1. Field of the Invention
The present invention relates, generally, to a vehicle body and, more particularly, to a step of the vehicle body and an extending and retracting device for the step.
2. Description of the Related Art
A step under a door of a vehicle is used for a passenger to get on or off the vehicle. In terms of ergonomics, the vehicle step is generally mounted at a level of 15 cm with respect to the ground so that it is convenient for the passenger to get on or off it, but this level does not provide sufficient ground clearance during operation of many vehicles. The level of the vehicle step should be higher than ground clearance of the vehicle. Therefore, it is difficult to meet ground-clearance and convenience requirements simultaneously with a conventional vehicle step.
U.S. Pat. No. 6,830,257 discloses a retractable vehicle step employing a four-link mechanism. When a door of a vehicle is opened, the vehicle step is automatically extended out downwardly from the chassis of the vehicle near the board of the body of the vehicle so that a passenger can step on the extended vehicle step. When the vehicle door is closed, the vehicle step is automatically retracted upwardly to its original position, thus not affecting disadvantageously ground clearance of the vehicle.
The retractable vehicle step disclosed in U.S. Pat. No. 6,830,257 employs one motor to drive a pair of four-link mechanisms used to deploy and retract a step member. Since the pair of four-link mechanisms is driven by one motor, a driving force applied to the retractable vehicle step is not balanced, and rotations of two four-link mechanisms of the retractable vehicle step are not synchronous so that operation of the retractable vehicle step is not reliable. If a conventional four-link retractable vehicle step employs two motors to drive the two four-link mechanisms simultaneously, rotations of the two motors and/or four-link mechanisms may not be synchronous so that the four-link mechanisms may interfere with each other. The retractable vehicle step may be destroyed due to the interference and fail to operate. Thus, there is a need in the related art for a retractable vehicle step that is stable and not subject to these deficiencies and operation of which is reliable.
The present invention overcomes the disadvantages in the related art in a vehicle step apparatus. The vehicle step apparatus includes a step member and first and second extending and retracting devices connected to the step member for moving the step member between an extended position and a retracted position. Each of the first and second extending and retracting devices includes a mounting bracket adapted to be fixed to a body of a vehicle, a step bracket connected to the step member, a first arm defining a lower end portion thereof rotatably connected to the step bracket and an upper end portion thereof, a second arm defining a lower end portion thereof rotatably connected to the step bracket and an upper end portion thereof, and a third arm defining an upper end portion thereof rotatably connected to the mounting bracket and a lower end portion thereof rotatably connected to the upper end portion of the first or second arm. The upper end portion of the other of the first or second arm is rotatably connected to the mounting bracket. The vehicle step apparatus includes also first and second driving devices that drive respectively the first and second extending and retracting devices to move the step member between the extended and retracted positions.
One advantage of the vehicle step apparatus of the present invention is that it employs a five-link mechanism, is reliable and stable with a long operational life, and eliminates interference occurring between the two extending and retracting devices.
Another advantage of the vehicle step apparatus of the present invention is that its freedom of movement is increased and it employs the two driving devices to drive respectively the two extending and retracting devices with increased driving force.
Another advantage of the vehicle step apparatus of the present invention is that even if rotations of the two driving devices and/or extending and retracting devices are not synchronous, asynchronization can be compensated by relative rotation between the third arm and first or second arm.
Other objects, features, and advantages of the present invention will be readily appreciated as the same becomes better understood while reading the subsequent description taken in conjunction with the accompanying drawings.
An extending and retracting device for a vehicle step apparatus of the present invention is shown in
With reference to
More specifically and as shown in
The upper end portion of the first arm 4 is rotatably connected to the mounting bracket 1. As shown in
As shown in
The step member 9 can be mounted on the step bracket 8. In particular, the step bracket 8 is formed with an extension portion 814 at the lower end so that the step member 9 can be mounted on the extension portion 814.
