter assembly for an internal combustion engine wherein the starter assembly is adapted to work with a voltage source and the internal combustion engine to start the engine and the starter assembly includes an electric motor which drives a starter gear. The starter gear is selectively shiftable between an engaged position and a disengaged position wherein in the starter gear is operably coupled with the internal combustion engine in the engaged position and is decoupled from the internal combustion engine in the disengaged position. A solenoid is coupled with the starter gear wherein energizing the solenoid shifts the starter gear into the engaged position and wherein the starter gear is biased to the disengaged position when the solenoid is de-energized. Energizing the solenoid also closes a motor switch. The motor switch is disposed in a first electrical line adapted to couple the electric motor with the voltage source whereby closing the motor switch energizes the electric motor and opening the motor switch de-energizes the electric motor. A solenoid switch is disposed in a second electrical line in communication with the solenoid wherein closing the solenoid switch energizes the solenoid and opening the solenoid switch de-energizes the solenoid. A thermally responsive switch is positioned to absorb heat generated by operation of the electric motor wherein the thermally responsive switch opens when experiencing elevated temperatures. The thermally responsive switch is disposed in a third electrical line operably coupled with the solenoid switch (e.g., the third line may form the coils of a solenoid switch formed by a magnetic switch) wherein energizing the third electrical line closes the solenoid switch and de-energizing the third electrical line opens the solenoid switch, and wherein the third electrical line is grounded by attachment to the starter assembly, the thermally responsive switch being disposed in the third electrical line between the solenoid switch and the ground location wherein opening of the thermally responsive switch prevents energizing of the third electrical line and results in the opening of the solenoid switch. The use of such a thermally responsive switch de-energizes the electric motor when the electric motor is subjected to elevated operating temperatures that might otherwise cause damage to the electric motor.
In some embodiments, the third electrical line also includes a user operated switch. Such a user operated switch may take the form of a switch operated by an ignition key. In such embodiments, the solenoid switch may take the form of a magnetic switch. In such embodiments, the third electrical line may extend, in series, from the voltage source to the user operated switch, to the magnetic switch, to the thermally responsive switch, to a ground. In still further variations, the electric motor may be mounted within a main housing wherein the main housing is grounded, and wherein the magnetic switch is disposed in a switch housing, the switch housing being mounted on and electrically isolated from the main housing and wherein the third electrical line is grounded by connecting it to the main housing, the thermally responsive switch being disposed in the third line between the switch housing and the main housing.
In other embodiments, the thermally responsive switch may take the form of a bimetallic switch.
In some embodiments, the thermally responsive switch is mounted on and absorbs heat from the brush plate assembly of the electric motor.
Combining various features of the embodiments mentioned above, in some embodiments, the thermally responsive switch is a bimetallic switch disposed in a third electrical line wherein the third electrical line also includes a user operated switch, the solenoid switch is a magnetic switch and the third electrical line extends, in series, from the voltage source to the user operated switch, to the magnetic switch, to the thermally responsive switch, to a ground. The electric motor in such an embodiment may be mounted within a main housing, the main housing being grounded, with the magnetic switch being disposed in a switch housing, the switch housing being mounted on and electrically isolated from the main housing and wherein the third electrical line is grounded by connecting it to the main housing, the thermally responsive switch being disposed in the third line between the switch housing and the main housing and wherein the solenoid is also supported on the main housing. Such an embodiment may require that the user operated switch is closed to close the solenoid switch.
In any one of the embodiments discussed above, the starter assembly may also include control circuitry that includes a microprocessor wherein the control circuitry is operably coupled with the solenoid switch. The control circuitry is in communication with a motor voltage sensing line whereby the control circuitry is responsive to voltage changes in the electrical motor. The control circuitry is also in communication with an electrical line in communication with the voltage source whereby the control circuitry is responsive to the voltage of the voltage source. The control circuitry is programmed to open the solenoid switch upon the satisfaction of predetermined conditions to thereby prevent damage to the electrical motor.
