Vehicle vision system having adjustable displayed field of view

Information

  • Patent Grant
  • 9744907
  • Patent Number
    9,744,907
  • Date Filed
    Tuesday, December 22, 2015
    8 years ago
  • Date Issued
    Tuesday, August 29, 2017
    7 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Perungavoor; Sath V
    • Brown, Jr.; Howard D
    Agents
    • Price Heneveld LLP
    • Ryan; Scott P.
Abstract
A vision system for a vehicle is provided including a camera for capturing images within a field of view; a display device movably mounted relative to the vehicle for displaying a portion of the field of view of the camera; a movement sensor for sensing movement of the display device; and a processing circuit in communication with the movement sensor, the display device, and the camera for selecting the portion of the field of view to be displayed on the display device in response to movement of the display device as sensed by the movement sensor.
Description
FIELD OF THE INVENTION

The present invention generally relates to a vehicle vision system and, more particularly, a vehicle vision system where a display is movable relative to the vehicle.


SUMMARY OF THE INVENTION

According to one aspect of the present invention, a vehicle display system is provided for displaying images captured by a camera associated with a vehicle, wherein the camera has a field of view. The display system comprises a rearview assembly and a processing circuit. The rearview assembly comprises a mounting structure configured for mounting to the vehicle; a movable head pivotably attached to the mounting structure; a display device positioned within the movable head for displaying a portion of the field of view of the camera; and a movement sensor for sensing movement of the movable head. The processing circuit is in communication with the movement sensor and the display device for selecting the portion of the field of view to be displayed on the display device in response to movement of the movable head as sensed by the movement sensor.


According to another aspect of the present invention, a vision system for a vehicle is provided comprising a camera for capturing images within a field of view; a display device movably mounted relative to the vehicle for displaying a portion of the field of view of the camera; a movement sensor for sensing movement of the display device; and a processing circuit in communication with the movement sensor, the display device, and the camera for selecting the portion of the field of view to be displayed on the display device in response to movement of the display device as sensed by the movement sensor.


According to another aspect of the present invention, a vehicle display system is provided for displaying images captured by a camera associated with a vehicle, wherein the camera has a field of view. The display system comprises a user input; a display device for displaying a portion of the field of view of the camera; and a processing circuit in communication with the user input and the display device for selecting the portion of the field of view to be displayed on the display device in response to movement of the user input.


These and other features, advantages, and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:



FIG. 1 is an electrical diagram in block form of a vehicle vision system;



FIG. 2A is an electrical diagram in block form of a more detailed vehicle vision system according to one implementation;



FIG. 2B is an electrical diagram in block form of a more detailed vehicle vision system according to an alternative implementation;



FIG. 3A is a front elevational view of a rearview assembly including a reverse camera display;



FIG. 3B is a front elevational view of a rearview assembly including a full display mirror;



FIG. 4A is an illustration of a mirror image of a camera field of view with a display field of view superimposed in a first position;



FIG. 4B is an illustration of a mirror image of a camera field of view with a display field of view superimposed in a second position;



FIG. 4C is an illustration of a mirror image of a camera field of view with a display field of view superimposed in a third position;



FIG. 5 is an exploded view of a rearview assembly;



FIG. 6A is a side elevational view of a movement sensor used in the rearview assembly of FIG. 5;



FIG. 6B is another side elevational view of the movement sensor shown in FIG. 6A; and



FIG. 6C is a perspective view of the movement sensor shown in FIGS. 6A and 6B.





DETAILED DESCRIPTION OF THE EMBODIMENTS

The present illustrated embodiments reside primarily in combinations of method steps and apparatus components related to a vehicle vision system, particularly one having a display device in a vehicle rearview assembly. Accordingly, the apparatus components and method steps have been represented, where appropriate, by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein. Further, like numerals in the description and drawings represent like elements.


For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in FIGS. 3A and 3B. Unless stated otherwise, the term “front” shall refer to the surface of the element closer to an intended viewer of the rearview assembly, and the term “rear” shall refer to the surface of the element further from the intended viewer of the rearview assembly. However, it is to be understood that the invention may assume various alternative orientations, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.


The terms “including,” “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element preceded by “comprises . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.


The embodiments described herein relate to a vehicle vision system. Vehicle vision systems are known in which a camera is mounted to a vehicle for capturing images for display on a display device positioned in the vehicle for viewing by the driver of the vehicle. In some of these vehicle vision systems, the display is located in the inside rearview mirror assembly. Such displays may be smaller in size than the mirror element and positioned behind the mirror element such that images generated by the display may be seen through the mirror element when the display is activated. Further, the mirror element may be transflective so as to hide the display when not activated. In some such vision systems, the function of the display is that of a reverse camera display (RCD) in which the display is activated when the vehicle is placed in reverse and displays images from a rearward facing camera for as long as the vehicle remains in reverse or for a predetermined time thereafter. These RCDs typically have a viewing area less than that of the mirror element. Examples of RCDs are described in U.S. Pat. No. 8,339,526 and United States Patent Application Publication No. US 2009/0096937 A1, the entire disclosures of which are incorporated by reference.


Some vehicle vision systems are designed to have a display that has an area substantially corresponding to the mirror element. In these systems the display is configured to display images from a rearward-facing camera whenever activated by the driver. Examples of these “full display mirrors” (FDMs) are described in U.S. Pat. No. 8,339,526; and United States Patent Application Publication Nos. US 2009/0096937 A1, US 2015/0266427 A1, and US 2015/0277203 A1, the entire disclosures of which are incorporated by reference.


In vehicle vision systems it may be desired from an acceptance standpoint to have the displayed images simulate the images one would see from reflections from a conventional mirror. On the other hand, it may be desirable from a safety standpoint to display a greater field of view than would be seen with a conventional mirror. This latter objective is possible insofar as the camera is typically mounted outside the vehicle so as to not have its field of view obscured by objects in the vehicle or the rear pillars of the vehicle that are adjacent the rear window. To accommodate these seemingly incompatible goals, the embodiments described herein allow the driver to select the field of view to be displayed. As described below, this may be accomplished by changing the field of view as the driver moves the mirror housing or as the driver manipulates a user input. The change in field of view may be performed in a manner that simulates the change in field of view that the driver would otherwise experience when moving a conventional mirror housing.


