The present invention generally relates to vehicle storage compartments, and more particularly relates to a storage compartment closure assembly for controlling latching of a closure member on a vehicle.
Automotive vehicles are commonly equipped with various compartments for stowing vehicle accessories, personal belongings and other objects. For example, vehicles typically include a glove box usually located in the dash on the front passenger side of the passenger compartment. The glove box has a housing typically installed with the dash and has walls that generally define a compartment with an open front side. A pivoting lid or door is pivotally connected to the housing such that the lid pivots between an open position in which the compartment is accessible and a closed position in which access is prevented. The door typically has a latch assembly for latching the door closed and is user actuatable to release the door and allow it to first open. A conventional latch may include a pull level that releases a latch and enables a user to pull the door open. Conventional latch mechanisms may be susceptible to damage, particularly when large forces are applied such as during a vehicle collision which can result in unwanted exodus of objects from the compartment.
It is desirable to provide for alternative closure assemblies for vehicle compartments that are easy to use and adequately operate the door between open and closed positions.
According to one aspect of the present invention, a vehicle stowage assembly is provided. The vehicle stowage assembly includes a storage compartment comprising an opening to permit access to the compartment, and a door pivotally mounted to the compartment proximate the opening. The stowage assembly also includes an electromagnetic coil configured to receive an electrical current to generate an electromagnetic field and a user input operatively coupled to the electromagnetic coil to apply current to the coil to open the door.
According to another aspect of the present invention, a vehicle stowage assembly is provided that includes a compartment comprising an access opening and a door pivotally mounted to the compartment proximate to the opening. The vehicle stowage assembly also includes a user input configured to open the door and an electromagnetic coil configured to generate a first electromagnetic field to apply a closure force to the door and to generate a second electromagnetic field to open the door responsive to the user input.
According to a further aspect of the present invention, a vehicle storage compartment is provided that includes a compartment having an open space and a door pivotally mounted to the compartment. The vehicle storage compartment also includes an electromagnetic assembly comprising a ferrous member, one or more magnets, and an electromagnetic coil coupled to the ferrous member. The coil generates an electromagnetic field on the ferrous member to apply a closure force to the door. The vehicle storage compartment further includes user input actuatable to generate an electromagnetic field to open the door.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
Referring to
Referring to
The vehicle stowage assembly 20 includes a ferrous member 30 extending on one of the compartment 22 and the door 24. In the embodiment shown, the ferrous member 30 is located on the compartment 22 near the top edge. The ferrous member 30 is fixed to the compartment 22 such that it does not move in this embodiment. The ferrous member may include a steel member, such as a steel bar, according to one embodiment. According to another embodiment, the ferrous member may include a soft iron material, such as an iron bar. A soft iron material may be magnetized when current is applied thereto, and loses its magnetism when the electrical current stops flowing, whereas a steel material may form a more permanent magnet, which could be reversed.
The vehicle stowage assembly 20 also includes one or more magnets 28 disposed on the other of the door 24 and compartment 22 and adapted to magnetically coupled to the ferrous member 30 when the door 24 is in the closed position. In the embodiment shown, four rare earth magnets 28 are assembled to the door 24 near the top edge such that the magnets align with the ferrous member 30. When the door 24 is in the closed position, the magnets 28 attract to ferrous member 30 so as to hold the door 24 with a closure force when in the closed position during normal vehicle operation.
The vehicle stowage assembly 20 further includes an electromagnetic coil 32 located and aligned to be electromagnetically coupled to the ferrous member 30. The coil 32 is electrically energized by current to create a polarity on the ferrous member 30 to apply an added closure force to the door 24 relative to the compartment 22 which may occur during a sensed vehicle collision. As seen in
During a normal vehicle operation, the rare earth magnets 28 attract to ferrous member 30 to apply a closure force to hold the door 24 in the closed position relative to compartment 22. To open the door, a user may actuate a user input, such as a pushbutton switch 38 shown mounted in dash 12, which causes current to be applied to coil 32 in the second direction to generate a polarity that is the same as the polarity as the engaging surface of magnets 28 so that the magnets 28 are repelled by ferrous member 30 to cause the door 24 to be forced open. The door 24 may then be actuated manually (lifted and pushed inward) by a user to close the door 24. With the door 24 in the closed position, the stowage assembly 20 advantageously senses a vehicle crash or collision by monitoring one or more crash sensors and provides an increased force to maintain the door 24 in the closed position during a vehicle collision. This is achieved by applying electrical current to the coil 32 in the first direction so as to create a polarity of sufficient amplitude on the ferrous member 30 to increase the attractive force between the magnets 28 and ferrous member 30. This increased attractive closure force is intended to keep the door 24 in the closed position. While at least one crash sensor is used to sense a vehicle crash or collision, it should be appreciated that the crash indicative signal could be provided by way of a hard wired restraint control module which, in turn, receives the crash indicative signal.
Referring to
Referring to
Referring to
Accordingly, the vehicle stowage assembly 20 advantageously provides for an easy to use assembly that adequately operates the door 24 of the storage assembly 20 between the open and closed positions.
It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
This application is a continuation of U.S. patent application Ser. No. 12/690,354, filed Jan. 20, 2010 entitled “VEHICLE STOWAGE ASSEMBLY HAVING ELECTROMAGNETIC CLOSURE.” The aforementioned related application is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12690354 | Jan 2010 | US |
Child | 13483757 | US |