The lower end portion of the third arm 6 is rotatably connected to the upper end portion of the second arm 5. As shown in
The upper end portion of the third arm 6 is rotatably connected to the mounting bracket 1. As shown in
In
In operation of the first embodiment of the extending and retracting device and as shown in
It should be appreciated by those having ordinary skill in the related art that in the first embodiment of the extending and retracting device, each of the mounting bracket 1, speed reducer 2, reversible motor 3, first arm 4, second arm 5, third arm 6, step bracket 8, pins 10, 11, 12, 13, 14, protrusion portion 510, and extension portion 814 can have any suitable shape, size, and structure. It should also be appreciated that each of the through-holes 110, 111, 412, 413, 511, 512, 612, 613, 811, 812 and grooves 410, 610, 611 can have any suitable shape and size. It should also be appreciated also that each of the mounting bracket 1, speed reducer 2, reversible motor 3, first arm 4, second arm 5, third arm 6, step bracket 8, step member 9, pins 10, 11, 12, 13, 14, protrusion portion 510, extension portion 814, through-holes 110, 111, 412, 413, 511, 512, 612, 613, 811, 812, and grooves 410, 610, 611 can have any suitable structural relationship with each other and the step member 9 and body of the vehicle.
With reference to
In the second embodiment, groove 411 is formed in the lower end portion of the first arm 4, and groove 513 formed in the lower end portion of the second arm 5. The step bracket 8 is inserted into grooves 411, 513. In particular, the step bracket 8 is pivotably connected to the respective lower end portions of the first arm 4 and second arm 5 via corresponding pins 13, 14. Otherwise, the second embodiment illustrated in
With reference to
In the third embodiment, the respective lower end portions of the first arm 4 and second arm 5 are juxtaposed with respect to each other and connected to the step bracket 8. In other words, the respective lower end portions of the first arm 4 and second arm 5 are connected to the step bracket 8 side by side with respect to each other. A notch 414 is formed in the lower end portion of the first arm 4 such that the lower end portion of the first arm 4 is formed as a width-reduced protrusion portion, a notch 514 is formed in the lower end portion of the second arm 5 such that the lower end portion of the second arm 5 is formed as a width-reduced protrusion portion, and a notch 813 is formed in an upper portion of the step bracket 8 such that the upper portion of the step bracket 8 is formed as a width-reduced protrusion portion. In this way, the respective lower end portions of the first arm 4 and second arm 5 are connected via corresponding pins 13, 14 to the step bracket 8 side by side with respect to each other.
However, those having ordinary skill in the related art should appreciate that the respective lower end portions of the first arm 4 and second arm 5 and the upper portion of the step bracket 8 can be formed with no notches. Alternatively, the respective lower end portions of the first arm 4 and second arm 5 may be juxtaposed to the upper portion of the step bracket 8 directly. The term “juxtaposed” as used herein means that the step bracket 8 is not inserted into the first arm 4 and second arm 5 (as compared to the step bracket 8 of the second embodiment). Namely, the respective lower end portions of the first arm 4 and second arm 5 are connected to the step bracket 8 side by side with respect to each other.
With reference to
In the fourth embodiment, the mounting bracket 1 is formed with recess 112, and the upper end portion of the third arm 6 is rotatably inserted into recess 112. In particular, the upper end portion of the third arm 6 is pivotably connected to the mounting bracket 1 in recess 112 via pin 11. The upper end portion of the first arm 4 is rotatably inserted into recess 112. In particular, the upper end portion of the first arm 4 is pivotably connected to the mounting bracket 1 in recess 112 via pin 10. Not by way of limitation, the width of the respective upper end portions of the third arm 6 and first arm 4 is reduced such that they adapt to recess 112.