An example of a vehicle vision system 10 is shown in FIG. 1. As shown, vehicle vision system 10 includes a camera system 20 and a display system 30. The camera system 20 and display system 30 are shown as two separate systems insofar as they may be located in separate locations of the vehicle and disposed in different vehicle components or accessories. For example, as described further below, display system 30 may be disposed in a rearview assembly 100 (FIGS. 3A, 3B, and 5) whereas camera system 20 may be disposed at the rear and/or sides of the vehicle.



FIGS. 2A and 2B show two different implementations of the embodiments described herein. In the implementation shown in FIG. 2A, camera system 20 includes a camera 25 that captures images of a field of view. Display system 30 includes a movement sensor 32, display drivers 34, a display device 35, and a processing circuit 40. Display device 35 is configured to display a portion of the field of view captured by the camera. Display system 30 may be wholly or partially disposed in the vehicle such that display device 35 is movably mounted relative to the vehicle. Movement sensor 32 is provided for sensing movement of display device 35. As described in detail below, processing circuit 40 is in communication with movement sensor 32, display device 35 (via display drivers 34), and camera 25 for selecting the portion of the field of view to be displayed on display device 35 in response to movement of display device 35 as sensed by movement sensor 32.


The implementation shown in FIG. 2B differs from the implementation shown in FIG. 2A in that processing circuit 40 is part of camera system 20 and may therefore be located in the same vehicle component or accessory as camera 25. In this implementation, processing circuit 40 receives output from movement sensor 32 via a vehicle bus or discrete connection, and selects the portion of the field of view to be displayed on display device 35 in response to movement of display device 35 as sensed by movement sensor 32. An optional processor 42 may be provided in display system 30 to facilitate communication with processing circuit 40 and to perform any other processing functions for the component in which display system 30 is disposed. For example, if provided in a rearview assembly, processor 42 may be configured to compute a heading from compass sensors, control dimming of an electro-optic mirror element, or perform any other function commonly executed by a processor in a mirror housing. Although shown as being part of either camera system 20 or display system 30, processing circuit 40 may be located separate from either system.


As mentioned above, display system 30 may be mounted in a rearview assembly 100. As shown in FIG. 3A, rearview assembly 100 may include display device 35 disposed in a mirror housing 120 and positioned and sized so as to function as an RCD in which the display area is smaller than the total viewable area of the rearview assembly. Rearview assembly 100 may include a mirror element 140 disposed in mirror housing 120 in front of or behind display device 35 such that rearview assembly 100 functions as a rearview mirror assembly. Mirror element 140 may include a transmissive window 141 (FIG. 5) in front of display device 35 such that displayed images from display device 35 may be seen through mirror element 140. Mirror element 140 may be transflective over its entire viewable area or within window 141 such that display device 35 is hidden when not activated.


As shown in FIG. 3B, rearview assembly 100 may include display device 35 disposed in mirror housing 120 and positioned and sized so as to function as an FDM in which the display area is substantially the same size as the total viewable area of the rearview assembly. Mirror element 140 may be transflective over its entire viewable area such that display device 35 is hidden when not activated. For both RCD and FDM versions of rearview assembly 100, a user-actuated switch 200 may be provided for activating or deactivating display device 35 in the manner disclosed in United States Patent Application Publication Nos. US 2009/0096937 A1, US 2015/0266427 A1 and US 2015/0277203 A1, the entire disclosures of which are incorporated herein by reference. To the extent that user activation of switch 200 may cause movement of display device 35, any movement sensed by movement sensor 32 may be overridden if actuation of switch 200 is detected since such actuation would otherwise deactivate display device 35 or activate it from a previously deactivated state.



FIG. 4A shows an example of a mirror-imaged (or reversed) field of view 80 of camera 25 with a portion 82a of field of view 80 shown in dashed lines. The portion 82a is intended to show the portion of the field of view that is displayed on display device 35. As illustrated, the camera field of view 80 is larger than the portion 82a to be displayed. As explained above, it may be desirable to simulate a rearview mirror, particularly when the display is configured as an FDM. Because a rearward-facing camera captures images directly to the rear as opposed to a mirror image as would be seen by a driver, it may be desirable to reverse the images captured by the camera before displaying on display 35 so that the displayed images appear as they would when reflected from a mirror. Further, in a rearview mirror assembly with just a mirror element, movement of the mirror housing 120 changes the field of view as seen by the driver. However, in conventional FDMs, movement of the mirror housing does not cause the displayed field of view to change as the camera remains stationary relative to the vehicle. Accordingly, processing circuit 40 is provided and configured to select the portion 82a of the camera field of view 80 that is to be displayed on display device 35 in response to any movement sensed by movement sensor 32. Thus, for example, in response to horizontal rotation of mirror housing 120, processing circuit 40 shifts the displayed field of view by selecting a portion 82b (FIG. 4B) of field of view 80 that is horizontally shifted from the prior displayed portion 82a (FIG. 4A). The portion displayed may be gradually and continuously shifted to mimic the change in field of view if moving a mirror element in the same manner. Similarly, in response to vertical tilting of mirror housing 120, processing circuit 40 shifts the displayed field of view by selecting a portion 82c (FIG. 4C) of field of view 80 that is vertically shifted from the prior portion 82a (FIG. 4A).


Although a single field of view of a single camera is described above, the field of view 80 may be a composite field of view from multiple cameras with the images merged together to form one seamless panoramic image. Thus, movement of mirror housing 120 may enable or disable different cameras or otherwise select from the fields of view of particular cameras such that movement of mirror housing 120 causes the field of view of display device 35 to effectively pan across the much larger panoramic field of view. It should be noted that a user-selectable mechanism may also be provided to allow a driver to zoom in or out the displayed field of view.


It should further be appreciated that the displayed field of view may be varied through movement of the mirror housing 120 by causing the camera 25 to pan and tilt if capable of doing so.



