The present disclosure generally relates to vehicle sunvisor assembly. More specifically, the present disclosure relates to vehicle sunvisor assembly that includes an energy absorbing structure that absorbs forward momentum (energy) in response to an object moving in a forward direction contacting a sunvisor panel imparting the forward momentum through the sunvisor panel to the energy absorbing structure.
The automotive industry is constantly re-engineering and re-designing many of the components and structures within a vehicle in order to absorb energy in the form of forward momentum of objects within the vehicle. One area of re-designing interest relates to considering the effects of a sudden stop or impact event on very tall vehicle operators or tall passengers within a vehicle.
One object of the present disclosure is to provide a sunvisor assembly with an energy absorbing structure that cushions or absorbs energy (forward momentum) from an object aligned with the sunvisor assembly.
In view of the state of the known technology, one aspect of the present disclosure is to provide a vehicle sunvisor assembly with a support structure, a sunvisor panel and an energy absorbing structure. The support structure is attached to a vehicle body structure adjacent to a first area of a windscreen of the vehicle body structure. The sunvisor panel has a first end and a second end. The first end is supported by the support structure for pivotal movement about an upright axis and movement about an offset axis that is not parallel to the upright axis. The second end of the sunvisor panel has a first attachment end. The energy absorbing structure is installed to the vehicle body structure adjacent to a second area of the windscreen spaced apart from the first area. The energy absorbing structure has a downwardly extending projection with a second attachment end that aligns with the first attachment end such that with the first attachment end of the sunvisor panel pivoted to the second attachment end, the first attachment end releasably attaches to the second attachment end. The energy absorbing structure is configured to absorb energy and pivot upward and forward in response to an object contacting and moving the sunvisor panel in a forward direction, transferring movement energy to the second attachment end and to the energy absorbing structure.
Referring now to the attached drawings which form a part of this original disclosure:
Selected embodiments will now be explained with reference to the drawings. It will be apparent to those skilled in the art from this disclosure that the following descriptions of the embodiments are provided for illustration only and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
Referring initially to
The vehicle 10 defines a vehicle forward direction DF. The vehicle body structure 12 includes many conventional features, such as doors 18 and a windscreen 20 made of a laminated glass material. Since doors and windscreens are conventional vehicle structures and components, further description is omitted for the sake of brevity.
As shown in
The sunvisor assembly 16 (also referred to as the vehicle sunvisor assembly 16) is now described with reference to
As shown in
The support structure 38 of the sunvisor assembly 16 includes a base member 50 and an L-shaped shaft 52. The base member 50 is attached to at least the headliner 28 and the forward roof bow 24 via a snap-fitting structure (not shown) and/or a fastener (not shown). The base member 50 also includes a shaft support portion 50a (also referred to as a first shaft receiving section 50a). An upper portion of the shaft support portion 50a of the base member 50 is also attach to the forward roof bow 24 of the vehicle body structure 12 Specifically, as shown in
As shown in
The second portion 52b of the L-shaped shaft member 50 along with the first end 44 of the sunvisor panel 36 define the offset axis A2 such that the sunvisor panel 36 pivots about the offset axis A2 and the second portion 52b of the L-shaped shaft member 52.
The first portion 52a and the second portion 52b of the L-shaped shaft member 52 define an angle α therebetween that is between 80 and 100 degrees. However, in the depicted embodiment, the angle α is approximately 90 degrees or can be slightly larger than 90 degrees, depending upon the design of the vehicle body structure 12 of the vehicle 10.
The first portion 52a of the L-shaped shaft member 52 extends through the base member 50 and into the shaft support portion 50a of the support structure 38. The upright axis A1 is defined by the first shaft receiving section 50a with the first portion 52a of the L-shaped shaft 52 being retained within the first shaft receiving section 50a for pivotal movement in a conventional manner.
The second portion 52b of the L-shaped shaft member 52 extends into an opening (not shown) in the first end 44 of the sunvisor panel 36 and into a second shaft receiving section 60 of the sunvisor panel 36, as shown in phantom in
Hence, the sunvisor panel 36 can undergo pivotal movement about the offset axis A2 via the attachment to the second portion 52b of the L-shaped shaft 52.
In the depicted embodiment, the first attachment end 48 at the second end 46 of the sunvisor panel 36 is a pivot pin (hereinafter the pivot pin 48) that can be aligned with the offset axis A2. In the depicted embodiment, the pivot pin 48 is separate and spaced apart from the second portion 52b of the L-shaped shaft member 52. More specifically, in the depicted embodiment, the second portion 52b is formed of a plastic or polymer material and is formed unitarily with the sunvisor panel 36.
However, in a first alternative embodiment (not shown) the pivot pin 48 can be part of the L-shaped shaft member 52 and is a distal end of the second portion 52b of the L-shaped shaft 52. Still further, in a further alternative embodiment, the pivot pin 48 is separate from the L-shaped shaft member 52 and is not aligned with the second axis A2.
A description of the energy absorbing structure 40 is now provided with specific reference to
As shown in
As shown in
The pivot openings 66 are dimensioned and located at opposing sides of the housing 60 to the receive and retain pivot pins 72 formed on opposing sides of the upper portion 64a of the downwardly extending projection 64. The upper portion 64a of the downwardly extending projection 64 further includes movement limiting pins 74 that extend into the movement limiting slots 68 when the downwardly extending projection 64 is installed to the housing 60. There are two pivot openings 66 and two corresponding pivot pins 72. Similarly, there are two movement limiting slots 68 and two movement limiting pins 74. The downwardly extending projection 64 can pivot about the pivot pins 72 which pivot within the pivot openings 66. The amount of pivoting movement that the downwardly extending projection 64 can undergo is limited by the arcuate length of the movement limiting slots 68. Specifically, the pivoting movement of the downwardly extending projection 64 is limited by restriction of movement of the pivot protrusions 70 within the arcuately shaped movement limiting slots 68.
