The present invention relates to a vehicle switch to be used mainly for operating a variety of electronic devices installed in the interior of the car.
In recent years, a vehicle switch mounted on the dashboard or near the steering wheel in the interior of the car has gained popularity because it is convenient for the driver to operate a variety of electronic devices such as an audio system or an air-conditioner. The vehicle switch is thus required to be easy to operate and to perform its function reliably.
A conventional vehicle switch disclosed in Unexamined Japanese Patent Application Publication No. 2003-308759 (Patent Document 1) is described hereinafter with reference to
Operating unit 4 shaped like a cylinder with an opening at its center and made of insulating resin is mounted to rotary operating section 2B formed on an upper section of encoder 2. Push button 5 shaped like a cylinder and made of insulating resin is accommodated in the opening of operating unit 4 such that it can move up and down.
As discussed above, various electronic components such as encoder 2, push switch 3 are mounted on wiring board 1. Switch unit 10 is thus formed of wiring board 1, encoder 2, push-switch 3, operating unit 4, and push button 5. A rotation of operating unit 4 prompts encoder 2 to perform an electrical switch-on or switch-off. A push onto push-switch 5 depresses push-switch 3 via pressing section 5A, whereby push-switch 3 performs an electrical switch-on or switch-off.
Housing 6 shaped like a cylindrical box with a bottom plate and made of insulating resin includes multiple fixing sections 6A at its inner wall, and each one of fixing sections 6A protrudes inward. Wiring board 1 of switch unit 10 is placed on fixing sections 6A. Wiring board 1 has multiple cutouts 1A corresponding to fixing sections 6A, and is screwed to fixing sections 6A with screws 7, so that switch unit 10 is fixed to housing 6. Operating unit 4 placed on housing 6 is covered with cylindrical cover 8 at its outer wall, and cover 8 is mounted on the top face of housing 6, whereby vehicle switch 11 is constructed.
The foregoing vehicle switch 11 is mounted on the dashboard or near the steering wheel in the car interior with operating unit 4 protruding forward. When operating unit 4 is operated by a driver, encoder 2 or push-switch 3 is connected electrically to an electronic circuit (not shown) of the car via the wiring patterns, switch contacts, connectors and lead wires (not shown) of wiring board 1.
A push onto push-button 5 with a finger downward lowers push-button 5, and a lower end of pressing section 5A depresses push-switch 3, so that push-switch 3 can perform an electrical switch-on or switch-off. An electrical signal generated by this switch-on or switch-off is supplied to the electronic circuit of the car, thereby turning on or off the power supply of, e.g. the audio system or the air-conditioner.
Hold the operating unit 4 protruding upward from cover 8 with fingers, and rotate it, then rotating section 2B of encoder 2 rotates in synchronization with the rotation of operating unit 4. An electrical switch-on or switch-off of the inner switch contact is repeated in response to a rotation amount of rotating section 2B, and an electrical signal generated by this switch-on or switch-off is supplied to the electronic circuit of the car, thereby increasing or decreasing a sound volume of the audio system or a temperature of the air-conditioner.
Operating unit 4 generally protrudes from the top face of cover 8 by 20-30 mm to be held and rotated easily with fingers. A baggage in the car interior sometimes hits this protrusion, so that a large load or shock is applied to operating unit 4 or push-button 5, thereby damaging encoder 2, push-switch 3 or wiring board 1. Switch unit 10 as a whole thus sometimes subsides into housing 6.
Problems of the conventional vehicle switch are described hereinafter with reference to
A user can operate various devices installed in the car interior by rotating operating unit 4 or pressing push button 5 of vehicle switch 11 mounted on the dashboard or near the steering wheel of the car. However, when a large load or shock is applied to operating unit 4 or push button 5, encoder 2 or push switch 3 of switch unit 10, or wiring board 1 including switch contacts tends to be broken.
The present invention addresses the problems discussed above, and aims to provide a vehicle switch that can prevent its encoder or wiring board of the switch unit from being broken even if a large load or shock is applied to the operating unit or the push button. The vehicle switch also performs its function reliably.
The vehicle switch of the present invention comprises the following elements:
The foregoing structure allows preventing the encoder or the wiring board including switch contacts from being damaged even if a large load or shock is applied to the operating unit, and allows the vehicle switch to perform the functions reliably.
The first embodiment of the present invention is demonstrated hereinafter with reference to
As discussed above, various electronic components such as encoder 2, push-switch 3 are mounted on wiring board 21. Operating unit 4 is disposed above wiring board 21. Rotation of operating unit 4 prompts encoder 2 to perform an electrical switch-on or switch-off. A push onto push button 5 depresses the switch contact of push-switch 3 via pressing section 5A, whereby push-switch 3 performs an electrical switch-on or switch-off.
