Vehicle steering arrangement and method of making same

Information

  • Patent Grant
  • 10112639
  • Patent Number
    10,112,639
  • Date Filed
    Thursday, June 23, 2016
    8 years ago
  • Date Issued
    Tuesday, October 30, 2018
    5 years ago
Abstract
A single vehicle steering arrangement is provided. The steering arrangement includes a steering wheel and at least one human machine interface configured to allow a human to steer the vehicle, the human machine interface being a component separate from the steering wheel.
Description
BACKGROUND

The embodiments described herein relate to vehicle steering arrangements and a method of making such arrangements.


Vehicles are provided with a steering wheel that allows a human operator to directionally control the vehicle. The steering wheel may be referred to as a human machine interface (HMI). The steering wheel is traditionally the sole HMI available for a human operator to utilize to directionally control the vehicle.


As the automotive industry advances technologically toward autonomous driving assist systems, the steering wheel may not need to be manually manipulated by a driver at all times of vehicle operation. As such, different steering systems may be employed that substitute for, or complement, traditional steering wheels.


SUMMARY

According to one aspect of the disclosure, a single vehicle steering arrangement is provided. The steering arrangement includes a steering wheel and at least one human machine interface configured to allow a human to steer the vehicle, the human machine interface being a component separate from the steering wheel.


According to another aspect of the disclosure, a steering system for an autonomous vehicle is provided and includes a steering wheel providing directional control of the autonomous vehicle in a first condition, the steering wheel moveable between an extended position and a retracted position. Also included is a human machine interface providing directional control of the autonomous vehicle in a second condition, the human machine interface located closer in proximity to a hand of a human operator relative to a distance between the steering wheel in the retracted position and the hand of the human operator. Further included is an autonomous driving assist steering system providing directional control of the autonomous vehicle in a third condition, the third condition comprising an autonomous driving mode.


According to yet another aspect of the disclosure, a method of making a vehicle steering arrangement is provided. The method includes providing a steering wheel in mechanical operable steering linkage to a vehicle. The method also includes providing a steer-by-wire steering system in the vehicle. The method further includes operably connecting at least one human machine interface other than the steering wheel to the vehicle. The method yet further includes connecting the at least one human machine interface to the steer-by-wire system.





BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:



FIG. 1 depicts a schematic view of vehicle with a vehicle steering arrangement;



FIG. 2 depicts a perspective view of an embodiment of a human machine interface of the vehicle steering arrangement;



FIG. 3 depicts a perspective view of another embodiment of the human machine interface of the vehicle steering arrangement; and



FIG. 4 is a flow diagram illustrating a method of operating the vehicle steering arrangement.





DETAILED DESCRIPTION

Referring now to the Figures, where the invention will be described with reference to specific embodiments, without limiting same, FIG. 1 depicts a vehicle steering arrangement 10. The vehicle steering arrangement 10 includes a steering wheel 14, which may be considered a first human machine interface. The vehicle steering arrangement 10 also includes at least one human machine interface 18 in addition to, and separate and distinct from, the steering wheel 14, with the at least one human machine interface 18 being considered a second human machine interface. The steering wheel 14 and the human machine interface 18 are configured to allow a human to steer a vehicle 22. Two possible human machine interfaces 18A and 18B are illustrated herein and described in greater detail below.


In some embodiments, the vehicle 22 includes a steer-by-wire system 26. The steer-by-wire system 26 employs a control system and servos (not shown) that interface with the vehicle 22 such that the vehicle 22 can be steered without mechanical linkage to the steering wheel 14, for example. In some embodiments, the steer-by-wire system 26 is part of an autonomous driving assisted steering (ADAS) system that is able to steer as well as control other parameters of the vehicle 22 to operate it without direct driver involvement. Autonomous or semi-autonomous driving refers to vehicles that are configured to perform operations without continuous input from a driver (e.g., steering, accelerating, braking etc.) and may be equipped with technology that allows the vehicle to be autonomously or semi-autonomously controlled using sensing, steering, and/or braking technology.