FIG. 5 shows an exploded view of an exemplary rearview assembly 100. As shown, rearview assembly 100 includes mirror housing 120, a mounting structure 445 for pivotally mounting mirror housing 120 to the vehicle such that mirror housing 120 may be both vertically and horizontally tilted relative to the vehicle. In FIG. 5, reference numeral 240 represents a windshield of the vehicle to which a mounting foot 450 of mounting structure 445 may be secured. It will be understood by those skilled in the art that mounting structure 445 may alternatively be secured to the roof structure of the vehicle above the windshield. In some applications, a single ball mount is preferable so that measurements of the rotational position on the single ball accurately indicate the position of the mirror in the vehicle. Mounting structure 445 further includes a mounting ball 501 and a mounting stem 502 extending between ball 501 and mounting foot 450.


Mirror element 140 is mounted in mirror housing 120. An optional compass sensor 320 may be disposed in mirror housing 120 and coupled to processing circuit 40 (or processor 42). Compass sensor 320 generally includes an X-axis magnetic field sensor 440, a Y-axis magnetic field sensor 460, and an optional Z-axis sensor (not shown). Sensors 440 and 460, as well as processing circuit 40, may be mounted on a printed circuit board 160.


Display device 35 is fixedly mounted in mirror housing 120 and may either be mounted on a front surface of printed circuit board 160 or to the rear surface of the mirror element so as to project light through a window portion 141 provided in the reflective surface of mirror element 140. Display device 35 may alternatively be mounted on a daughter circuit board (not shown). Further, display device 35 may be mounted in front of mirror element 140.


Mirror element 140 may be an electro-optic mirror. The sensors and circuitry for automatically varying the transmittance and hence reflectivity of electro-optic mirror element 140 may also be mounted on printed circuit board 160. Such circuitry may be coupled to mirror 140 via wires 142 in any conventional manner.


As mentioned above, rearview assembly 100 further includes movement sensor 32 for detecting when mirror housing 120 and hence display device 35 have been moved from a prior position. Movement sensor 32 then generates and transmits a movement detection signal to processing circuit 40 such that processing circuit 40 may take into account the fact that the mirror housing 120 and hence display device 35 have been tilted when selecting a portion of the camera field of view to display.


Movement sensor 32 may have any configuration capable of sensing movement of mirror housing 120. Examples of movement sensors for sensing movement of a mirror housing are disclosed in U.S. Pat. No. 6,140,933, the entire disclosure of which is incorporated by reference. An example of one such movement sensor disclosed in U.S. Pat. No. 6,140,933 is described below with reference to FIGS. 6A-6C.


In FIGS. 6A and 6B, a pivot ball 501 for a single ball mirror mount 445 (FIG. 5), a portion of circuit board 160, and the components used to measure the position of the mirror housing 120 on the mount are shown. Ball 501 is attached to the automobile by stem 502 via a mounting bracket 450 (FIG. 5). The assembly is viewed from the side. A target 501a is provided on the pivot ball 501. Two of four LEDs, 506 and 507, are shown in FIGS. 6A and 6B, and are respectively disposed below and above a sensor 516 and are used for sensing vertical movement of mirror housing 120. These LEDs may be momentarily lighted one at a time, and the light individually reflected off of target 501a by each of the LEDs is measured by sensor 516, which may be a photodiode. As shown in FIG. 6C, movement sensor 32 may further include LEDs 508 and 509 laterally disposed on either side of sensor 516 for sensing horizontal movement of mirror housing 120.


Target 501a may be a white spot provided on a black or dark ball 501. Conversely, the target could be a black spot on a white or highly reflective ball 501. Basically, the target can be any color that contrasts with the mirror ball, where “color” is defined as the reflectance at the light spectrum being used. In general, it is the contrast difference between the target region 501a and the surrounding area that is being measured. The target can be painted on ball 501, a separate plastic member, an adhesive sticker, or even a variation in surface texture of ball 501. Additionally, a void can be molded into ball 501 that appears as a black target on a light background. Further, ball 501 may be made of metal and have a portion mirrored to serve as target 501a.


Movement sensor 32 may also be provided by way of a magnetic field sensor such as a three-axis compass sensor provided in the mirror housing 120 as disclosed in U.S. Pat. No. 6,928,366, the entire disclosure of which is incorporated by reference. It may also be desirable to provide capacitive touch sensors at locations on the top and bottom of mirror housing 120 where a driver is likely to grasp mirror housing 120 for purposes of moving it. Such capacitive touch sensors would thus provide additional information for processing circuit 40 to ascertain that the mirror housing 120 has been moved by the driver.


Although the embodiments are described above as being adapted for use with an interior rearview assembly, the display device may likewise be positioned in an exterior rearview assembly. In this case, because most vehicles do not require a driver to physically move an outside mirror element, movement sensor 32 (FIG. 1) may be part of a user input 31 so as to sense movement of a user input mechanism 33. User input mechanism 33 may take the form of any conventional mechanism used to move outside mirrors such as a joystick or multiple switches for moving the mirror element right, left, up, and down. Movement sensor 32 may thus be configured differently depending upon the form of user input mechanism 33 that is used and may be constructed in the same manner as for conventional mirror position switches. The main difference between this arrangement and conventional arrangements is that processing circuit 40 responds to user input 31 by selecting the portion of the field of view to be displayed on display device 35. This may avoid the need for a motor pack that would otherwise be required to physically move a conventional exterior mirror element.


Although the use of such input 31 has been described with respect to exterior mirror assemblies, user input 31 may be provided to adjust the field of view shown on display device 35 when positioned in an interior location such as the interior rearview assembly 100 described above. Moreover, the same user input 31 may be used for interior rearview assembly 100 and both exterior assemblies by providing a selector switch so as to select the display on which the field of view is to be adjusted.


The above description is considered that of the preferred embodiments only. Modifications of the invention will occur to those skilled in the art and to those who make or use the invention. Therefore, it is understood that the embodiments shown in the drawings and described above are merely for illustrative purposes and not intended to limit the scope of the invention, which is defined by the claims as interpreted according to the principles of patent law, including the doctrine of equivalents.