Housing 26 is shaped like a cylindrical box with a bottom plate and made of insulating resin such as ABS, polyoxy-methylene (POM), or polybutylene terephthalate (PBT). Housing 26 includes multiple fixing sections 26A on its inner wall. Fixing sections 26A protrude inward, and are placed at equidistant intervals therebetween.
Support spring 27 working as a supporting member is formed of supporter 27A shaped like letter U and holders 27B formed on both the ends of supporter 27A and bent downward. Spring 27 is made of elastic metal wire such as hard steel wire, piano wire or stainless steel wire. Holders 27B are inserted into holding holes 26B formed on both sides of fixing section 26A of housing 26. Multiple support springs 27 are held by respective fixing sections 26A of housing 26.
Wiring board 21 has cutouts 21A corresponding to each one of fixing sections 26A, and each cutout 21A is slightly greater than fixing section 26A. The inside of each one of cutout 21A is brought into contact with supporter 27A of support spring 27 protruding inward of housing 26, so that wiring board 21 is supported on multiple support springs 27.
Cover 28 is shaped like a cylinder and made of insulating resin such as ABS or PC, and covers the outer wall of operating section 4 placed above housing 26. Cover 28 is mounted to housing 26 such that cover 28 prevents wiring board 21 from rotating. For instance, protrude pins downward from cover 28, and provide wiring board 21 with at least two holes, and then insert the pins into the holes, whereby cover 28 cannot be rotated.
Vehicle switch 31 thus constructed is mounted on the dashboard or near the steering wheel in the car interior with operating unit 4 protruding forward. When operating unit 4 is operated by a driver, encoder 2 or push-switch 3 is connected to an electronic circuit (not shown) of the car via the wiring patterns, switch contacts, connectors and lead wires (not shown) of wiring board 21.
A push onto push-button 5 with a finger downward lowers push-button 5, and prompts pressing section 5A at the lower end to depress an operating section of push-switch 3, so that push-switch 3 can perform an electrical switch-on or switch-off. An electrical signal generated by this switch-on or switch-off is supplied to the electronic circuit of the car, thereby turning on or off the power supply of, e.g. the audio system or the air-conditioner.
Hold the operating unit 4 protruding upward from cover 28 with fingers, and rotate it, then rotating section 2B of encoder 2 rotates in synchronization with the rotation of operating unit 4. An electrical switch-on or switch-off of the inner switch-contact is repeated in response to a rotation amount of rotating section 2B, and an electrical signal generated by this switch-on or switch-off is supplied to the electronic circuit of the car, thereby increasing or decreasing, e.g. a sound volume of the audio system or a temperature of the air-conditioner.
As discussed above, the driver can operate various devices installed in the car interior by rotating operating-unit 4 or pressing push-button 5 of vehicle switch 31 mounted on the dashboard or near the steering wheel of the car. Operating unit 4 generally protrudes from the top face of cover 28 by 20-30 mm to be held and rotated easily with fingers.
Operation of vehicle switch 31 in accordance with the first embodiment is demonstrated hereinafter with reference to
When a baggage in the car interior hits operating unit 4 or push button 5, and a load or a shock greater than a given value is applied to operating unit 4 or push button 5, then the structure of switch 31 changes from the normal status shown in
If the force greater than, e.g. 20 kgf, is applied to wiring board 21, wiring board 21 comes off support springs 27, and switch unit 30 lowers into the space within housing 26 of switch unit 30, as shown in
To be more specific, when push button 5 is normally depressed, or operating unit 4 is normally rotated, switch unit 30 is supported by support spring 27 via wiring board 21 so that no obstruction can occur during the operation. However, when a greater force than a given value is applied to operating unit 4 or push button 5, support spring 27 is elastically deformed so that the load or shock can be alleviated. If a further greater force is applied as a load or a shock thereto, the support to wiring board 21 by support spring 27 is released, so that switch unit 30 lowers into a space in housing 26. This mechanism allows preventing switch unit 30 including encoder 2, push switch 3 and wiring board 21 from being damaged.
Since encoder 2, push switch 3 and wiring board 21 of switch unit 30 lowered into housing 26 are not damaged, operating unit 4 or push button 5 can be still depressed or rotated although these operations become rather cumbersome. The audio system or the air-conditioner can be thus reliably operated with this push or rotation.
If necessary, switch unit 30 lowered into housing 26 can be restored onto support spring 27 mounted at the upper section of housing 26, so that switch unit 30 is returned to the normal status. As a result, the user can used vehicle switch 31 again.
The first embodiment discussed above proves that wiring board 21 of switch unit 30 accommodated in box-like housing 26 is supported by multiple support springs 27 held by housing 26 and made of elastic metal wire. When a great load or shock is applied to operating unit 4 or push button 5, this structure allows support-springs 27, which support wiring board 21, to be elastically deformed for alleviating the load or the shock. If a further greater load or shock is applied thereto, wiring board 21 comes off support-springs 27, so that switch contacts of encoder 2, push switch 3, and wiring board 21 are free from this greater load or shock. Vehicle switch 31 in accordance with this first embodiment allows preventing the electronic components such as encoder 2 and push switch 3 from being damaged, and thus reliable operation can be expected.