In some embodiments including control circuitry, the control circuitry includes a MOSFET switch with the MOSFET switch being disposed in the electrical line controlling operation of the solenoid switch wherein opening of the thermally responsive switch results in the opening of the solenoid switch, the MOSFET switch being disposed in series with the thermally responsive switch. In such an embodiment having a MOSFET switch, the circuitry is advantageously arranged such that the thermally responsive switch is still operable to open the electrical line controlling the operation of the solenoid switch in the event of a short circuit of the MOSFET switch to a closed configuration.
In embodiments including control circuitry, the control circuitry may be programmed to:
a) require a delay between sequential closings of the solenoid switch of at least three seconds (to thereby provide a rapid re-engagement lockout);
b) prevent the closing of the solenoid switch when the voltage of the voltage source exceeds a predetermined engine running voltage threshold (to thereby provide an engine running lockout);
c) prevent the closing of the solenoid switch if the voltage of the voltage source falls below a predefined first low voltage threshold (to thereby provide a low voltage lockout);
d) open the solenoid switch if the voltage of the voltage source falls below a predefined second low voltage threshold, the second low voltage threshold being lower than the first low voltage threshold (to thereby provide a low voltage lockout);
e) open the solenoid switch after passage of a predetermined time limit with the solenoid switch closed (to thereby provide a time-limited-crank function);
f) wherein the thermally responsive switch is disposed in a third electrical line and wherein the third electrical line also includes a user operated switch and, when the user operated switch is closed and the voltage of the electric motor falls below a predetermined threshold, the solenoid switch is momentarily opened and then closed and, if the voltage of the electric motor does not rise above the predetermined threshold and three such sequential opening and closing of the solenoid switch are conducted, the solenoid switch is opened (to thereby provide an auto-retry function); and
g) wherein the control circuitry is responsive to the voltage in an electrical line containing the user operated switch and the solenoid switch is opened if, after closing the solenoid switch and energizing the solenoid, the voltage of the electrical line containing the user-operated switch rebounds above a predetermined threshold (to thereby provide an auto-disengage at start function).
In the various embodiments including control circuitry, the control circuitry may be mounted within a control unit housing with the control unit housing being attached to the switch housing. A vibrational dampening and electrically isolating mounting assembly may be used to secure the control unit housing and the switch housing to the main housing wherein the mounting assembly electrically isolates the main housing from the control unit housing and from the switch housing.
In any of the embodiments described above, the user operated switch may be required to be closed to close the solenoid switch as is required in some less sophisticated starter systems.
The above mentioned and other features of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. Although the exemplification set out herein illustrates several embodiments of the invention, in various forms, the embodiments disclosed below are not intended to be exhaustive or to be construed as limiting the scope of the invention to the precise forms disclosed.
One example of a vehicle 20 in which a starter assembly 22 as described herein can be used is shown in
Energizing solenoid 14 energizes starting motor 15 and biases a pinion gear 16 into engagement with a ring gear on the internal combustion engine when starting the engine. Also included in the starter system 10 is a thermostatic connector 17 which provides a thermally responsive switch to de-energize the starter motor 15 if it becomes overheated. The thermally responsive switch is disposed in an electrical line connecting the starting motor 15 to ground. The thermostatic connector 17 is a non-standard two pin connector used to form the ground terminal of the starter assembly. A standard ground connection would be a single pin connector and use of the thermostatic connector 17 requires the wiring harness of the vehicle be specifically modified for use with the starter assembly having such thermostatic connector 17.
A starter assembly 22 is shown in
Starter assembly 22 is used when starting an internal combustion engine 24. Starter assembly 22 is selectively coupled to the engine 24 by engaging a starter gear 30, in the form of a pinion gear in the illustrated embodiment, with a ring gear 26 of the engine 24. A voltage source 28, such as the battery pack of a vehicle, is used to power an electric motor 32 that forms the starter motor. When starting engine 24, starter gear 30 is engaged with ring gear 26 and electric motor 32, powered by voltage source 28, rotatably drives starter gear 30 which, in turn, drives ring gear 26 to start engine 24.
