Hereinafter, an embodiment of the invention will be described in detail with reference to the accompanying drawings.
The steering actuator 2 can be made up of an electric motor such as a known brushless motor. The steering gear 3 has a motion transforming mechanism for transforming a rotational motion of an output shaft of the steering actuator 2 into linear motions (linear motions in lateral directions of the vehicle) of steering rods 7. The movements of the steering rods 7 are transmitted to the road wheels 4 via tie rods 8 and knuckle arms 9, so as to change toe angles (turning angles) of the road wheels 4. A known steering gear can be used for the steering gear 3, and there is no limitation on the configuration thereof, provided that the movement of the steering actuator 2 can be transmitted to the road wheels 4 in such a manner as to change the turning angles thereof. In addition, a wheel alignment is set such that the road wheels can returns to a straight-ahead position by a self aligning torque in a state that the steering actuator 2 is not driven.
The steering wheel 1 is connected to a rotational shaft 10 which is supported rotatably on a vehicle body side. A counterforce actuator 19 is provided on the rotational shaft 10 for generating a counterforce to be applied to the steering wheel 1. The counterforce actuator 19 can be made up of an electric motor such as a brushless motor which has an output shaft which is integrated with the rotational shaft 10.
An elastic member 30 is provided between the vehicle body and the rotational shaft 10 for applying an elastic force in a direction in which the steering wheel 1 is caused to turn back to the straight-ahead steering position. The elastic member 30 can be made up of, for example, a spring for applying an elastic force to the rotational shaft 10. When no torque is applied to the rotational shaft 10 by the counterforce actuator 19, the steering wheel 1 is allowed to turn back to the straight-ahead steering position by virtue of the elastic force of the elastic member 30.
An angle sensor 11 is provided for detecting a rotational angle δh of the rotational shaft 10 in order to detect a manipulation angle (a rotational angle) of the steering wheel 1. In addition, a torque sensor 12 is provided for detecting a torque transmitted by the rotational shaft 10 in order to detect a manipulation torque Th which is applied to the steering wheel 1 by the driver. Furthermore, a steered angle sensor 13 for detecting a steered angle (a turning angle produced by the steering mechanism 5) δ of the vehicle is made up of a potentiometer for detecting an operation amount of the steering rods 7 which correspond to the steered angle of the vehicle. In addition, a speed sensor 14 for detecting a vehicle velocity V, a lateral acceleration sensor 15 for detecting a lateral acceleration Gy of the vehicle and a yaw rate sensor 16 for detecting a yaw rate γ of the vehicle are provided to the vehicle.
Furthermore, a rearview monitor camera 17 for picking up a rearview at the rear of the vehicle and an obstacle sensor 18 for emitting detection signals (for example, infrared rays or ultrasonic waves) to sides and obliquely rearward directions of the vehicle to sense obstacles lying to sides of the vehicle and in obliquely rearward positions of the vehicle and to detect distances to those obstacles so sensed are provided to the vehicle.
The angle sensor 11, torque sensor 12, steered angle sensor 13, speed sensor 14, lateral acceleration sensor 15 and yaw rate sensor 16 are connected to a control unit 20 which is made up of a computer. The control unit 20 is configured to control the steering actuator 2 and the counterforce actuator 19 via drive circuits 22, 23.
In addition, an automatic driving mode setting switch 21 is provided in a position where the driver can manipulate the switch.
When the automatic driving mode setting switch 21 is switched on, a signal which represents that the automatic driving mode setting switch 21 is on is given to the control unit 20, whereby the vehicle steering system is then automatically controlled by the control unit 20. In the case of an automatic parking mode, detection outputs of the rearview monitor camera 17 and the obstacle sensor 18 are effectively used. As an example,
A yaw rate γ1 or γ2 which is amplified at the amplifier circuit 202 or 203 is converted from an analog signal to a digital signal by an A/D converter circuit 204 and is then given to an MPU (micro processing unit) 205.
A more specific description will be made with reference to sensor output characteristics shown in
The vehicle steering system shown in
On the other hand, when the automatic parking mode setting switch 21 is switched on so that the vehicle steering system is in the automatic parking mode, the switch 201 is switched so that the output γ of the yaw rate sensor 16 is given to the amplifier circuit 203 and is then amplified by the gain G2, so as to obtain a yaw rate of γ2.
The yaw rate γ2 has a characteristic shown, for example, in Example 1 of
Namely, the output characteristic of the sensor shown in Example 1 of
Normally, in the automatic parking mode, the driving speed of the vehicle is slow or low to be 10 km/h or slower, and the yaw rate (speed at which the orientation of the vehicle changes) is relatively moderate. Therefore, even in the event that the working range of the yaw rate sensor 16 is narrowed, for example, to one half, there is caused no problem in detecting a yaw rate. Then, an output which is more suitable for the automatic parking mode is obtained by making the resolution of the sensor double while the working range of the sensor is narrowed to one half.
As a modification of the above embodiment, another configuration in which an output of the yaw rate sensor is switched between a normal mode and the automatic parking mode can be adopted. Specifically, the switching is determined based on which of the two tables 206, 207 installed in the MPU 205 is used. The MPU 205 includes a data conversion table 206 which corresponds to the gain G1 and a data conversion table 207 which corresponds to the gain G2. At the MPU 205, the corresponding table 206 or 207 is applied to a yaw rate so inputted thereinto for gain conversion.
In
On the other hand, the table 207 is applied to the yaw rate γ1 so as to obtain a sensor output in the automatic parking mode, whereby an output characteristic shown in Example 2 of
The output characteristic shown in Example 2 of
In this way, taking the output of the yaw rate sensor 16 for example, one of features of the embodiment is that the amplifier circuits 202, 203 or the tables 206, 207 which can be switched between the normal mode and the automatic parking mode so as to optimize the output of the yaw rate sensor 16 to necessary output ranges for the respective modes is provided.
Incidentally, while in the configuration of the block diagram illustration shown in
While in the description that has been made heretofore, the invention is described by taking the yaw rate sensor 16 for example embodiment, the vehicle sensors other than the yaw rate sensor 16 such as the lateral acceleration sensor 15, the vehicle speed sensor 14, a throttle position sensor and the like can be raised, for example, as sensors whose detection outputs are preferably switched between the normal mode and the automatic parking mode.
In addition, while in the embodiment, the output gain of the sensor is described as being switched between the normal mode and the automatic parking mode, the output gain of the sensor may be made to be switched between the normal mode and, for example, an automatic driving control mode. For example, when the vehicle enters a high-way driving state, the vehicle steering system can be made to be switched from the normal mode to the automatic driving control mode, so as to increase a detecting resolution for a steering angle δh of the steering wheel 1 which is detected by the angle sensor 11 (refer to
Furthermore, while in the embodiment, the invention is described as being applied to the steer-by-wire system, the invention can widely be applied to vehicle steering systems in which the steering actuator for imparting steering force to the steering mechanism of the vehicle is provided. Vehicle steering systems like this include an electric power steering system, a hydraulic steering system and the like.
The embodiments described above are to be regard as illustrative rather than restrictive. Variations and changes may be made by others, and equivalents employed, without departing from spirit of the present invention. Accordingly, it is intended that all variation, changes and equivalents which fall within the spirit and scope of the present invention as defined in the claims be embraced thereby.
Number | Date | Country | Kind |
---|---|---|---|
2006-157713 | Jun 2006 | JP | national |