Claims
  • 1. A vehicle display system for displaying images captured by a camera associated with a vehicle, wherein the camera has a field of view and outputs image data representing a scene within the entire field of view of the camera, the display system comprising: a rearview assembly comprising: a mounting structure configured for mounting to the vehicle;a movable head pivotably attached to said mounting structure;a display device positioned within said movable head for displaying a portion of the field of view of the camera;a movement sensor for sensing movement of said movable head;a mirror element disposed in said moveable head, wherein said display device is positioned behind said mirror element; anda switch disposed on said moveable head for selectively activating and deactivating said display device; anda processing circuit in communication with said switch, said movement sensor, and said display device for receiving the image data from the camera and selecting the portion of the field of view to be displayed on said display device in response to movement of said movable head as sensed by said movement sensor, wherein the portion of the field of view selected by the processing circuit for display on the display device is smaller than the field of view of the camera represented by the image data, and wherein any movement of said movable head that is sensed is overridden when said switch has been actuated to prevent inadvertent adjustment of the portion of the field of view to be displayed on said display device caused by movement of said movable head during actuation of said switch.
  • 2. The vehicle display system of claim 1, wherein said processing circuit is disposed in said movable head.
  • 3. The vehicle display system of claim 1, wherein said processing circuit shifts the portion of the field of view horizontally when said movable head is moved horizontally.
  • 4. The vehicle display system of claim 1, wherein said processing circuit shifts the portion of the field of view vertically when said movable head is moved vertically.
  • 5. The vehicle display system of claim 1, wherein said mounting structure includes a ball for mounting to said moveable head, said movement sensor comprises: a target provided on an area of said ball of said mounting structure, said target having a different visual characteristic than other surrounding areas of said ball;a light source for projecting light onto said ball; anda photodetector for detecting the level of light reflected from said ball,wherein said processing circuit is coupled to said photodetector for sensing movement of said moveable head when the level of reflected light detected by said photodetector changes.
  • 6. The vehicle display system of claim 1, wherein said mirror element is transflective such that displayed images from said display device are visible through the mirror element when the display is activated and the display device is hidden when deactivated.
  • 7. The vehicle display system of claim 1, wherein said processing circuit is mounted in said moveable head.
  • 8. A vision system for a vehicle comprising: a camera for capturing images within a field of view and outputting image data representing a scene within the entire field of view of the camera;a display device movably mounted relative to the vehicle for displaying a portion of the field of view of said camera;a movement sensor for sensing movement of said display device; anda switch disposed near said display device for selectively activating and deactivating said display device; anda processing circuit in communication with said switch, said movement sensor, said display device, and said camera for receiving the image data and selecting the portion of the field of view to be displayed on said display device in response to movement of said display device as sensed by said movement sensor, wherein the portion of the field of view selected by the processing circuit for display on the display device is smaller than the field of view of the camera represented by the image data, and wherein any movement of said display device that is sensed is overridden when said switch has been actuated to prevent inadvertent adjustment of the portion of the field of view to be displayed on said display device caused by movement of said display device during actuation of said switch.
  • 9. The vision system of claim 8, wherein said display device is disposed in a mirror housing of a rearview mirror assembly, and wherein said movement sensor senses movement of said display device by sensing movement of said mirror housing.
  • 10. The vision system of claim 9, wherein said processing circuit is disposed in said mirror housing.
  • 11. The vision system of claim 8, wherein said processing circuit shifts the portion of the field of view horizontally when said display device is moved horizontally.
  • 12. The vision system of claim 8, wherein said processing circuit shifts the portion of the field of view vertically when said display device is moved vertically.
  • 13. The vision system of claim 9, wherein said rearview mirror assembly comprises a mounting structure configured for mounting to the vehicle, said mounting structure includes a ball for mounting to said mirror housing, wherein said movement sensor comprises: a target provided on an area of said ball of said mounting structure, said target having a different visual characteristic than other surrounding areas of said ball;a light source for projecting light onto said ball; anda photodetector for detecting the level of light reflected from said ball,wherein said processing circuit is coupled to said photodetector for sensing movement of said moveable housing when the level of reflected light detected by said photodetector changes.
  • 14. The vision system of claim 9 and further comprising a mirror element disposed in said mirror housing, wherein said display device is positioned adjacent said mirror element.
  • 15. The vision system of claim 8, wherein said camera is mounted in a camera module disposed at a rear of the vehicle.
  • 16. The vision system of claim 15, wherein said processing circuit is disposed in the camera module.
  • 17. The vision system of any one of claim 9, wherein said movement sensor comprises a magnetic field sensor provided in said mirror housing.
  • 18. The vision system of claim 9, wherein said movement sensor comprises capacitive touch sensors at locations on a top and a bottom of said mirror housing.
  • 19. A vehicle display system for displaying images captured by a camera associated with a vehicle, wherein the camera has a field of view and outputs image data representing a scene within the entire field of view of the camera, the display system comprising: a user input;a display device for displaying a portion of the field of view of said camera;a switch for selectively activating and deactivating said display device; anda processing circuit in communication with said switch, said user input and said display device for receiving the image data from the camera and selecting the portion of the field of view to be displayed on said display device in response to said user input, wherein the portion of the field of view selected by the processing circuit for display on the display device is smaller than the field of view of the camera represented by the image data, and wherein any user input that is received is overridden when said switch has been actuated to prevent inadvertent adjustment of the portion of the field of view to be displayed on said display device caused by user input received as a result of actuation of said switch.
  • 20. The vehicle display system of claim 19, wherein said processing circuit shifts the portion of the field of view both horizontally and vertically in response to in response to said user input.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to and the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 62/097,315, filed on Dec. 29, 2014, entitled “VEHICLE VISION SYSTEM HAVING ADJUSTABLE DISPLAYED FIELD OF VIEW,” the entire disclosure of which is hereby incorporated herein by reference.