It is noted that electric motor 32 is formed by an electric machine that is used as a motor when starting engine 24. In some embodiments, this electric machine may be operable as only an electric motor while in others, it may be selectively operable as either an electric motor or a generator. The use of the term “motor” when referring to this electric machine does not imply that it is capable of only operating as a motor and may also be used herein to refer to an electric machine capable of operating as a generator.
Starter gear 30 is moveable between an engaged position, where it is engaged with ring gear 26, and a disengaged position, where it is disengaged from ring gear 26, whereby the starter gear 30 and electric motor 32 are operably coupled with internal combustion engine 24 in the engaged position and is decoupled from the internal combustion engine 24 in the disengaged position.
An overrunning clutch 33 is disposed between starter gear 30 and electric motor 32 so that if gear 30 remains engaged with ring gear 26 after starting engine 24, the resulting excessive rotational speed of starter gear 30 will not be transmitted back to electric motor 32. The use of such overrunning clutches in a starter assembly is well-known to those having ordinary skill in the art.
A solenoid 34 is coupled with the starter gear 30 such that energizing solenoid 34 shifts the starter gear 30 into the engaged position. Starter gear 30 is biased towards the disengaged position with spring 35 and when solenoid 34 is de-energized, starter gear 30 moves to its disengaged position.
Energizing solenoid 34 also closes a switch 36 referred to herein as a motor switch because it controls the energization of electric motor 32. Motor switch 36 is disposed in an electrical line 38 which couples electric motor 32 with voltage source 28 whereby closing motor switch 36 energizes electric motor 32 and opening motor switch 36 de-energizes electric motor 32. This use of a solenoid to control the shifting of a starter gear into and out of engagement with an engine ring gear and operation of a switch for energizing of the starter motor is well-known to those having ordinary skill in the art.
Switch 40 is referred to herein as a solenoid switch because it controls the energization of solenoid 34. Solenoid switch 40 is disposed in an electrical line 42 in communication with the solenoid wherein closing solenoid switch 40 energizes solenoid 34 and opening solenoid switch 40 de-energizes solenoid 34. In the illustrated embodiment, solenoid switch 40 is a magnetic switch having coils 41 and a plunger. When coils 41 are energized, the coils move the plunger to close switch 40, when coils 41 are not energized, the plunger is biased by a spring to a position wherein switch 40 is opened. The use of a magnetic switch to control the energization of a starter solenoid is well-known to those having ordinary skill in the art.
A thermally responsive switch 44 is positioned to absorb heat generated by operation of electric motor 32 such that thermally responsive switch 44 opens when experiencing elevated temperatures. Thermally responsive switch 44 is disposed in an electrical line 46 controlling operation of solenoid switch 40 wherein opening of thermally responsive switch 44 results in the opening of solenoid switch 40. As a result, thermally responsive switch 44 de-energizes electric motor 32 when electric motor 32 is subjected to elevated operating temperatures that might otherwise cause damage to electric motor 32.
In the illustrated embodiment, thermally responsive switch 44 is a bimetallic switch. A suitable example of such a bimetallic switch is disclosed in U.S. Pat. No. 7,209,337 issued on Apr. 24, 2007 to Bradfield et al. entitled Electrical Thermal Overstress Protection Device, the disclosure of which is incorporated herein by reference.
In the illustrated embodiment, electric motor 32 is a direct current (DC) motor with a brush plate assembly 48 communicating electrical current with rotor 50 and a stator 52 which takes the form of a field coil. Brush plate assembly 48, rotor 50 and stator 52 operate in a manner well known to those having ordinary skill in the art.
Thermally responsive switch 44 is mounted on and absorbs heat from the brush plate assembly 48 of electric motor 32. Brush plate assembly 48 communicates electrical current with rotor 50 during operation of electric motor 32 and will experience elevated temperatures in the event of overheating of electric motor 32. Although brush plate assembly 48 is used as the mounting location for thermally responsive switch 44 in the illustrated embodiment, switch 44 could be mounted in any number of alternative locations provided that such locations will convey thermal energy to switch 44 in a manner that allows switch 44 to sense thermal energy representative of the operating temperature of electric motor 32. For example, switch 44 could alternatively be mounted on stator 52, on a part in thermal communication with rotor 50 or stator 52, or, in close proximity to rotor 50 or stator 52.