The human machine interface 18 is operationally connected to the steer-by-wire system 26 such that manipulation of the human machine interface 18 steers the vehicle 22 in at least one driving condition. Additionally, in some embodiments the steering wheel 14 is also in operable communication with the steer-by-wire system 26.


The steering wheel 14 and the at least one additional human machine interface 18 can be redundantly employed to steer the vehicle 22, such that the steering wheel 14 can continue to operate and thus steer the vehicle 22 when the additional human machine interface 18 is not available. Alternately, the additional human machine interface 18 can continue to operate when the steering wheel 14 is not available, or vice versa. It should be pointed out, however, that the steering wheel 14 can also be mechanically operationally connected to the vehicle 22 to steer the vehicle 22 even if both the steer-by-wire system 26 and the autonomous driving assisted steering system were to both be unavailable (e.g., malfunction event) at the same time.


When the steering wheel 14 is not being employed by an operator the steering wheel 14 can be retracted out of its extended steering position 30 (shown with dashed lines in FIG. 1) to a retracted position 34 (shown in solid lines in FIG. 1) when the vehicle 22 is being steered by the additional human machine interface 18 or the autonomous driving assisted steering system. The additional human machine interface 18 is positioned, sized and configured such that it can be more quickly accessed to take control of steering the vehicle 22 than the steering wheel 14, particularly when the steering wheel 14 is in the retracted position 34. In other words, the human machine interface 18 is located closer in proximity to a hand of a human operator, when compared to a distance between the steering wheel 14 in the retracted position 34 and the hand of the human operator. Such positioning allows the human operator to quickly take steering control of the vehicle 22, as needed.


Referring to FIG. 2, an embodiment of the at least one additional human machine interface 18A is shown as a joystick 18A. The joystick 18A can be configured to cause the steer-by-wire system 26 to turn the vehicle 22 in a direction corresponding to a direction in which the handle 38 is tilted or pivoted. The sharpness of the turn can be proportional to an angle that the handle 38 is displaced from a neutral position.


Referring to FIG. 3, an embodiment of the at least one additional human machine interface 18B is shown as a dial. The dial 18B can be configured to cause the steer-by-wire system 26 to turn the vehicle 22 in a direction corresponding to a direction of rotation of the disk 42 of the dial 18B. The sharpness of the turn can be proportional to an angle that the disk 42 is rotated relative to a neutral position.


The above-described human machine interfaces 18A, 18B are merely examples of the human machine interface 18 and are not intended to be limiting, as any suitable alternative interface may be employed. In particular, any device positioned proximate the human operator and capable of interacting with the vehicle 22 to effectively provide steering control to a human operator is suitable.


Referring now to FIG. 4, a flow diagram illustrates operation of the steering arrangement according to an embodiment. In a condition where the steer-by-wire system is active 100, a processing device or controller determines whether the steer-by-wire system is mechanically linked to the components 102. If so, the driver provides directional control when the ADAS system is not activated 104 and the ADAS system provides directional control if the ADAS system is activated 106. If not, a determination is made regarding whether the ADAS system is activated 108. If not activated, the driver provides directional control 110 and the steering wheel is the human machine interface employed by the driver to do so 112. If activated, the ADAS system provides directional control 114 and a determination is made whether a steering shaft is operatively uncoupled from the steering wheel 116. If it is not, the steering wheel continues to rotate and the driver is to keep hand(s) off the steering wheel 118. If uncoupled, steering wheel rotation stops 120.


As described above, the steering wheel 14 may be moved from an extended steering position 30 to a retracted position 34 to provide more cabin space within the vehicle 22. A determination is made whether the steering wheel is in the retracted position 122. If in the extended position, the driver is to keeps hand(s) off the steering wheel 124. If in the retracted position, the cabin space of the vehicle increases and the steering wheel is distanced from the hands of the driver 126 and the steer-by-wire system is controlled by the ADAS system to steer the vehicle 128. During this condition, monitoring determines whether the ADAS system is turned off or fails 130. During continued normal operation of the ADAS system, no action is required and monitoring continues 132. If an “off” condition or failure is detected, the driver can provide directional control with the steering wheel if the driver can safely provide such control with the steering wheel 134. If unable to do so, such as when the steering wheel is in the retracted position, the driver utilizes the human machine interface (i.e., redundant HMI) to provide directional control 136. While using the redundant HMI, the steering wheel is inactive 138. Upon driver prompt or an automated process, the steering column and wheel extend from the retracted position to the extended position 140. During such movement, the column and wheel position is monitored 142. If the steering wheel is not in the fully extended position, extension continues 144. Upon reaching the fully extended position, the driver may utilize either HMI (i.e., steering wheel or redundant HMI) for directional control 146. Use of one HMI de-activates the other HMI 148.