US Referenced Citations (474)
Number Name Date Kind
2131888 Harris Oct 1938 A
2632040 Rabinow Mar 1953 A
2827594 Rabinow Mar 1958 A
3179845 Kulwiec Apr 1965 A
3581276 Newman May 1971 A
3663819 Hicks et al. May 1972 A
4109235 Bouthors Aug 1978 A
4139801 Linares Feb 1979 A
4151526 Hinachi et al. Apr 1979 A
4214266 Myers Jul 1980 A
4236099 Rosenblum Nov 1980 A
4257703 Goodrich Mar 1981 A
4258979 Mahin Mar 1981 A
4277804 Robison Jul 1981 A
4286308 Wolff Aug 1981 A
4310851 Pierrat Jan 1982 A
4357558 Massoni et al. Nov 1982 A
4376909 Tagami et al. Mar 1983 A
4479173 Rumpakis Oct 1984 A
4499451 Suzuki et al. Feb 1985 A
4599544 Martin Jul 1986 A
4638287 Umebayashi et al. Jan 1987 A
4645975 Meitzler et al. Feb 1987 A
4665321 Chang et al. May 1987 A
4665430 Hiroyasu May 1987 A
4692798 Seko et al. Sep 1987 A
4716298 Etoh Dec 1987 A
4727290 Smith et al. Feb 1988 A
4740838 Mase et al. Apr 1988 A
4768135 Kretschmer et al. Aug 1988 A
4862037 Farber et al. Aug 1989 A
4891559 Matsumoto et al. Jan 1990 A
4910591 Petrossian et al. Mar 1990 A
4930742 Schofield et al. Jun 1990 A
4934273 Endriz Jun 1990 A
4967319 Seko Oct 1990 A
5005213 Hanson et al. Apr 1991 A
5008946 Ando Apr 1991 A
5027200 Petrossian et al. Jun 1991 A
5036437 Macks Jul 1991 A
5072154 Chen Dec 1991 A
5086253 Lawler Feb 1992 A
5096287 Kakinami et al. Mar 1992 A
5121200 Choi et al. Jun 1992 A
5124549 Michaels et al. Jun 1992 A
5166681 Bottesch et al. Nov 1992 A
5182502 Slotkowski et al. Jan 1993 A
5187383 Taccetta et al. Feb 1993 A
5197562 Kakinami et al. Mar 1993 A
5230400 Kakinami et al. Jul 1993 A
5235178 Hegyi Aug 1993 A
5243417 Pollard Sep 1993 A
5289321 Secor Feb 1994 A
5296924 de Saint Blancard et al. Mar 1994 A
5304980 Maekawa Apr 1994 A
5329206 Slotkowski et al. Jul 1994 A
5347261 Adell Sep 1994 A
5347459 Greenspan et al. Sep 1994 A
5355146 Chiu et al. Oct 1994 A
5379104 Takao Jan 1995 A
5386285 Asayama Jan 1995 A
5396054 Krichever et al. Mar 1995 A
5402170 Parulski et al. Mar 1995 A
5408357 Beukema Apr 1995 A
5414461 Kishi et al. May 1995 A
5416318 Hegyi May 1995 A
5418610 Fischer May 1995 A
5424952 Asayama Jun 1995 A
5426294 Kobayashi et al. Jun 1995 A
5428464 Silverbrook Jun 1995 A
5430450 Holmes Jul 1995 A
5434407 Bauer et al. Jul 1995 A
5451822 Bechtel et al. Sep 1995 A
5452004 Roberts Sep 1995 A
5469298 Suman et al. Nov 1995 A
5471515 Fossum et al. Nov 1995 A
5475441 Parulski et al. Dec 1995 A
5475494 Nishida et al. Dec 1995 A
5481268 Higgins Jan 1996 A
5483346 Butzer Jan 1996 A
5483453 Uemura et al. Jan 1996 A
5485155 Hibino Jan 1996 A
5485378 Franke et al. Jan 1996 A
5488496 Pine Jan 1996 A
5508592 Lapatovich et al. Apr 1996 A
5515448 Nishitani May 1996 A
5523811 Wada et al. Jun 1996 A
5530421 Marshall et al. Jun 1996 A
5535144 Kise Jul 1996 A
5537003 Bechtel et al. Jul 1996 A
5541590 Nishio Jul 1996 A
5541724 Hoashi Jul 1996 A
5550677 Schofield et al. Aug 1996 A
5554912 Thayer et al. Sep 1996 A
5574443 Hsieh Nov 1996 A
5574463 Shirai et al. Nov 1996 A
5576975 Sasaki et al. Nov 1996 A
5587929 League et al. Dec 1996 A
5592146 Kover, Jr. et al. Jan 1997 A
5602542 Windmann et al. Feb 1997 A
5614788 Mullins et al. Mar 1997 A
5615023 Yang Mar 1997 A
5617085 Tsutsumi et al. Apr 1997 A
5621460 Hatlestad et al. Apr 1997 A
5634709 Iwama Jun 1997 A
5642238 Sala Jun 1997 A
5646614 Abersfelder et al. Jul 1997 A
5650765 Park Jul 1997 A
5660454 Mori et al. Aug 1997 A
5666028 Bechtel et al. Sep 1997 A
5670935 Schofield et al. Sep 1997 A
5680123 Lee Oct 1997 A
5684473 Hibino et al. Nov 1997 A
5707129 Kobayashi Jan 1998 A
5708410 Blank et al. Jan 1998 A
5708857 Ishibashi Jan 1998 A
5710565 Shirai et al. Jan 1998 A
5714751 Chen Feb 1998 A
5715093 Schierbeek et al. Feb 1998 A
5729194 Spears et al. Mar 1998 A
5736816 Strenke et al. Apr 1998 A
5745050 Nakagawa Apr 1998 A
5751211 Shirai et al. May 1998 A
5751832 Panter et al. May 1998 A
5754099 Nishimura et al. May 1998 A
5760828 Cortes Jun 1998 A
5764139 Nojima et al. Jun 1998 A
5767793 Agravante et al. Jun 1998 A
5781105 Bitar et al. Jul 1998 A
5786787 Eriksson et al. Jul 1998 A
5793308 Rosinski et al. Aug 1998 A
5793420 Schmidt Aug 1998 A
5796094 Schofield et al. Aug 1998 A
5798727 Shirai et al. Aug 1998 A
5811888 Hsieh Sep 1998 A
5812321 Schierbeek et al. Sep 1998 A
5837994 Stam et al. Nov 1998 A
