1. Field of the Invention
The present invention relates to automotive electronics, and more particularly to tire pressure monitoring.
2. Discussion of Related Art
Proper tire pressure in automotive tires is important for ensuring safe handling, maintaining gas mileage, reducing tread wear, and preventing tire blowouts. Under-inflated or over-inflated tires can negatively affect the handling of a vehicle, resulting in under-steer, over-steer, and/or an increased tendency to hydroplane in wet conditions.
Under-inflation is a more common problem as tire pressure typically decreases over time. Under-inflated tires increase rolling resistance, decreasing gas mileage and increasing tire wear. Further, under-inflated tires flex greatly as they roll, the flexing generates heat as different layers of the tire rub against one another. The heat can reach temperatures beyond the operating parameters of the tire causing catastrophic tire failure.
These problems are exacerbated by the increasing use of “run-flat” tires. A run-flat tire enables a vehicle to travel an extended distance after a significant loss of air pressure within the tire through the use of, for example, stiff tire sidewalls. Thus, even a significant loss of air pressure within the tire may go unrecognized by a vehicle operator because the loss of air pressure may cause only a small deflection of the sidewall. Because the sidewall is capable of maintaining the shape of an under-inflated tire, the handling characteristics of the vehicle during typical operation may not be affected. However, the under-inflation can seriously affect handling in an emergency situation where the stresses placed on the tire can be much greater than during typical operation. For these and other reasons, proper air pressure is important to the safe and efficient operation of a motor vehicle.
Since air pressure is typically overlooked as part of vehicle maintenance, systems have been developed to inform vehicle operators of low-pressure situations. These systems are typically sold as part of a factory installed package with new vehicles.
Various tire pressure monitoring systems have been developed to provide information to a vehicle operator, for example, a tire pressure monitoring system that detects when air pressure within a tire drops below a predetermined threshold pressure value.
Typically, a tire pressure monitoring system comprises a tire pressure sensor, a tire pressure signal transmitter, a tire pressure signal receiver, and an indicator or display located on a vehicle instrument panel. The tire pressure sensor and the tire pressure signal transmitter are located inside the tire. The tire pressure sensor may transmit radio frequency signals through the transmitter that are received by an antenna located in the vehicle.
Tire pressure sensors have been developed with various designs. For example, tire pressure sensors and transmitters have been attached to air valves. Another system utilizes a strap to attach the sensor and transmitter to a rim.
While the tire pressure monitoring systems are useful to vehicle operators, the systems are typically standalone systems having dedicated wiring and interfaces.
Therefore, a need exists for an integrated monitoring system for monitoring tire air pressure and vehicle security.
A vehicle tire pressure monitoring system comprising of a tire pressure sensor coupled to a tire of the vehicle, a transmitter coupled to the tire pressure sensor for wirelessly transmitting a signal indicative of a tire pressure, a receiver located in the vehicle for receiving the signal indicative of the tire pressure, a controller coupled to the receiver for processing the signal indicative of the tire pressure, and a plurality of displays coupled to the controller via a databus in the vehicle for displaying on at least one of the displays the processed signal indicating a tire pressure.
The vehicle tire pressure monitoring system wherein the plurality of displays are disposed in any combination of a dashboard, rear view mirror, HVAC, overhead or headrest mounted device.
The system controller generates an alarm condition when the tire pressure sensed by the tire pressure sensor decreases by a preset amount. The alarm condition is displayed on at least one of the displays located in the vehicle. The controller periodically polls the tire pressure sensor.
The system further including a remote keyless entry device for remotely operating a security feature of the vehicle, the remote keyless entry device having a receiver for receiving the signal indicating tire pressure information and a display for displaying the tire pressure information.
The system further comprising a second transceiver coupled to the tire pressure sensor, the second transceiver for transmitting a second signal indicating a tire pressure to a remote keyless entry device and for receiving a tire pressure request signal from the remote keyless entry device.
The system further including a battery for powering the tire pressure sensor. A transducer for converting a signal into a current, the transducer provides power to the tire pressure sensor
The controller processes the signal indicating tire pressure from each tire of the vehicle and the display displays the processed signal indicating tire pressure numerically in pounds per square inch.
A vehicle tire pressure monitoring system comprising of a tire pressure sensor coupled to a tire of the vehicle, a transmitter coupled to the tire pressure sensor for wirelessly transmitting a signal indicative of a tire pressure, a receiver of a remote mobile device for wirelessly receiving the signal indicative of the tire pressure, a controller coupled to the receiver for processing the signal indicative of the tire pressure, and a display located on the remote mobile device for displaying the processed signal indicating a tire pressure.
The transmitter transmits signals indicative of the tire pressure in response to a variation in tire pressure sensed by the tire pressure sensor. The controller generates an alarm condition when the tire pressure sensed by the tire pressure sensor decreases by a preset amount. The alarm condition is audibly sounded or displayed on the display at the remote mobile device. The display displays the signal indicative of tire pressure numerically. The system further includes a battery for powering the remote mobile device and a battery for powering the tire pressure sensor.
The system includes a transducer for converting kinetic energy into an electrical current, the transducer provides power to the tire pressure sensor. The remote mobile device is a keyless entry device configured to operate a security feature of the vehicle.