It is noted that mounting thermally responsive switch 44 on brush plate assembly describes the physical location of switch 44 and switch 44 will be responsive to the temperature at this physical location. Mounting thermally responsive switch 44 at this location does not mean that this switch controls the electrical current being transferred by brush plate assembly 48.
As mentioned above, thermally responsive switch 44 is disposed in electrical line 46 in the illustrated embodiment and when thermally responsive switch 44 is open, solenoid switch 40 will also be open thereby resulting in starter gear 30 moving towards its disengaged position and de-energizing of electric motor 32. Electrical line 46 includes a user operated switch 54 which may take the form of switch operated by an ignition key.
As can be seen in
Although only a single user-operated switch 54 is used in the starter system depicted in
In the illustrated embodiment, electric motor 32 is mounted within a main housing 58 which is grounded by attachment to the vehicle frame. Thus, for those components of starter assembly that require electrical grounding, such grounding may be accomplished by attachment to main housing 58.
The grounding of a starter motor housing by attaching the housing to the frame of the vehicle is well-known in the art. For the prior art embodiment depicted in
The grounding of the solenoid switch 40 of the embodiment of
In the illustrated embodiment, switch housing 60 is mounted to main housing 58 with a rubber mounting assembly 62 that not only electrically isolates switch housing 60 from main housing 58 but also provides vibrational dampening.
It is noted that the placement of thermally responsive switch 44 in the line used to ground the magnetic switch controlling the energization of the solenoid differs from that of the starter assembly depicted in
The starter assembly 22 of
Control circuitry 66 is disposed within a control unit housing 72. Control unit housing is attached to switch housing 60 and a plurality of vibrational dampening and electrically isolating mounts form a mounting assembly 62 that is used to secure the control unit housing 72 and the switch housing 60 to the main housing 58. Isolating mounts 62 electrically isolate main housing 58 from both the control unit housing 72 and switch housing 60 which are attached to each other. Electrical line 46 is used to connect control circuitry 66 and electrical line 42 to a ground. In this regard, it is noted that several individual ground locations are shown in
Control circuitry 66 is in communication with a motor voltage sensing line 74 whereby the control circuitry is responsive to voltage changes in the electrical motor. This can be accomplished with a line in communication with the M terminal of the starter assembly.
Control circuitry 66 is also in communication with an electrical line 76 in communication with the voltage source whereby the control circuitry is responsive to the voltage of the voltage source. This can be accomplished with a line in communication with the B+ terminal of the starter assembly.
Control circuitry 66 is also in communication with a sensing line 78 in communication with the electrical line in which the user-operated switch is located. This sensing line should sense the same voltage as the B+ terminal when the user-operated switch is closed. In other words, the voltage in this line corresponds to the voltage of the voltage source when the user operated switch is closed. This can be accomplished with a line in communication with the S+ terminal of the starter assembly.
The control circuitry is programmed to open the solenoid switch upon the satisfaction of predetermined conditions to thereby prevent damage to the electrical motor. More specifically, the control circuitry may be programmed to:
a) require a delay between sequential closings of the solenoid switch of at least three seconds (to thereby provide a rapid re-engagement lockout);
b) prevent the closing of the solenoid switch when the voltage of the voltage source exceeds a predetermined engine running voltage threshold (to thereby provide an engine running lockout);
c) prevent the closing of the solenoid switch if the voltage of the voltage source falls below a predefined first low voltage threshold (to thereby provide a low voltage lockout);
d) open the solenoid switch if the voltage of the voltage source falls below a predefined second low voltage threshold, the second low voltage threshold being lower than the first low voltage threshold (to thereby provide a low voltage lockout);
e) open the solenoid switch after passage of a predetermined time limit with the solenoid switch closed (to thereby provide a time-limited-crank function);
f) wherein the thermally responsive switch is disposed in a third electrical line and wherein the third electrical line also includes a user operated switch and, when the user operated switch is closed and the voltage of the electric motor falls below a predetermined threshold, the solenoid switch is momentarily opened and then closed and, if the voltage of the electric motor does not rise above the predetermined threshold and three such sequential opening and closing of the solenoid switch are conducted, the solenoid switch is opened (to thereby provide an auto-retry function); and
g) wherein the control circuitry is responsive to the voltage in an electrical line containing the user operated switch and the solenoid switch is opened if, after closing the solenoid switch and energizing the solenoid, the voltage of the electrical line containing the user-operated switch rebounds above a predetermined threshold (to thereby provide an auto-disengage at start function).