5841126 Fossum et al. Nov 1998 A
5844505 Van Ryzin Dec 1998 A
5845000 Breed et al. Dec 1998 A
5850176 Kinoshita et al. Dec 1998 A
5867214 Anderson et al. Feb 1999 A
5877897 Schofield et al. Mar 1999 A
5883739 Ashihara et al. Mar 1999 A
5904729 Ruzicka May 1999 A
5905457 Rashid May 1999 A
5912534 Benedict Jun 1999 A
5923027 Stam et al. Jul 1999 A
5935613 Benham et al. Aug 1999 A
5940011 Agravante et al. Aug 1999 A
5942853 Piscart Aug 1999 A
5949331 Schofield et al. Sep 1999 A
5956079 Ridgley Sep 1999 A
5956181 Lin Sep 1999 A
5959555 Furuta Sep 1999 A
5990469 Bechtel et al. Nov 1999 A
6008486 Stam et al. Dec 1999 A
6009359 El-Hakim et al. Dec 1999 A
6018308 Shirai Jan 2000 A
6025872 Ozaki et al. Feb 2000 A
6046766 Sakata Apr 2000 A
6049171 Stam et al. Apr 2000 A
6060989 Gehlot May 2000 A
6061002 Weber et al. May 2000 A
6067111 Hahn et al. May 2000 A
6072391 Suzuki et al. Jun 2000 A
6078355 Zengel Jun 2000 A
6097023 Schofield et al. Aug 2000 A
6102546 Carter Aug 2000 A
6106121 Buckley et al. Aug 2000 A
6111498 Jobes et al. Aug 2000 A
6115651 Cruz Sep 2000 A
6122597 Saneyoshi et al. Sep 2000 A
6128576 Nishimoto et al. Oct 2000 A
6130421 Bechtel et al. Oct 2000 A
6130448 Bauer et al. Oct 2000 A
6140933 Bugno Oct 2000 A
6144158 Beam Nov 2000 A
6151065 Steed et al. Nov 2000 A
6151539 Bergholz et al. Nov 2000 A
6154149 Tychkowski et al. Nov 2000 A
6157294 Urai et al. Dec 2000 A
6166628 Andreas Dec 2000 A
6166698 Turnbull et al. Dec 2000 A
6167755 Damson et al. Jan 2001 B1
6172600 Kakinami et al. Jan 2001 B1
6172601 Wada et al. Jan 2001 B1
6175300 Kendrick Jan 2001 B1
6184781 Ramakesavan Feb 2001 B1
6185492 Kagawa et al. Feb 2001 B1
6191704 Takenaga et al. Feb 2001 B1
6200010 Anders Mar 2001 B1
6218934 Regan Apr 2001 B1
6222447 Schofield et al. Apr 2001 B1
6249214 Kashiwazaki Jun 2001 B1
6250766 Strumolo et al. Jun 2001 B1
6255639 Stam et al. Jul 2001 B1
6259475 Ramachandran et al. Jul 2001 B1
6265968 Betzitza et al. Jul 2001 B1
6268803 Gunderson et al. Jul 2001 B1
6269308 Kodaka et al. Jul 2001 B1
6281632 Stam et al. Aug 2001 B1
6281804 Haller et al. Aug 2001 B1
6289332 Menig et al. Sep 2001 B2
6300879 Regan et al. Oct 2001 B1
6304173 Pala et al. Oct 2001 B2
6317057 Lee Nov 2001 B1
6320612 Young Nov 2001 B1
6324295 Valery et al. Nov 2001 B1
6329925 Skiver et al. Dec 2001 B1
6330511 Ogura et al. Dec 2001 B2
6335680 Matsuoka Jan 2002 B1
6344805 Yasui et al. Feb 2002 B1
6348858 Weis et al. Feb 2002 B2
6349782 Sekiya et al. Feb 2002 B1
6356206 Takenaga et al. Mar 2002 B1
6356376 Tonar et al. Mar 2002 B1
6357883 Strumolo et al. Mar 2002 B1
6363326 Scully Mar 2002 B1
6369701 Yoshida et al. Apr 2002 B1
6379013 Bechtel et al. Apr 2002 B1
6396040 Hill May 2002 B1
6396397 Bos et al. May 2002 B1
6403942 Stam Jun 2002 B1
6408247 Ichikawa et al. Jun 2002 B1
6412959 Tseng Jul 2002 B1
6415230 Maruko et al. Jul 2002 B1
6421081 Markus Jul 2002 B1
6424272 Gutta et al. Jul 2002 B1
6424273 Gutta et al. Jul 2002 B1
6424892 Matsuoka Jul 2002 B1
6428172 Hutzel et al. Aug 2002 B1
6433680 Ho Aug 2002 B1
6437688 Kobayashi Aug 2002 B1
6438491 Farmer Aug 2002 B1
6441872 Ho Aug 2002 B1
6442465 Breed et al. Aug 2002 B2
6443602 Tanabe et al. Sep 2002 B1
6447128 Lang et al. Sep 2002 B1
6452533 Yamabuchi et al. Sep 2002 B1
6463369 Sadano et al. Oct 2002 B2
6465962 Fu et al. Oct 2002 B1
6466701 Ejiri et al. Oct 2002 B1
6469739 Bechtel et al. Oct 2002 B1
6472977 Pochmuller Oct 2002 B1
6473001 Blum Oct 2002 B1
6476731 Miki et al. Nov 2002 B1
6476855 Yamamoto Nov 2002 B1
6483429 Yasui et al. Nov 2002 B1
6483438 DeLine et al. Nov 2002 B2
6487500 Lemelson et al. Nov 2002 B2
6491416 Strazzanti Dec 2002 B1
6498620 Schofield et al. Dec 2002 B2
6501387 Skiver et al. Dec 2002 B2
6507779 Breed et al. Jan 2003 B2
6515581 Ho Feb 2003 B1
6515597 Wada et al. Feb 2003 B1
6520667 Mousseau Feb 2003 B1
6522969 Kannonji Feb 2003 B2
6542085 Yang Apr 2003 B1
6542182 Chutorash Apr 2003 B1
6545598 De Villeroche Apr 2003 B1
6550943 Strazzanti Apr 2003 B2
6553130 Lemelson et al. Apr 2003 B1
6558026 Strazzanti May 2003 B2
6559761 Miller et al. May 2003 B1
6572233 Northman et al. Jun 2003 B1
6575643 Takahashi Jun 2003 B2
6580373 Ohashi Jun 2003 B1
6581007 Hasegawa et al. Jun 2003 B2
6583730 Lang et al. Jun 2003 B2
6587573 Stam et al. Jul 2003 B1