The vehicle tire pressure monitoring system comprising of a tire pressure sensor coupled to a tire of the vehicle, a transmitter coupled to the tire pressure sensor for wirelessly transmitting a signal indicative of a tire pressure, a receiver located in the vehicle for receiving the signal indicative of the tire pressure, a controller coupled to the receiver for processing the signal indicative of the tire pressure, a display located in the vehicle for displaying the processed signal indicating a tire pressure, and a remote keyless entry device for remotely operating a security feature of the vehicle, the remote keyless entry device having a receiver for receiving the signal indicating a tire pressure and a display for displaying the tire pressure.
The display is disposed in any of a dashboard, rear view mirror, HVAC, overhead or headrest mounted device. The receiver of the remote keyless entry device receives the signal indicative of the tire pressure from the controller.
Preferred embodiments of the present invention will be described below in more detail, with reference to the accompanying drawings:
According to an embodiment of the present invention, a vehicle monitoring system 101 comprises a pressure sensor 102, a wireless transmitter 103, a wireless receiver 104, and a signal processor 105, as shown in
The pressure sensor 102 can have any form that determines air pressure. For example, the pressure sensor 102 can be one of a capacitive type sensor, an inductive type sensor, and a piezoelectric type sensor. The capacitive type sensor comprises a plate that moves in response to a change in air pressure. The inductive type sensor comprises a coil or core that moves in response to a change in air pressure. The piezoelectric type sensor comprises a piezo crystal that deforms in response to a change in air pressure. The pressure sensor 102 can comprise a sealed vacuum reference to compare against a current air pressure as measured by the movement of the plate or coil, or the deflection of the piezo crystal.
According to an embodiment of the present invention, the pressure sensor 102 is coupled to the wireless transmitter 103 for transmitting a signal indicative of a air pressure, as shown in
A wireless system comprises the wireless transmitter 103 mounted in or attached to the tire, and the receiver 104 located outside of the tire. The transmitted signal is received by a receiver/controller in the vehicle or in a key FOB. The transmitter 103 transmits signals indicative of tire pressure to the receiver 104. The signal indicative of tire pressure can be decoded by the signal processor 105 and handled by the controller 106. The controller outputs a signal to the status indicator 107 based on a decoded signal for display to a vehicle operator. The receiver 104, signal processor 105, controller 106 and status indicator 107 can be located in the vehicle and/or in a key fob.
According to an exemplary embodiment of the present invention, the status indicator 107 is a display, such as a LED, LCD, or OLED, disposed on one or a combination of displays disposed anywhere in a vehicle viewable by the driver or the passenger. For example, the display can be disposed on the dashboard, rear view mirror, HVAC, overhead or headrest mounted auxiliary device. It is contemplated that the status indicator 107 is connected to the controller 106 via a databus (not shown). It is also contemplated that there is more than one display connected to the databus within the vehicle.
The wireless transmitter 103 comprises an antenna and a circuit for generating a signal of a desired frequency. A transmission of the wireless transmitter 103 occurs in response to a variation in tire air pressure. The transmission can be on a licensed frequency or an unlicensed frequency. The frequency is shared between the vehicle security system and the tire pressure monitoring system. A separate frequency can be used by the tire pressure monitoring system. However, the receiver 104 is shared between the security system and the tire pressure monitoring system.
The wireless receiver 104 is located in a vehicle 304 and receives the PCM signal from the wireless transmitter 103. The signal processor 105, also located in the vehicle 304, amplifies the received PCM signal, demodulates the PCM signal, and passes the signal to the controller 106. The controller 106 receives the incoming signal from the signal processor 105 and compares or verifies the signal with a code stored in a memory 305, which may be an E2 PROM (not shown) in the controller unit 106. If the code is verified, then an output signal is provided on an output terminal of the controller 106. The output signal can control, for example, vehicle door looks, a status indicator 107, and vehicle windows. The controller 106 further includes a transmitter (not shown) for transmitting signals including tire pressure information to the wireless transmitter 103.
According to an alternative embodiment of the present invention, the wireless system 103 or the controller 106 wirelessly communicate with any electronic device equipped with a wireless receiver, such as a cellular phone, PDA, or a mobile device, to receive the air pressure or status information via the wireless transmitter 103 or controller 106. Other wireless communication protocols including Bluetooth or cellular technologies, e.g. CDMA, TDMA, or 3G are contemplated.
A 12-volt DC power source (not shown), which may be an automobile battery, supplies power to a voltage regulator, which is connected to and powers the wireless receiver 104, the signal processor 105, the controller unit 106, and the status indicator 107.
Referring to
The air pressure can be determined periodically while the vehicle is being operated, for example, once every 15 seconds. The controller includes a timer for controlling the period of tire pressure sensor polling. The air pressure can also be determined upon the happening of an event, for example, upon disarming the vehicle security system.
Referring to
Referring to
Having described embodiments for tire pressure monitoring, it is noted that modifications and variations can be made by persons skilled in the art in light of the above teachings. It is therefore to be understood that changes may be made in the particular embodiments of the invention disclosed which are within the scope and spirit of the invention as defined by the appended claims. Having thus described the invention with the details and particularity required by the patent laws, what is claimed and desired protected by Letters Patent is set forth in the appended claims.
This application is a continuation-in-part of application Ser. No. 11/449,340, filed Jun. 8, 2006, which is a continuation of application Ser. No. 10/706,828, filed on Nov. 12, 2003, now U.S. Pat. No. 7,145,445, the disclosures of which are all incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 10706828 | Nov 2003 | US |
Child | 11449340 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11449340 | Jun 2006 | US |
Child | 12256194 | US |