While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description.

Claims
  • 1. A steering arrangement for a vehicle, comprising: a steering wheel; andat least one human machine interface configured to allow a human to steer the vehicle, the human machine interface being a component separate from the steering wheel, the at least one human machine interface in operable communication with a steer-by-wire system of the vehicle, the steering wheel in operable communication with the steer-by-wire system of the vehicle, the steering wheel and the at least one human machine interface independently rotatable relative to each other.
  • 2. The vehicle steering arrangement of claim 1, wherein the at least one human machine interface comprises a dial.
  • 3. The vehicle steering arrangement of claim 1, wherein the steering wheel and the at least one human machine interface are redundantly employed to steer the vehicle.
  • 4. The vehicle steering arrangement of claim 1, wherein the steering wheel continues to operate when the additional human machine interface is not available.
  • 5. The vehicle steering arrangement of claim 1, wherein the additional human machine interface continues to operate when the steering wheel is not available.
  • 6. The vehicle steering arrangement of claim 1, wherein the steering wheel is retractable out of an extended steering position to a retracted position when the vehicle is being steered by an autonomous driver assisted steering system.
  • 7. A steering arrangement for a vehicle, comprising: a steering wheel; andat least one human machine interface configured to allow a human to steer the vehicle, the human machine interface being a component separate from the steering wheel, the steering wheel being retractable out of an extended steering position to a retracted position when the vehicle is being steered by the additional human machine interface, the human machine interface located closer in proximity to a seat back of a driver's seat relative to a distance between the retracted position of the steering wheel and the seat back of the driver's seat.
  • 8. The vehicle steering arrangement of claim 7, wherein the steering wheel is mechanically operationally connected to steered wheels of the vehicle.
CROSS REFERENCE TO RELATED APPLICATION

This patent application claims priority to U.S. Provisional Patent Application Ser. No. 62/185,108, filed Jun. 26, 2015, which is incorporated herein by reference in its entirety.

