The present invention relates generally to communication systems for vehicles and, more particularly to a communication system utilizing a short range communication device.
Use of imaging sensors in vehicle imaging systems is common and known. Examples of such known systems are described in U.S. Pat. Nos. 5,949,331; 5,670,935 and/or 5,550,677, which are hereby incorporated herein by reference in their entireties.
Recently developed Dedicated Short Range Communication (DSRC) radio technology enables communications-based active safety systems. Communication links for such applications need to be reliable, high speed, low latency links that are immune to extreme weather conditions and that work reliably in high speed mobility conditions and multipath roadway environments.
The present invention provides a driver assistance system or vision system or imaging system for a vehicle that utilizes a dedicated short range communication (DSRC) radio of the vehicle, where the radio signals of a DSRC radio of a trailer being towed by the vehicle may be used to determine the trailer angle of the towed trailer relative to the vehicle.
The present invention comprises a method and apparatus that utilizes the DSRC infrastructure mounted on the trailer for safety and non-safety use cases, such as trailer angle detection. The trailer towed by the vehicle is an extended body of the vehicle and the DSRC radio installed in the vehicle does not broadcast the total length information including the trailer. Also, the trailer has a different lateral position during towing maneuvers. Thus, the system of the present invention, by installing a DSRC radio at the end of the trailer, provides for broadcasting safety messages from the trailer.
The present invention may also utilize a vehicle GPS system that may be an integral part of the DSRC radio to estimate the trailer angle. Trailer angle is one of the inputs in a trailer backup assist application, and by utilizing real time kinematic (RTK) correction methods and triangulation, the present invention may achieve a very high accuracy relative position estimation and hence derive the trailer angle from the relative position information. The estimation of the accurate trailer location and the orientation may be useful for an automatic trailer hitch guidance system as well.
These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
Legend:
A vehicle vision system and/or driver assist system and/or object detection system and/or alert system operates to capture images exterior of the vehicle and may process the captured image data to display images and to detect objects at or near the vehicle and in the predicted path of the vehicle, such as to assist a driver of the vehicle in maneuvering the vehicle in a rearward direction. The vision system includes an image processor or image processing system that is operable to receive image data from one or more cameras and provide an output to a display device for displaying images representative of the captured image data. Optionally, the vision system may provide display, such as a rearview display or a top down or bird's eye or surround view display or the like.
Dedicated Short Range Communication (DSRC) radio technology being developed in recent past to enable communications-based active safety systems, communication link for such applications needs a reliable, high speed, low latency that is immune to extreme weather condition, works reliably in high speed mobility conditions and multipath roadway environment.
Even though the main purpose of the DSRC technology is designed for the safety applications in the automotive domain, it is also designed for the no-safety use one of such application could be compressed video transfer. In the U.S., channels 178, 172 and 184 are reserved for safety applications and other SCH channels could be used for non-safety applications (the layout of the DSRC spectrum in the U.S. is shown in
Referring now to the drawings and the illustrative embodiments depicted therein, a vehicle 100 includes a trailer 200 equipped with dual channel DSRC radios 102 and 203 (
As shown in
As shown in
The present invention utilizes the DSRC radios 203, 206 at the trailer and the DSRC radio 102 at the towing vehicle to determine the trailer angle of the trailer relative to the longitudinal axis of the vehicle. As shown in
For example, and such as shown in
Optionally, aspects of the present invention may be utilized to assist a driver of a vehicle in reversing the vehicle towards an unhitched trailer for hitching the trailer to the vehicle. For example, and such as shown in
The communication devices and wireless links may utilize aspects of the systems described in U.S. Pat. Nos. 6,690,268; 6,693,517; 7,156,796 and/or 7,580,795, and/or U.S. Publication Nos. US-2012-0218412, US-2012-0062743, US-2015-0158499; US-2015-0124096; US-2015-0251599; US-2015-0352953; US-2016-0210853 and/or US-2016-0381571, which are all hereby incorporated herein by reference in their entireties.
Therefore, the present invention comprises a vehicle system that utilizes a DSRC communication of a DSRC radio of the vehicle to transmit or communicate with a DSRC radio of a trailer. Responsive to such communications, a trailer angle of a hitched trailer relative to the vehicle may be determined. Also, responsive to such communications, a trailer position and angle of an unhitched trailer relative to the vehicle may be determined to assist the driver of the vehicle in aligning the vehicle with the trailer hitch for hitching the trailer to the vehicle. Optionally, the trailer and/or the vehicle may also include a rear backup camera and/or other exterior sensors, whereby image data and/or other data captures by the rear backup camera and/or other sensor (such as one or more ultrasonic sensors) may be communicated for display of video images at a display screen or HUD display for viewing by the driver of the vehicle.