With reference to
In the fifth embodiment, the respective upper end portions of the first arm 4 and third arm 6 are juxtaposed with respect to each other and connected to the mounting bracket 1. In other words, the respective upper end portions of the first arm 4 and third arm 6 are connected to the mounting bracket 1 side by side with respect to each other. A notch 415 is formed in the upper end portion of the first arm 4 such that the upper end portion of the first arm 4 is formed as a width-reduced protrusion portion, a notch 614 is formed in the upper end portion of the third arm 6 such that the upper end portion of the third arm 6 is formed as a width-reduced protrusion portion, and a notch 113 is formed in a lower portion of the mounting bracket 1 such that the lower portion of the mounting bracket 1 is formed as a width-reduced protrusion portion. In this way, the respective upper end portions of the first arm 4 and third arm 6 are pivotably connected via corresponding pins 10, 11 to the mounting bracket 1 side by side with respect to each other.
However, those having ordinary skill in the related art should appreciate that the respective upper end portions of the first arm 4 and third arm 6 and the lower portion of the mounting bracket 1 can be formed with no notches. Alternatively, the respective upper end portions of the first arm 4 and third arm 6 may be juxtaposed to the lower portion of the mounting bracket 1 directly. The term “juxtaposed” as used herein means that neither the first arm 4 nor third arm 6 is inserted into the mounting bracket 1 (as compared to the first arm 4 and third arm 6 of the fourth embodiment) and the mounting bracket 1 is not inserted into the first arm 4 and third arm 6 (as compared to the mounting bracket 1 of the first through third embodiments). Namely, the respective upper end portions of the first arm 4 and third arm 6 are connected to the mounting bracket 1 side by side with respect to each other.
With reference to
In the sixth embodiment, the lower end portion of the third arm 6 is rotatably connected to the upper end portion of the first arm 4, the upper end portion of the third arm 6 is rotatably connected to the mounting bracket 1, and the lower end portion of the first arm 4 is rotatably connected to the step bracket 8. The upper end portion of the second arm 5 is rotatably connected directly to the mounting bracket 1, and the lower end portion of the second arm 5 is rotatably connected to the step bracket 8.
More specifically and as shown in
With reference to
In the seventh embodiment, the lower end portion of the first arm 4 is formed with groove 411, and the lower end portion of the second arm 5 is formed with groove 513. The step bracket 8 is inserted into grooves 411, 513 and pivotably connected to the first arm 4 and second arm 5 via corresponding pins 13, 14.
With reference to
In the eighth embodiment, the respective lower end portions of the first arm 4 and second arm 5 are juxtaposed to the step bracket 8. In the sixth through eight embodiments, the upper end portion of the third arm 6 is formed with groove 610, the upper end portion of the second arm 5 is formed with groove 515, and the mounting bracket 1 is inserted into grooves 610, 515. The mounting bracket 1 can be formed with recess 112 (as shown in
It should be appreciated by those having ordinary skill in the related art that in each of the second through eighth embodiments of the extending and retracting device, each of the pins 10, 11, 13, 14 and protrusion portion 615 can have any suitable shape, size, and structure. It should also be appreciated that each of the recess 112, grooves 410, 411, 513, 515, 610, and notches 113, 414, 415, 514, 614, 813 can have any suitable shape and size. It should also be appreciated that each of the pins 10, 11, 13, 14, protrusion portion 615, recess 112, grooves 410, 411, 513, 515, 610, and notches 113, 414, 415, 514, 614, 813 can have any suitable structural relationship with each other.
With reference to
More specifically, the mounting bracket 1 can be mounted to the body of the vehicle so as to mount the extending and retracting device to the vehicle. The step member 9 is mounted onto the step brackets 8 of the respective extending and retracting devices. The lower end portion of the first arm 4 is rotatably connected to the step bracket 8. In particular, the lower end portion of the first arm 4 is pivotably connected to the step bracket 8 via pin 13. The upper end portion of the first arm 4 is rotatably connected to the mounting bracket 1. In particular, the upper end portion of the first arm 4 is pivotably connected to the mounting bracket 1 via pin 10. The lower end portion of the second arm 5 is rotatably connected to the step bracket 8. In particular, the lower end portion of the second arm 5 is pivotably connected to the step bracket 8 via pin 14. The upper end portion of the third arm 6 is rotatably connected to the mounting bracket 1. In particular, the upper end portion of the third arm 6 is pivotably connected to the mounting bracket 1 via pin 11. The lower end portion of the third arm 6 is rotatably connected to the upper end portion of the second arm 5. In particular, the lower end portion of the third arm 6 is pivotably connected to the upper end portion of the second arm 5 via pin 12.