US Referenced Citations (258)
Number Name Date Kind
4315117 Kokubo et al. Feb 1982 A
4337967 Yoshida et al. Jul 1982 A
4503300 Lane, Jr. Mar 1985 A
4503504 Suzumura et al. Mar 1985 A
4561323 Stromberg Dec 1985 A
4691587 Farrand et al. Sep 1987 A
4836566 Birsching Jun 1989 A
4921066 Conley May 1990 A
4962570 Hosaka et al. Oct 1990 A
4967618 Matsumoto et al. Nov 1990 A
4976239 Hosaka Dec 1990 A
5240284 Takada et al. Aug 1993 A
5295712 Omura Mar 1994 A
5319803 Allen Jun 1994 A
5488555 Asgari Jan 1996 A
5618058 Byon Apr 1997 A
5668721 Chandy Sep 1997 A
5690362 Peitsmeier et al. Nov 1997 A
5765116 Wilson-Jones et al. Jun 1998 A
5893580 Hoagland et al. Apr 1999 A
5911789 Keipert et al. Jun 1999 A
6070686 Pollmann Jun 2000 A
6138788 Bohner et al. Oct 2000 A
6170862 Hoagland et al. Jan 2001 B1
6212453 Kawagoe et al. Apr 2001 B1
6227571 Sheng et al. May 2001 B1
6256561 Asanuma Jul 2001 B1
6301534 McDermott, Jr. Oct 2001 B1
6354622 Ulbrich et al. Mar 2002 B1
6360149 Kwon Mar 2002 B1
6373472 Palalau et al. Apr 2002 B1
6381526 Higashi et al. Apr 2002 B1
6390505 Wilson May 2002 B1
6481526 Millsap et al. Nov 2002 B1
6575263 Hjelsand et al. Jun 2003 B2
6578449 Anspaugh et al. Jun 2003 B1
6598695 Menjak et al. Jul 2003 B1
6612392 Park et al. Sep 2003 B2
6612393 Bohner et al. Sep 2003 B2
6778890 Shimakage et al. Aug 2004 B2
6799654 Menjak et al. Oct 2004 B2
6817437 Magnus et al. Nov 2004 B2
6819990 Ichinose Nov 2004 B2
6820713 Menjak et al. Nov 2004 B2
7021416 Kapaan et al. Apr 2006 B2
7048305 Muller May 2006 B2
7062365 Fei Jun 2006 B1
7295904 Kanevsky et al. Nov 2007 B2
7308964 Hara et al. Dec 2007 B2
7428944 Gerum Sep 2008 B2
7461863 Muller Dec 2008 B2
7495584 Sorensen Feb 2009 B1
7628244 Chino et al. Dec 2009 B2
7719431 Bolourchi May 2010 B2
7735405 Parks Jun 2010 B2
7793980 Fong Sep 2010 B2
7862079 Fukawatase et al. Jan 2011 B2
7894951 Norris et al. Feb 2011 B2
7909361 Oblizajek et al. Mar 2011 B2
8002075 Markfort Aug 2011 B2
8027767 Klein et al. Sep 2011 B2
8055409 Tsuchiya Nov 2011 B2
8069745 Strieter et al. Dec 2011 B2
8079312 Long Dec 2011 B2
8146945 Born et al. Apr 2012 B2
8150581 Iwazaki et al. Apr 2012 B2
8170725 Chin et al. May 2012 B2
8260482 Szybalski et al. Sep 2012 B1
8352110 Szybalski Jan 2013 B1
8452492 Buerkle et al. May 2013 B2
8479605 Shavrnoch et al. Jul 2013 B2
8548667 Kaufmann Oct 2013 B2
8606455 Boehringer et al. Dec 2013 B2
8632096 Quinn et al. Jan 2014 B1
8634980 Urmson et al. Jan 2014 B1
8650982 Matsuno et al. Feb 2014 B2
8670891 Szybalski et al. Mar 2014 B1
8695750 Hammond Apr 2014 B1
8725230 Lisseman et al. May 2014 B2
8818608 Cullinane et al. Aug 2014 B2
8825258 Cullinane et al. Sep 2014 B2
8825261 Szybalski et al. Sep 2014 B1
8843268 Lathrop et al. Sep 2014 B2
8874301 Rao et al. Oct 2014 B1
8880287 Lee et al. Nov 2014 B2
8881861 Tojo Nov 2014 B2
8899623 Stadler et al. Dec 2014 B2
8909428 Lombrozo Dec 2014 B1
8948993 Schulman et al. Feb 2015 B2
8950543 Heo et al. Feb 2015 B2
8994521 Gazit Mar 2015 B2
9002563 Green et al. Apr 2015 B2
9031729 Lathrop et al. May 2015 B2
9032835 Davies et al. May 2015 B2
9045078 Tovar et al. Jun 2015 B2
9073574 Cuddihy et al. Jul 2015 B2