The camera or sensor may comprise any suitable camera or sensor. Optionally, the camera may comprise a “smart camera” that includes the imaging sensor array and associated circuitry and image processing circuitry and electrical connectors and the like as part of a camera module, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2013/081984 and/or WO 2013/081985, which are hereby incorporated herein by reference in their entireties.
The system includes an image processor operable to process image data captured by the camera or cameras, such as for detecting objects or other vehicles or pedestrians or the like in the field of view of one or more of the cameras. For example, the image processor may comprise an image processing chip selected from the EyeQ family of image processing chips available from Mobileye Vision Technologies Ltd. of Jerusalem, Israel, and may include object detection software (such as the types described in U.S. Pat. Nos. 7,855,755; 7,720,580 and/or 7,038,577, which are hereby incorporated herein by reference in their entireties), and may analyze image data to detect vehicles and/or other objects. Responsive to such image processing, and when an object or other vehicle is detected, the system may generate an alert to the driver of the vehicle and/or may generate an overlay at the displayed image to highlight or enhance display of the detected object or vehicle, in order to enhance the driver's awareness of the detected object or vehicle or hazardous condition during a driving maneuver of the equipped vehicle.
The camera system or camera module of the present invention may utilize aspects of the systems and/or modules described in International Publication Nos. WO 2013/123161 and/or WO 2013/019795, and/or U.S. Pat. Nos. 8,256,821; 7,480,149; 7,289,037; 7,004,593; 6,824,281; 6,690,268; 6,445,287; 6,428,172; 6,420,975; 6,326,613; 6,278,377; 6,243,003; 6,250,148; 6,172,613 and/or 6,087,953, and/or U.S. Publication Nos. US-2015-0327398; US-2014-0226012 and/or US-2009-0295181, which are all hereby incorporated herein by reference in their entireties. Optionally, the vision system may include a plurality of exterior facing imaging sensors or cameras, such as a rearward facing imaging sensor or camera, a forwardly facing camera at the front of the vehicle, and sidewardly/rearwardly facing cameras at respective sides of the vehicle, which capture image data representative of the scene exterior of the vehicle.
The vehicle may include any type of sensor or sensors, such as imaging sensors or radar sensors or lidar sensors or ladar sensors or ultrasonic sensors or the like. The imaging sensor or camera may capture image data for image processing and may comprise any suitable camera or sensing device, such as, for example, a two dimensional array of a plurality of photosensor elements arranged in at least 640 columns and 480 rows (at least a 640×480 imaging array, such as a megapixel imaging array or the like), with a respective lens focusing images onto respective portions of the array. The photosensor array may comprise a plurality of photosensor elements arranged in a photosensor array having rows and columns. Preferably, the imaging array has at least 300,000 photosensor elements or pixels, more preferably at least 500,000 photosensor elements or pixels and more preferably at least 1 million photosensor elements or pixels. The imaging array may capture color image data, such as via spectral filtering at the array, such as via an RGB (red, green and blue) filter or via a red/red complement filter or such as via an RCC (red, clear, clear) filter or the like. The logic and control circuit of the imaging sensor may function in any known manner, and the image processing and algorithmic processing may comprise any suitable means for processing the images and/or image data.
For example, the vision system and/or processing and/or camera and/or circuitry may utilize aspects described in U.S. Pat. Nos. 8,694,224; 7,005,974; 5,760,962; 5,877,897; 5,796,094; 5,949,331; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; 7,859,565; 5,550,677; 5,670,935; 7,881,496; 7,720,580; 7,038,577; 6,882,287; 5,929,786 and/or 5,786,772, which are all hereby incorporated herein by reference in their entireties. The system may communicate with other communication systems via any suitable means, such as by utilizing aspects of the systems described in International Publication Nos. WO/2010/144900; WO 2013/043661 and/or WO 2013/081985, and/or U.S. Publication No. US-2012-0062743, which are hereby incorporated herein by reference in their entireties.
Optionally, the vision system may include a display for displaying images captured by one or more of the imaging sensors for viewing by the driver of the vehicle while the driver is normally operating the vehicle. Optionally, for example, the vision system may include a video display device, such as by utilizing aspects of the video display systems described in U.S. Pat. Nos. 5,530,240; 6,329,925; 7,855,755; 7,626,749; 7,581,859; 7,446,650; 7,338,177; 7,274,501; 7,255,451; 7,195,381; 7,184,190; 5,668,663; 5,724,187; 6,690,268; 7,370,983; 7,329,013; 7,308,341; 7,289,037; 7,249,860; 7,004,593; 4,546,551; 5,699,044; 4,953,305; 5,576,687; 5,632,092; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,501; 6,222,460; 6,513,252 and/or 6,642,851, and/or U.S. Publication Nos. US-2014-0022390; US-2012-0162427; US-2006-0050018 and/or US-2006-0061008, which are all hereby incorporated herein by reference in their entireties.