As shown in
As shown in
In the depicted embodiment, the second attachment end 80 of the downwardly extending projection 64 is a slot 80. The second attachment end 80 (the slot 80) is dimensioned and located such that the second attachment end 80 (the slot 80) defined proximate a lower end of the downwardly extending projection 64 is below the headliner 28 and is spaced apart from the headliner 28. In an at rest orientation shown in
The upper end 64a of the downwardly extending projection 64 is substantially located within the housing 60 such that the downwardly extending projection 64 can pivot about the pivot pins 62 and the pivot openings 66 of the housing 60.
As shown in
The energy absorbing structure 40 can also include a shield member 82 that covers those portions of the elongated slot 32 of the headliner 28 that might be exposed during movement of the downwardly extending projection 64, as shown in
Referring now to
The sunvisor assembly 116 has all of the features of the sunvisor assembly 16 of the first embodiment, including the sunvisor panel 36, the L-shaped shaft 52, the roof structure 14, the headliner 28, etc. In the second embodiment, the sunvisor 116 further includes an energy absorbing structure 140 that is installed over an opening or slot 130 as shown in
The energy absorbing structure 140 includes a housing 160, the biasing member (not shown) of the first embodiment and further includes a pivoting member 164. The upper end or first portion 52a of the L-shaped shaft 52 is supported by the pivoting member 164 of the energy absorbing structure 140. The pivoting member 164 has pivot pins 170 that extend through pivot openings in the housing 160. The pivoting member 164 fully supports the first portion 52a of the L-shaped shaft 52 for pivotal movement about the axis A1. Further, since the pivoting member 164 can pivot relative to the housing 160, the L-shaped shaft 52 and the axis A1 pivot with the pivoting movement of the base member 150.
More specifically, in response to an object represented by arrow F moving rapidly forward and contacting the sunvisor panel 36, the sunvisor panel 36 moves the L-shaped shaft 52 forward and upward as the pivoting member 164 pivots about the pivot pins 72 against the force of the spring (not shown).
The energy absorbing structure 140 is configured to absorb forward energy resulting from forward energy being applied to the first end 44 of the sunvisor panel 36 by the object F in a manner consistent with the in the first embodiment. Specifically, movement of the sunvisor panel 36 in the forward direction DF from forward energy or momentum is transmitted through the L-shaped shaft 52 to the pivoting member 164.
The vehicle body structure includes features, devices and structure are conventional components that are well known in the art. Since these features, devices and structure are well known in the art, these features, devices and structures will not be discussed or illustrated in detail herein. Rather, it will be apparent to those skilled in the art from this disclosure that the components can be any type of structure and/or programming that can be used to carry out the present invention.
In understanding the scope of the present invention, the term “comprising” and its derivatives, as used herein, are intended to be open ended terms that specify the presence of the stated features, elements, components, groups, integers, and/or steps, but do not exclude the presence of other unstated features, elements, components, groups, integers and/or steps. The foregoing also applies to words having similar meanings such as the terms, “including”, “having” and their derivatives. Also, the terms “part,” “section,” “portion,” “member” or “element” when used in the singular can have the dual meaning of a single part or a plurality of parts. Also as used herein to describe the above embodiments, the following directional terms “forward”, “rearward”, “above”, “downward”, “vertical”, “horizontal”, “below” and “transverse” as well as any other similar directional terms refer to those directions of a vehicle equipped with the vehicle sunvisor assembly. Accordingly, these terms, as utilized to describe the present invention should be interpreted relative to a vehicle equipped with the vehicle sunvisor assembly.
The terms of degree such as “substantially”, “about” and “approximately” as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed.
While only selected embodiments have been chosen to illustrate the present invention, it will be apparent to those skilled in the art from this disclosure that various changes and modifications can be made herein without departing from the scope of the invention as defined in the appended claims. For example, the size, shape, location or orientation of the various components can be changed as needed and/or desired. Components that are shown directly connected or contacting each other can have intermediate structures disposed between them. The functions of one element can be performed by two, and vice versa. The structures and functions of one embodiment can be adopted in another embodiment. It is not necessary for all advantages to be present in a particular embodiment at the same time. Every feature which is unique from the prior art, alone or in combination with other features, also should be considered a separate description of further inventions by the applicant, including the structural and/or functional concepts embodied by such features. Thus, the foregoing descriptions of the embodiments according to the present invention are provided for illustration only, and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
2112464 | Jacobs | Mar 1938 | A |
2454613 | Feltier et al. | Nov 1948 | A |
2646241 | Mclean | Jul 1953 | A |
3017217 | Keating | Jan 1962 | A |
3374031 | Dully | Mar 1968 | A |
3767256 | Sarkees | Oct 1973 | A |
6547308 | Hamelink et al. | Apr 2003 | B2 |
10988003 | Baxter | Apr 2021 | B2 |
Number | Date | Country |
---|---|---|
4465099 | May 2010 | JP |
920004596 | Jun 1992 | KR |
Entry |
---|
English language translation of abstract JP 4465099 (Year: 2010). |
English language translation of KR 920004596 (Year: 1992). |