9092093 Jubner et al. Jul 2015 B2
9108584 Rao et al. Aug 2015 B2
9134729 Szybalski et al. Sep 2015 B1
9150200 Urhahne Oct 2015 B2
9150224 Yopp Oct 2015 B2
9159221 Stantchev Oct 2015 B1
9164619 Goodlein Oct 2015 B2
9174642 Wimmer et al. Nov 2015 B2
9186994 Okuyama et al. Nov 2015 B2
9193375 Schramm et al. Nov 2015 B2
9199553 Cuddihy et al. Dec 2015 B2
9227531 Cuddihy et al. Jan 2016 B2
9233638 Lisseman et al. Jan 2016 B2
9235111 Davidsson et al. Jan 2016 B2
9235211 Davidsson et al. Jan 2016 B2
9235987 Green et al. Jan 2016 B2
9238409 Lathrop et al. Jan 2016 B2
9248743 Enthaler et al. Feb 2016 B2
9260130 Mizuno Feb 2016 B2
9290174 Zagorski Mar 2016 B1
9290201 Lombrozo Mar 2016 B1
9298184 Bartels et al. Mar 2016 B2
9308857 Lisseman et al. Apr 2016 B2
9308891 Cudak et al. Apr 2016 B2
9333983 Lathrop et al. May 2016 B2
9360865 Yopp Jun 2016 B2
9725098 Abou-Nasr et al. Aug 2017 B2
9810727 Kandler et al. Nov 2017 B2
9852752 Chou et al. Dec 2017 B1
9868449 Holz et al. Jan 2018 B1
20030046012 Yamaguchi Mar 2003 A1
20030094330 Boloorchi et al. May 2003 A1
20030227159 Muller Dec 2003 A1
20040016588 Vitale Jan 2004 A1
20040046346 Eki et al. Mar 2004 A1
20040099468 Chernoff et al. May 2004 A1
20040129098 Gayer et al. Jul 2004 A1
20040204808 Satoh et al. Oct 2004 A1
20040262063 Kaufmann et al. Dec 2004 A1
20050001445 Ercolano Jan 2005 A1
20050081675 Oshita et al. Apr 2005 A1
20050155809 Krzesicki et al. Jul 2005 A1
20050197746 Pelchen et al. Sep 2005 A1
20050275205 Ahnafield Dec 2005 A1
20060224287 Izawa et al. Oct 2006 A1
20060244251 Muller Nov 2006 A1
20060271348 Rossow et al. Nov 2006 A1
20070021889 Tsuchiya Jan 2007 A1
20070029771 Haglund et al. Feb 2007 A1
20070046003 Mori et al. Mar 2007 A1
20070046013 Bito Mar 2007 A1
20070241548 Fong Oct 2007 A1
20070284867 Cymbal et al. Dec 2007 A1
20080009986 Lu et al. Jan 2008 A1
20080238068 Kumar et al. Oct 2008 A1
20090024278 Kondo et al. Jan 2009 A1
20090189373 Schramm et al. Jul 2009 A1
20090256342 Cymbal et al. Oct 2009 A1
20090276111 Wang et al. Nov 2009 A1
20090292466 McCarthy et al. Nov 2009 A1
20100152952 Lee et al. Jun 2010 A1
20100222976 Haug Sep 2010 A1
20100228417 Lee et al. Sep 2010 A1
20100228438 Buerkle Sep 2010 A1
20100280713 Stahlin et al. Nov 2010 A1
20100286869 Katch et al. Nov 2010 A1
20100288567 Bonne Nov 2010 A1
20110098922 Ibrahim Apr 2011 A1
20110153160 Hesseling et al. Jun 2011 A1
20110167940 Shavrnoch et al. Jul 2011 A1
20110187518 Strumolo et al. Aug 2011 A1
20110266396 Abildgaard et al. Nov 2011 A1
20110282550 Tada Nov 2011 A1
20120136540 Miller May 2012 A1
20120150388 Boissonnier et al. Jun 2012 A1
20120197496 Limpibunterng et al. Aug 2012 A1
20120205183 Rombold Aug 2012 A1
20120209473 Birsching et al. Aug 2012 A1
20120215377 Takemura et al. Aug 2012 A1
20130002416 Gazit Jan 2013 A1
20130087006 Ohtsubo et al. Apr 2013 A1
20130158771 Kaufmann Jun 2013 A1
20130218396 Moshchuk et al. Aug 2013 A1
20130233117 Read et al. Sep 2013 A1
20130253765 Bolourchi et al. Sep 2013 A1
20130292955 Higgins et al. Nov 2013 A1
20130325202 Howard et al. Dec 2013 A1
20140028008 Stadler Jan 2014 A1
20140046542 Kauffman et al. Feb 2014 A1