In one embodiment, each of the driving devices includes the reversible motor 3 and speed reducer 2. In particular, the reversible motors 3 drive respectively the first arms 4 via the corresponding speed reducers 2 so as to move the extending and retracting devices between the extended and retracted states, thus moving the step member 9 between the extended and retracted positions. Each of the driving devices is not limited to drive the first arm 4 and can drive the second arm 5 or third arm 6. As shown in
In operation of the first embodiment of the vehicle step apparatus and as shown in
If rotation of the reversible motor 3 of the first driving device is not synchronous with that of the second driving device and/or rotation of the first extending and retracting device is not synchronous with that of the second extending and retracting device, such asynchronization can be compensated for by relative rotation between the second arms 5 and third arms 6, thus eliminating interference of the first extending and retracting device with the second extending and retracting device. In other words, the vehicle step apparatus employs a five-link mechanism, which increases freedom of movement of each extending and retracting device, and eliminates interference so that operation life and reliability of the vehicle step apparatus and extending and retracting device therefor are increased. Because two driving devices are used to drive respectively two extending and retracting devices, resulting driving forces are increased, and operation of the vehicle step apparatus is very stable.
With reference to
With respect to each of the extending and retracting devices, the lower end portion of the third arm 6 is rotatably connected to the upper end portion of the first arm 4. The upper end portion of the third arm 6 is rotatably connected to the mounting bracket 1, and the lower end portion of the first arm 4 is rotatably connected to the step bracket 8. The upper end potion of the second arm 5 is rotatably connected directly to the mounting bracket 1, and the lower end portion of the second arm 5 is rotatably connected to the step bracket 8. The reversible motor 3 drives the third arm 6 via the speed reducer 2. Asynchronization between the extending and retracting devices and/or reversible motors 3 can be compensated for by relative rotation between the third arm 6 and first arm 4, thus eliminating interference of the first extending and retracting device with the second extending and retracting device.
As shown in
It should be appreciated by those having ordinary skill in the related art that in each of the first and second embodiments of the vehicle step apparatus, each of the mounting brackets 1, speed reducers 2, reversible motors 3, first arms 4, second arms 5, third arms 6, step brackets 8, step member 9, pins 10, 11, 12, 13, 14, and driving devices can have any suitable shape, size, and structure and structural relationship with each other and the body of the vehicle.
The vehicle step apparatus of the present invention employs a five-link mechanism, is reliable and stable with a long operational life, and eliminates interference occurring between the two extending and retracting devices. In addition, freedom of movement of the vehicle step apparatus is increased, when compared to conventional four-link mechanisms, and the vehicle step apparatus employs the two driving devices to drive respectively the two extending and retracting devices with increased driving force. Moreover, even if rotations of the two driving devices and/or extending and retracting devices are not synchronous, asynchronization can be compensated by relative rotation between the third arm and first or second arm.
The present invention has been described in an illustrative manner. It is to be understood that the terminology that has been used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the present invention are possible in light of the above teachings. Therefore, within the scope of the appended claims, the present invention may be practiced other than as specifically described.