This first embodiment also proves that support spring 27 is shaped like letter U and made of elastic metal wire. This structure allows setting the force to elastically deform spring 27 with rather ease, so that the supporting member can be manufactured in a simple structure with ease. On top of that, support springs 27 are inserted into holding holes 26B of housing 26 so that springs 27 can be held. This structure allows assembling vehicle switch 31 in a simple manner at a lower cost.
The second exemplary embodiment is demonstrated hereinafter with reference to
In this second embodiment, multiple stoppers 32A are formed on the circumference of wiring board 32 at three places or more than three places. Stoppers 32A protrude outward and are placed at equidistant intervals therebetween. Multiple fixing sections 36A shaped like letter U protruding outward and corresponding to stoppers 32A are formed on the outer wall of box-like housing 36 made of insulating resin includes. Each one of fixing sections 36A includes slant face 36D at its upper section, and face 36D slants downward and outward.
Support spring 37 working as a supporting member is formed of supporter 37A shaped like letter U and holders 37B formed on both the ends of supporter 37A and bent downward. Spring 37 is made of elastic metal wire such as hard steel wire, piano wire or stainless steel wire. Holders 37B are inserted into holding holes 36B formed on both sides of fixing section 36A of housing 36. Support springs 37 are thus held respectively by fixing sections 36A of housing 36.
Cutouts 32B of wiring board 32 are placed correspondingly to inner projections 36E formed on the inner wall of housing 36. Stopper 32A formed on wiring board 32 is brought into contact with supporter 37A formed at approx. center of each one of support springs 37. This structure allows support springs 37 support wiring board 32.
Cover 28 covers the outer wall of operating section 4 placed above housing 36. Cover 28 is mounted to housing 36 such that cover 28 prevents wiring board 32 from rotating.
In this second embodiment, support spring 37 working as a supporting member is held in fixing section 36A of holding hole 36B formed on the outer wall of housing 36, but not on the inner wall thereof. On top of that, stopper 32A formed on wiring board 32 is brought into contact with supporter 37A, so that wiring board 32 is supported by support spring 37.
Similar to the first embodiment, vehicle switch 41 thus constructed is mounted on the dashboard or near the steering wheel in the car interior with operating unit 4 protruding forward. Encoder 2 and push-switch 3 are electrically connected to an electronic circuit (not shown) of the car. A push onto push-button 5 or a rotation of operating unit 4 allows operating electronic devices such as the audio system or the air-conditioner.
In this second embodiment, vehicle switch 41 is in the normal status as shown in
On top of that, if a force greater than 20 kgf is applied to operating unit 4 or push button 5, stopper 32A comes off supporter 37A as shown in
The second embodiment discussed above proves that wiring board 32 of switch unit 40 accommodated in box-like housing 36 is supported by multiple support springs 37 held by housing 36 and made of elastic metal wire. When a great load or shock is applied to operating unit 4 or push button 5, this structure allows support springs 37, which support wiring board 32, to be elastically deformed outward for alleviating the load or the shock. If a further greater load or shock is applied thereto, wiring board 32 comes off support springs 37, so that switch contacts of encoder 2, push switch 3, and wiring board 32 are free from this greater load or shock. Vehicle switch 41 in accordance with this second embodiment allows preventing the electronic components such as encoder 2 and push switch 3 from being damaged. As a result, this second embodiment can provide reliable vehicle switch 41 as the first embodiment can.
This second embodiment also proves that supporter 37A of support spring 37 is brought into contact with slant face 36D formed on the upper section of fixing section 36A of housing 36 while supporter 37A supports stopper 32A of wiring board 32. This structure allows each one of support springs 37 to be guided by slant face 36D, and respective springs 37 tend to expand outward equally. This structure allows the dispersion of the force to be smaller when the support to wiring board 32 by support springs 37 is released.
The third exemplary embodiment is demonstrated hereinafter with reference to
Flat support-face 47A forms at the center of the top face of support board 47. Support-board 47 includes multiple arc-shaped slits 47B formed near its outer circumference and multiple engaging sections 47C formed outside slits 47B and projecting outward. Circular support spring 48 is mounted to support board 47, and spring 48 is made of elastic metal wire such as such as hard steel wire, piano wire or stainless steel wire. To be more specific, as shown in
Engaging section 47C of support-board 47 protrudes like letter U outside slit 47B, so that it is elastically deformable inward by the force applied thereto from the outside. Since support spring 48 is mounted inside support-board 47, protrusion 48A slightly vows and urges against engaging section 47C from the inside. This structure reinforces the outward elasticity of engaging section 47C.