Optionally, the vision system (utilizing the forward viewing camera and a rearward viewing camera and other cameras disposed at the vehicle with exterior fields of view) may be part of or may provide a display of a top-down view or bird's-eye view system of the vehicle or a surround view at the vehicle, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2010/099416; WO 2011/028686; WO 2012/075250; WO 2013/019795; WO 2012/075250; WO 2012/145822; WO 2013/081985; WO 2013/086249 and/or WO 2013/109869, and/or U.S. Publication No. US-2012-0162427, which are hereby incorporated herein by reference in their entireties.
Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.
The present application claims the filing benefits of U.S. provisional application Ser. No. 62/303,546, filed Mar. 4, 2016, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5550677 | Schofield et al. | Aug 1996 | A |
5670935 | Schofield et al. | Sep 1997 | A |
5760962 | Schofield et al. | Jun 1998 | A |
5786772 | Schofield et al. | Jul 1998 | A |
5796094 | Schofield et al. | Aug 1998 | A |
5877897 | Schofield et al. | Mar 1999 | A |
5929786 | Schofield et al. | Jul 1999 | A |
5949331 | Schofield et al. | Sep 1999 | A |
6201642 | Bos | Mar 2001 | B1 |
6302545 | Schofield et al. | Oct 2001 | B1 |
6396397 | Bos et al. | May 2002 | B1 |
6498620 | Schofield et al. | Dec 2002 | B2 |
6523964 | Schofield et al. | Feb 2003 | B2 |
6611202 | Schofield et al. | Aug 2003 | B2 |
6690268 | Schofield et al. | Feb 2004 | B2 |
6693517 | McCarthy et al. | Feb 2004 | B2 |
6717610 | Bos et al. | Apr 2004 | B1 |
6757109 | Bos | Jun 2004 | B2 |
6802617 | Schofield et al. | Oct 2004 | B2 |
6806452 | Bos et al. | Oct 2004 | B2 |
6822563 | Bos et al. | Nov 2004 | B2 |
6882287 | Schofield | Apr 2005 | B2 |
6891563 | Schofield et al. | May 2005 | B2 |
6946978 | Schofield | Sep 2005 | B2 |
7005974 | McMahon et al. | Feb 2006 | B2 |
7038577 | Pawlicki et al. | May 2006 | B2 |
7156796 | Makley | Jan 2007 | B2 |
7580795 | McCarthy et al. | Aug 2009 | B2 |
7720580 | Higgins-Luthman | May 2010 | B2 |
7859565 | Schofield et al. | Dec 2010 | B2 |
7881496 | Camilleri et al. | Feb 2011 | B2 |
8694224 | Chundrlik, Jr. et al. | Apr 2014 | B2 |
9036026 | Dellantoni et al. | May 2015 | B2 |
9085261 | Lu et al. | Jul 2015 | B2 |
9900490 | Ihlenburg et al. | Feb 2018 | B2 |
20120062743 | Lynam et al. | Mar 2012 | A1 |
20120218412 | Dellantoni et al. | Aug 2012 | A1 |
20140005918 | Qiang | Jan 2014 | A1 |
20140012465 | Shank | Jan 2014 | A1 |
20140085472 | Lu | Mar 2014 | A1 |
20140160276 | Pliefke et al. | Jun 2014 | A1 |
20140288769 | Trombley | Sep 2014 | A1 |
20140340510 | Ihlenburg et al. | Nov 2014 | A1 |
20150002670 | Bajpai | Jan 2015 | A1 |
20150124096 | Koravadi | May 2015 | A1 |
20150158499 | Koravadi | Jun 2015 | A1 |
20150217693 | Pliefke et al. | Aug 2015 | A1 |
20150251599 | Koravadi | Sep 2015 | A1 |
20150321697 | Lu | Nov 2015 | A1 |
20150352953 | Koravadi | Dec 2015 | A1 |
20160052548 | Singh | Feb 2016 | A1 |
20160210853 | Koravadi | Jul 2016 | A1 |
20160381571 | Koravadi et al. | Dec 2016 | A1 |
20170050672 | Gieseke et al. | Feb 2017 | A1 |
20170136839 | Burkhart | May 2017 | A1 |
20170158133 | Chundrlik, Jr. et al. | Jun 2017 | A1 |
20170217372 | Lu et al. | Aug 2017 | A1 |
20170254873 | Koravadi | Sep 2017 | A1 |
20180158337 | Koravadi | Jun 2018 | A1 |
20180211528 | Seifert | Jul 2018 | A1 |
20180215382 | Gupta et al. | Aug 2018 | A1 |
20180253608 | Diessner et al. | Sep 2018 | A1 |
20180276838 | Gupta et al. | Sep 2018 | A1 |
20180276839 | Diessner et al. | Sep 2018 | A1 |
20180278895 | Greenwood | Sep 2018 | A1 |
20190016264 | Potnis et al. | Jan 2019 | A1 |
20190064831 | Gali et al. | Feb 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20170254873 A1 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
62303546 | Mar 2016 | US |