6591192 Okamura et al. Jul 2003 B2
6594583 Ogura et al. Jul 2003 B2
6594614 Studt et al. Jul 2003 B2
6611202 Schofield et al. Aug 2003 B2
6611227 Nebiyeloul-Kifle Aug 2003 B1
6611610 Stam et al. Aug 2003 B1
6611759 Brosche Aug 2003 B2
6614387 Deadman Sep 2003 B1
6616764 Kramer et al. Sep 2003 B2
6617564 Ockerse et al. Sep 2003 B2
6618672 Sasaki et al. Sep 2003 B2
6630888 Lang et al. Oct 2003 B2
6631316 Stam et al. Oct 2003 B2
6636258 Strumolo Oct 2003 B2
6642840 Lang et al. Nov 2003 B2
6642851 Deline et al. Nov 2003 B2
6648477 Hutzel et al. Nov 2003 B2
6665592 Kodama Dec 2003 B2
6670207 Roberts Dec 2003 B1
6670910 Delcheccolo et al. Dec 2003 B2
6674370 Rodewald et al. Jan 2004 B2
6675075 Engelsberg et al. Jan 2004 B1
6677986 Pöchmüller Jan 2004 B1
6683539 Trajkovic et al. Jan 2004 B2
6683969 Nishigaki et al. Jan 2004 B1
6690268 Schofield et al. Feb 2004 B2
6690413 Moore Feb 2004 B1
6693517 McCarty et al. Feb 2004 B2
6693518 Kumata Feb 2004 B2
6693519 Keirstead Feb 2004 B2
6693524 Payne Feb 2004 B1
6717610 Bos et al. Apr 2004 B1
6727808 Uselmann et al. Apr 2004 B1
6727844 Zimmermann et al. Apr 2004 B1
6731332 Yasui et al. May 2004 B1
6734807 King May 2004 B2
6737964 Samman et al. May 2004 B2
6738088 Uskolovsky et al. May 2004 B1
6744353 Sjonell Jun 2004 B2
6772057 Breed et al. Aug 2004 B2
6774988 Stam et al. Aug 2004 B2
6846098 Bourdelais et al. Jan 2005 B2
6847487 Burgner Jan 2005 B2
6861809 Stam Mar 2005 B2
6902307 Strazzanti Jun 2005 B2
6912001 Okamoto et al. Jun 2005 B2
6913375 Strazzanti Jul 2005 B2
6923080 Dobler et al. Aug 2005 B1
6930737 Weindorf et al. Aug 2005 B2
6946978 Schofield Sep 2005 B2
7006129 McClure Feb 2006 B1
7012543 DeLine et al. Mar 2006 B2
7038577 Pawlicki et al. May 2006 B2
7046448 Burgner May 2006 B2
7175291 Li Feb 2007 B1
7255465 DeLine et al. Aug 2007 B2
7262406 Heslin et al. Aug 2007 B2
7265342 Heslin et al. Sep 2007 B2
7292208 Park et al. Nov 2007 B1
7311428 DeLine et al. Dec 2007 B2
7321112 Stam et al. Jan 2008 B2
7329013 Blank Feb 2008 B2
7417221 Creswick et al. Aug 2008 B2
7446650 Scholfield et al. Nov 2008 B2
7467883 DeLine et al. Dec 2008 B2
7468651 DeLine et al. Dec 2008 B2
7505047 Yoshimura Mar 2009 B2
7533998 Schofield et al. May 2009 B2
7548291 Lee et al. Jun 2009 B2
7565006 Stam et al. Jul 2009 B2
7567291 Bechtel et al. Jul 2009 B2
7579940 Schofield et al. Aug 2009 B2
7653215 Stam Jan 2010 B2
7658521 DeLine et al. Feb 2010 B2
7683326 Stam et al. Mar 2010 B2
7711479 Taylor et al. May 2010 B2
7719408 DeWard et al. May 2010 B2
7720580 Higgins-Luthman May 2010 B2
7815326 Blank et al. Oct 2010 B2
7877175 Higgins-Luthman Jan 2011 B2
7881839 Stam et al. Feb 2011 B2
7888629 Heslin et al. Feb 2011 B2
7914188 DeLine et al. Mar 2011 B2
7972045 Schofield Jul 2011 B2
7994471 Heslin et al. Aug 2011 B2
8031225 Watanabe et al. Oct 2011 B2
8045760 Stam et al. Oct 2011 B2
8059235 Utsumi et al. Nov 2011 B2
8063753 DeLine et al. Nov 2011 B2
8090153 Schofield et al. Jan 2012 B2
8100568 DeLine et al. Jan 2012 B2
8116929 Higgins-Luthman Feb 2012 B2
8120652 Bechtel et al. Feb 2012 B2
8142059 Higgins-Luthman et al. Mar 2012 B2
8162518 Schofield Apr 2012 B2
8201800 Filipiak Jun 2012 B2
8203433 Deuber et al. Jun 2012 B2
8217830 Lynam Jul 2012 B2
8222588 Schofield et al. Jul 2012 B2
8258433 Byers et al. Sep 2012 B2
8282226 Blank et al. Oct 2012 B2
8325028 Schofield et al. Dec 2012 B2
8482683 Hwang et al. Jul 2013 B2
20010019356 Takeda et al. Sep 2001 A1
20010022616 Rademacher et al. Sep 2001 A1
20010026316 Senatore Oct 2001 A1
20010045981 Gloger et al. Nov 2001 A1
20020040962 Schofield et al. Apr 2002 A1
20020044065 Quist et al. Apr 2002 A1
20020191127 Roberts et al. Dec 2002 A1
20030002165 Mathias et al. Jan 2003 A1
20030007261 Hutzel et al. Jan 2003 A1
20030016125 Lang et al. Jan 2003 A1
20030016287 Nakayama et al. Jan 2003 A1
20030025596 Lang et al. Feb 2003 A1
20030025597 Schofield Feb 2003 A1
20030030546 Tseng Feb 2003 A1
20030030551 Ho Feb 2003 A1
20030030724 Okamoto Feb 2003 A1
20030035050 Mizusawa Feb 2003 A1
20030043269 Park Mar 2003 A1
20030052969 Satoh et al. Mar 2003 A1
20030058338 Kawauchi et al. Mar 2003 A1
20030067383 Yang Apr 2003 A1
20030076415 Strumolo Apr 2003 A1
20030080877 Takagi et al. May 2003 A1
20030085806 Samman et al. May 2003 A1