20140046547 Kauffman et al. Feb 2014 A1
20140111324 Lisseman et al. Apr 2014 A1
20140152551 Mueller et al. Jun 2014 A1
20140156107 Karasawa et al. Jun 2014 A1
20140168061 Kim Jun 2014 A1
20140172231 Terada et al. Jun 2014 A1
20140277896 Lathrop et al. Sep 2014 A1
20140277945 Chandy Sep 2014 A1
20140300479 Wolter et al. Oct 2014 A1
20140309816 Stefan et al. Oct 2014 A1
20140354568 Andrews et al. Dec 2014 A1
20150002404 Hooton Jan 2015 A1
20150006033 Sekiya Jan 2015 A1
20150014086 Eisenbarth Jan 2015 A1
20150032322 Wimmer Jan 2015 A1
20150032334 Jang Jan 2015 A1
20150051780 Hahne Feb 2015 A1
20150060185 Feguri Mar 2015 A1
20150120141 Lavoie et al. Apr 2015 A1
20150120142 Park et al. Apr 2015 A1
20150123947 Jubner et al. May 2015 A1
20150210273 Kaufmann et al. Jul 2015 A1
20150246673 Tseng et al. Sep 2015 A1
20150251666 Attard et al. Sep 2015 A1
20150283998 Lind et al. Oct 2015 A1
20150324111 Jubner et al. Nov 2015 A1
20150338849 Nemec et al. Nov 2015 A1
20160009332 Sirbu Jan 2016 A1
20160075371 Varunkikar et al. Mar 2016 A1
20160082867 Sugioka et al. Mar 2016 A1
20160185387 Kuoch Jun 2016 A1
20160200246 Lisseman et al. Jul 2016 A1
20160200343 Lisseman et al. Jul 2016 A1
20160200344 Sugioka et al. Jul 2016 A1
20160207538 Urano et al. Jul 2016 A1
20160209841 Yamaoka et al. Jul 2016 A1
20160229450 Basting et al. Aug 2016 A1
20160231743 Bendewald et al. Aug 2016 A1
20160291862 Yaron et al. Oct 2016 A1
20160318540 King Nov 2016 A1
20160318542 Pattok et al. Nov 2016 A1
20160347347 Lubischer Dec 2016 A1
20160347348 Lubischer Dec 2016 A1
20160355207 Urushibata Dec 2016 A1
20160362084 Martin et al. Dec 2016 A1
20160362117 Kaufmann et al. Dec 2016 A1
20160362126 Lubischer Dec 2016 A1
20160364003 O'Brien Dec 2016 A1
20160368522 Lubischer et al. Dec 2016 A1
20160375860 Lubischer Dec 2016 A1
20160375925 Lubischer Dec 2016 A1
20160375926 Lubischer Dec 2016 A1
20160375927 Schulz Dec 2016 A1
20160375928 Magnus Dec 2016 A1
20160375929 Rouleau Dec 2016 A1
20160375931 Lubischer Dec 2016 A1
20170029009 Rouleau Feb 2017 A1
20170029018 Lubischer Feb 2017 A1
20170113712 Watz Apr 2017 A1
20170151978 Oya et al. Jun 2017 A1
20170158055 Kim et al. Jun 2017 A1
20170158222 Schulz et al. Jun 2017 A1
20170225704 Urushibata Aug 2017 A1
20170240204 Raad et al. Aug 2017 A1
20170293306 Riefe et al. Oct 2017 A1
20170297606 Kim et al. Oct 2017 A1
20170305458 Wang et al. Oct 2017 A1
20180029632 Bodtker et al. Feb 2018 A1
20180072341 Schulz et al. Mar 2018 A1
20180093700 Chandy Apr 2018 A1
20180105198 Bodtker et al. Apr 2018 A1
20180107214 Chandy Apr 2018 A1
20180136727 Chandy May 2018 A1
Foreign Referenced Citations (44)
Number Date Country
1722030 Jan 2006 CN
1736786 Feb 2006 CN
101037117 Sep 2007 CN
101041355 Sep 2007 CN
101596903 Dec 2009 CN
102320324 Jan 2012 CN
102452391 May 2012 CN
202563346 Nov 2012 CN
103158699 Jun 2013 CN
103419840 Dec 2013 CN
103448785 Dec 2013 CN
103677253 Mar 2014 CN
104024084 Sep 2014 CN
19523214 Jan 1997 DE
19923012 Nov 2000 DE
10212782 Oct 2003 DE
102005032528 Jan 2007 DE
102005056438 Jun 2007 DE
102006025254 Dec 2007 DE
102008057313 Oct 2009 DE
102010025197 Dec 2011 DE
102012010887 Dec 2013 DE