Number | Date | Country | Kind |
---|---|---|---|
2008 1 0110563 | Jun 2008 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
32460 | Betts | Jun 1861 | A |
115664 | Vollhardt | Jun 1871 | A |
125235 | Wells | Apr 1872 | A |
752031 | Chadwick | Feb 1904 | A |
1052364 | Morris | Feb 1913 | A |
1146559 | Fuller | Jul 1915 | A |
1182563 | Coop | May 1916 | A |
1487408 | Tichy | Mar 1924 | A |
2118557 | Hamilton | May 1938 | A |
3528574 | Denner et al. | Sep 1970 | A |
3833240 | Weiler | Sep 1974 | A |
3887217 | Thomas | Jun 1975 | A |
3955827 | Wonigar | May 1976 | A |
4073502 | Frank et al. | Feb 1978 | A |
4110673 | Magy et al. | Aug 1978 | A |
4982974 | Guidry | Jan 1991 | A |
5538269 | McDaniel et al. | Jul 1996 | A |
6641158 | Leitner | Nov 2003 | B2 |
6830257 | Leitner | Dec 2004 | B2 |
6834875 | Leitner et al. | Dec 2004 | B2 |
6938909 | Leitner | Sep 2005 | B2 |
6942233 | Leitner et al. | Sep 2005 | B2 |
7007961 | Leitner et al. | Mar 2006 | B2 |
7055839 | Leitner | Jun 2006 | B2 |
7118120 | Lee et al. | Oct 2006 | B2 |
7163221 | Leitner | Jan 2007 | B2 |
7287771 | Lee et al. | Oct 2007 | B2 |
7367574 | Leitner | May 2008 | B2 |
7380807 | Leitner | Jun 2008 | B2 |
7398985 | Leitner et al. | Jul 2008 | B2 |
7413204 | Leitner | Aug 2008 | B2 |
7441790 | Lechkun | Oct 2008 | B2 |
7487986 | Leitner et al. | Feb 2009 | B2 |
7566064 | Leitner et al. | Jul 2009 | B2 |
7584975 | Leitner | Sep 2009 | B2 |
7621546 | Ross et al. | Nov 2009 | B2 |
7712755 | Yang et al. | May 2010 | B2 |
7740260 | VanBelle et al. | Jun 2010 | B2 |
7740261 | Leitner et al. | Jun 2010 | B2 |
7744106 | VanBelle et al. | Jun 2010 | B2 |
20020113400 | Leitner | Aug 2002 | A1 |
20030184040 | Leitner et al. | Oct 2003 | A1 |
20040084868 | Leitner et al. | May 2004 | A1 |
20040124601 | Leitner | Jul 2004 | A1 |
20050077697 | Leitner | Apr 2005 | A1 |
20050087951 | Leitner et al. | Apr 2005 | A1 |
20050104318 | Lee et al. | May 2005 | A1 |
20050179227 | Leitner | Aug 2005 | A1 |
20050280242 | Fabiano et al. | Dec 2005 | A1 |
20060091638 | Leitner et al. | May 2006 | A1 |
20060125204 | Leitner et al. | Jun 2006 | A1 |
20060202441 | Leitner | Sep 2006 | A1 |
20070108720 | Leitner | May 2007 | A1 |
20070278760 | VanBelle et al. | Dec 2007 | A1 |
20080054586 | Lechkun | Mar 2008 | A1 |
20080100024 | Leitner et al. | May 2008 | A1 |
20080100025 | Leitner et al. | May 2008 | A1 |
20080116653 | Piotrowski | May 2008 | A1 |
20080191445 | Yang et al. | Aug 2008 | A1 |
20080271936 | Kuntze et al. | Nov 2008 | A1 |
20080290626 | Leitner | Nov 2008 | A1 |
20090072508 | Leitner et al. | Mar 2009 | A1 |
20090250896 | Watson | Oct 2009 | A1 |
20100059962 | Leitner et al. | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
2438489 | Oct 2002 | CA |
2463717 | May 2003 | CA |
2475492 | Jan 2005 | CA |
1652955 | Aug 2005 | CN |
101020434 | Aug 2007 | CN |
8-132967 | May 1996 | JP |
WO02085670 | Oct 2002 | WO |
WO 03039910 | May 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20090295114 A1 | Dec 2009 | US |