These functions are also summarized in the chart provided in
As evident from the functionality described above, control circuitry 66 is programmed to include several functions that operate to protect electric motor 32 against thermal damage. However, some of the functions provide functionality other than thermal protection. For example, the low-voltage lockout feature and engagement monitor/auto-retry feature provide benefits other than thermal protection. The inventors of the present application have recognized, however, that control circuitry 66 does have certain limitations. For example, while the circuit logic acts to prevent thermal damage based upon normal usage patterns, a user who repeatedly attempts to start an engine could repeat such attempts for such a large number of times that the electric motor is still subject to thermal damage even though each individual attempt was timed out by control circuitry 66. In the embodiment of
As mentioned above, control circuitry 66 includes a MOSFET switch 70 with MOSFET switch 70 being disposed in electrical line 46 which controls operation of solenoid switch 40. More specifically, MOSFET switch 70 is disposed in series with the coil of magnetic switch 40 and is located on the low side of this coil. Thermally responsive switch 44 is disposed in series with MOSFET switch 70 in electrical line 46 and opening of either MOSFET switch 70 or thermally responsive switch 44 prevents the grounding of the coil of switch 40 and thereby results in the opening of the solenoid switch 40. As can be seen in
While control circuitry 66 is considered robust, it is noted that MOSFET switch 70 does present a potential point of failure. When such MOSFET switches fail, they will typically short to a closed position. If MOSFET switch 70 does fail to a closed position, the starter assembly 22 depicted in
In this regard, it is noted that instead of using both a thermally responsive switch 44 and control circuitry 66, an alternative embodiment of starter assembly 22 could omit control circuitry 66 and rely solely on thermally responsive switch 44 in electrical line 46 connecting the coils of magnetic switch 40 to ground. In this regard, it is noted that
The starter assemblies described herein are well-suited for use with large vehicles and applications. The voltage sources of such applications may have a variety of different nominal voltages. For example, large trucks in the U.S. typically have 12 volt systems while those in Europe more commonly employ 24 volt systems and there is some indication that the trucking industry will move to 48 volt systems. Off-highway equipment is generally 24 volt globally. Diesel locomotive starters are typically 32 volt or 64 volt. The starting system described herein is suitable for use with all such nominal voltage systems as well as others which are not mentioned.
While the disclosed starter systems are particularly well-adapted for use with large vehicles/applications, they are not limited to any particular applications and may also be used in passenger vehicles and other light duty vehicles and applications. In this regard, it is noted that the disclosed starter assembly provides significant benefits in those vehicles/applications having relatively simple starter systems, such as those with only limited reliance on an ECU and/or which require a user operated switch to be closed to initiate a starter sequence, but may also be advantageously employed in vehicles/applications having more sophisticated starter systems having an ECU.
In the embodiments of
While this invention has been described as having an exemplary design, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles.
This application claims priority under 35 U.S.C. 119(e) of U.S. provisional patent application Ser. No. 62/950,568 filed on Dec. 19, 2019 entitled VEHICLE STARTER WITH INTEGRATED THERMAL PROTECTION the disclosure of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2356063 | Dermond | Aug 1944 | A |
4200080 | Cook et al. | Apr 1980 | A |
7209337 | Bradfield et al. | Apr 2007 | B2 |
9234803 | Cheng et al. | Jan 2016 | B2 |
10082122 | Kirk | Sep 2018 | B2 |
20140238343 | Groh et al. | Aug 2014 | A1 |
20180283341 | Greene | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
2001-329932 | Nov 2001 | JP |
2014-92114 | May 2014 | JP |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority, PCT/US2020/064211, dated Mar. 29, 2021, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20210190027 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
62950568 | Dec 2019 | US |