1559630 Aug 2005 EP
1783719 May 2007 EP
1932745 Jun 2008 EP
2384946 Nov 2011 EP
2426030 Mar 2012 EP
2489577 Aug 2012 EP
2604487 Jun 2013 EP
1606149 May 2014 EP
2862595 May 2005 FR
3016327 Jul 2015 FR
S60157963 Aug 1985 JP
S60164629 Aug 1985 JP
H05162652 Jun 1993 JP
2007253809 Oct 2007 JP
20174099 Jan 2017 JP
20100063433 Jun 2010 KR
2006099483 Sep 2006 WO
2007034567 Mar 2007 WO
2010082394 Jul 2010 WO
2010116518 Oct 2010 WO
2013080774 Jun 2013 WO
2013101058 Jul 2013 WO
Non-Patent Literature Citations (23)
Entry
China Patent Application No. 201510204221.5 Second Office Action dated Mar. 10, 2017, 8 pages.
CN Patent Application No. 201210599006.6 First Office Action dated Jan. 27, 2015, 9 pages.
CN Patent Application No. 201210599006.6 Second Office Action dated Aug. 5, 2015, 5 pages.
CN Patent Application No. 201310178012.9 First Office Action dated Apr. 13, 2015, 13 pages.
CN Patent Application No. 201310178012.9 Second Office Action dated Dec. 28, 2015, 11 pages.
CN Patent Application No. 201410089167 First Office Action and Search Report dated Feb. 3, 2016, 9 pages.
EP Application No. 14156903.8 Extended European Search Report, dated Jan. 27, 2015, 10 pages.
EP Application No. 14156903.8 Office Action dated Nov. 16, 2015, 4 pages.
EP Application No. 14156903.8 Office Action dated May 31, 2016, 5 pages.
EP Application No. 14156903.8 Partial European Search Report dated Sep. 23, 2014, 6 pages.
EP Application No. 15152834.6 Extended European Search Report dated Oct. 8, 2015, 7 pages.
European Application No. 12196665.9 Extended European Search Report dated Mar. 6, 2013, 7 pages.
European Search Report for European Application No. 13159950.8; dated Jun. 6, 2013; 7 pages.
European Search Report for related European Application No. 15152834.6, dated Oct. 8, 2015; 7 pages.
Gillespie, Thomas D.; “Fundamentals of Vehicle Dynamics”; Society of Automotive Enginers, Inc.; published 1992; 294 pages.
Kichun, et al.; “Development of Autonomous Car—Part II: A Case Study on the Implementation of an Autonomous Driving System Based on Distributed Architecture”; IEEE Transactions on Industrial Electronics, vol. 62, No. 8, Aug. 2015; 14 pages.
Office Action regarding related CN App. No. 10204221.5; dated Aug. 29, 2016.
Partial European Search Report for related European Patent Application No. 14156903.8, dated Sep. 23, 2014, 6 pages.
Van Der Jagt, Pim; “Prediction of steering efforts during stationary or slow rolling parking maneuvers”; Jul. 2013, 20 pages.
Varunjikar, Tejas; Design of Horizontal Curves With DownGrades Using Low-Order Vehicle Dynamics Models; A Theisis by T. Varunkikar; 2011; 141 pages.
CN Patent Application No. 201610575225.9 First Office Action dated Jan. 22, 2018, 10 pages.
English Translation of Chinese Office Action and Search Report for Chinese Application No. 2016103666609.X dated Dec. 20, 2017, 8 pages.
English Translation of Chinese Office Action and Search Report for Chinese Application No. 201610832736.4 dated Mar. 22, 2018, 6 pages.
Related Publications (1)
Number Date Country
20160375923 A1 Dec 2016 US
Provisional Applications (1)
Number Date Country
62185108 Jun 2015 US