At least three fixing sections 46A are provided on the inner wall of housing 46. As fixing section 46A is drawn its cross section partially enlarged in the circle shown in
Cutouts 42A of wiring board 42 are placed correspondingly to fixing sections 46A of housing 46. Supporting member 49 supports wiring board 42 of switch unit 50. Vehicle switch 51 is thus constructed.
As discussed above, support spring 48 is mounted to support-board 47, so that supporting member 49 elastically deformable can be formed, and this supporting member 49 is held on the inner wall of housing 46 for supporting wiring board 42.
Similar to the first and the second embodiment, vehicle switch 51 discussed above is mounted to a given place in the car interior, and a push onto push button 5 or a rotation of operating unit 4 allows operating various electronic devices installed in the car interior.
The operation of vehicle switch 51 is demonstrated hereinafter with reference to
To be more specific, a baggage in the car interior hits operating unit 4 or push button 5, and a load or a shock greater than a given force is applied to operating unit 4 or push button 5, then the status of vehicle switch 5 is changed from the normal one as shown in
If a force greater than 20 kgf is applied thereto, engaging section 47C overrides the lower end of slant face 46C of stopper recess 46B and moves to slant face 46D slanting outward, so that engaging section 47C comes off stopper recess 46B. Then switch unit 50 together with support-board 47 lowers into a space within housing 46 as shown in
To be more specific, during a normal operation such as a push onto push button 5 or a rotation of operating unit 4, switch unit 50 is supported, via wiring board 42, by supporting member 49 formed of support-board 47 and support spring 48, so that no problems occur during the normal operation. However, when a great force is applied to switch unit 50 as a load or a shock, supporting member 49, which supports wiring board 42, is elastically deformed for alleviating the load or shock. If the greater force is applied thereto, supporting member 49 is further deformed elastically, so that the support to wiring board 42 by supporting member 49 is released. As a result, switch unit 50 lowers into the space within housing 46 free from being damaged.
Since switch unit 50 is brought into contact with flat support-face 47A of support-board 47 for being supported, wiring board 42 resists bending downward by a push onto push button 5 or a rotation of operating unit 4 in a regular manner. The driver can thus operate vehicle switch 51 with a stable operating feel.
The third embodiment discussed above proves that wiring board 42 of switch unit 50 accommodated in box-shaped housing 46 is supported by supporting member 49 elastically deformable and held by housing 46 and formed of support spring 48 and support-board 47. When a great load or shock is applied to operating unit 4 or push button 5, this structure allows supporting member 49, which supports wiring board 42, to deform elastically inward for alleviating the load or the shock. If the greater load or shock is applied thereto, the foregoing structure allows releasing the hold of supporting member 49 by housing 46, so that switch unit 50 together with supporting member 49 lowers into housing 46. As a result, the switch contacts of encoder 2 and push switch 3, and wiring board 42 can avoid the greater load or shock, so that this structure allows preventing these structural elements from being damaged. Similar to the first and the second embodiments, this third embodiment can provide vehicle switch 51 assuring reliable operation.
This third embodiment refers to supporting member 49 formed of support-board 47 and support spring 48 mounted inside support-board 47; however, another structure of supporting member 49 is available, i.e. support-board 47 made of insulating resin is reinforced such that it can be elastically deformed by a force greater than a given value, so that this support-board 47 can work as supporting member 49 by itself. Then it is elastically held by housing 46, thereby supporting the wiring board 42 of switch unit 50. This structure can produce an advantage similar to what is discussed previously.
The descriptions discussed previously refer to support springs 27, 37, 48 made of elastic metal wire such as hard steel wire, piano wire, or stainless steel wire; however, they can be formed of plate-like elastic metal plate such as stainless steel plate, or copper alloy metal sheet to be used for spring.
The previous descriptions refer to the structure where discrete rotary encoder 2 and push-switch 3 are mounted on the wiring board for forming switch contacts; however, the switch contacts can be formed this way: multiple and annular fixed contacts are formed of carbon on the top face of the wiring board, and brush-like movable contacts are formed on the underside of operating unit 4, and then these movable contacts and fixed contacts carry out an electrical switch-on or switch-off in response to a rotary operation of the operating unit 4. This structure produces an advantage similar to what is discussed previously.
Here is another structure; multiple fixed contacts are formed on the top face of the wiring board, and domed movable contacts made of conductive thin metal sheet are placed above the fixed contacts, and then a push onto push button 5 prompts the fixed and the movable contacts to carry out an electrical switch-on or switch-off. This structure also produces an advantage similar to what is discussed previously. The present invention thus can be implemented by using a variety of switch contacts.
Number | Date | Country | Kind |
---|---|---|---|
2008-107659 | Apr 2008 | JP | national |