20030088361 Sekiguchi May 2003 A1
20030090568 Pico May 2003 A1
20030090569 Poechmueller May 2003 A1
20030090570 Takagi et al. May 2003 A1
20030098908 Misaiji et al. May 2003 A1
20030103141 Bechtel et al. Jun 2003 A1
20030103142 Hitomi et al. Jun 2003 A1
20030117522 Okada Jun 2003 A1
20030122929 Minaudo et al. Jul 2003 A1
20030122930 Schofield et al. Jul 2003 A1
20030133014 Mendoza Jul 2003 A1
20030137586 Lewellen Jul 2003 A1
20030141965 Gunderson et al. Jul 2003 A1
20030146831 Berberich et al. Aug 2003 A1
20030169158 Paul, Jr. Sep 2003 A1
20030179293 Oizumi Sep 2003 A1
20030202096 Kim Oct 2003 A1
20030202357 Strazzanti Oct 2003 A1
20030214576 Koga Nov 2003 A1
20030214584 Ross, Jr. Nov 2003 A1
20030214733 Fujikawa et al. Nov 2003 A1
20030222793 Tanaka et al. Dec 2003 A1
20030222983 Nobori et al. Dec 2003 A1
20030227546 Hilborn et al. Dec 2003 A1
20040004541 Hong Jan 2004 A1
20040027695 Lin Feb 2004 A1
20040032321 McMahon et al. Feb 2004 A1
20040036768 Green Feb 2004 A1
20040051634 Schofield et al. Mar 2004 A1
20040056955 Berberich et al. Mar 2004 A1
20040057131 Hutzel et al. Mar 2004 A1
20040064241 Sekiguchi Apr 2004 A1
20040066285 Sekiguchi Apr 2004 A1
20040075603 Kodama Apr 2004 A1
20040080404 White Apr 2004 A1
20040080431 White Apr 2004 A1
20040085196 Milelr et al. May 2004 A1
20040090314 Iwamoto May 2004 A1
20040090317 Rothkop May 2004 A1
20040096082 Nakai et al. May 2004 A1
20040098196 Sekiguchi May 2004 A1
20040107030 Nishira et al. Jun 2004 A1
20040107617 Shoen et al. Jun 2004 A1
20040109060 Ishii Jun 2004 A1
20040114039 Ishikura Jun 2004 A1
20040119668 Homma et al. Jun 2004 A1
20040125905 Vlasenko et al. Jul 2004 A1
20040202001 Roberts et al. Oct 2004 A1
20040267419 Jeng Dec 2004 A1
20050078389 Kulas Apr 2005 A1
20050140855 Utsumi Jun 2005 A1
20050237440 Sugimura et al. Oct 2005 A1
20060007550 Tonar et al. Jan 2006 A1
20060115759 Kim et al. Jun 2006 A1
20060139953 Chou et al. Jun 2006 A1
20060158899 Ayabe et al. Jul 2006 A1
20070171037 Schofield et al. Jul 2007 A1
20080068520 Minikey, Jr. et al. Mar 2008 A1
20080087797 Turnbull Apr 2008 A1
20080158357 Connell Jul 2008 A1
20080192132 Bechtel et al. Aug 2008 A1
20080247192 Hoshi et al. Oct 2008 A1
20080294315 Breed Nov 2008 A1
20090015736 Weller et al. Jan 2009 A1
20090021583 Salgar Jan 2009 A1
20090141516 Wu et al. Jun 2009 A1
20100201896 Ostreko et al. Aug 2010 A1
20130009761 Horseman Jan 2013 A1
20130028473 Hilldore et al. Jan 2013 A1
20130063598 Hsiao Mar 2013 A1
20130279014 Fish, Jr. et al. Oct 2013 A1
20140022390 Blank Jan 2014 A1
20140055616 Corcoran Feb 2014 A1
20140091915 Rodriguez Barros Apr 2014 A1
20140347488 Tazaki et al. Nov 2014 A1
Foreign Referenced Citations (10)
Number Date Country
0513476 Nov 1992 EP
2378350 Dec 2003 EP
2338363 Dec 1999 GB
1178693 Mar 1999 JP
2005148119 Jun 2005 JP
2005327600 Nov 2005 JP
2008139819 Jun 2008 JP
9621581 Jul 1996 WO
2007103573 Sep 2007 WO
2010090964 Aug 2010 WO
Non-Patent Literature Citations (16)
Entry
Palalau et al., “FPD Evaluation for Automotive Application,” Proceedings of the Vehicle Display Symposium, Nov. 2, 1995, pp. 97-103, Society for Information Display, Detroit Chapter, Santa Ana, CA.
Adler, “A New Automotive AMLCD Module,” Proceedings of the Vehicle Display Symposium, Nov. 2, 1995, pp. 37-71, Society for Information Display, Detroit Chapter, Santa Ana, CA.
Sayer, et al., “In-Vehicle Displays for Crash Avoidance and Navigation Systems,”Proceedings of the Vehicle Display Symposium, Sep. 18, 1996, pp. 39-42, Society for Information Display, Detroit Chapter, Santa Ana, CA.
Knoll, et al, “Application of Graphic Displays in Automobiles,” SID 87 Digest, 1987, pp. 41-44, 5A.2.
Terada, et al., “Development of Central Information Display of Automotive Application,” SID 89 Digest, 1989, pp. 192-195, Society for Information Display, Detroit Center, Santa Ana, CA.
Thomsen, et al, “AMLCD Design Considerations for Avionics and Vetronics Applications,” Proceedings of the 5th Annual Flat Panel Display Strategic and Technical Symposium, Sep. 9-10, 1998, pp. 139-145, Society for Information Display, Metropolitan Detroit Chapter, CA.
Knoll, et al, “Conception of an Integrated Driver Information System,” SID International Symposium Digest of Technical Papers, 1990, pp. 126-129, Society for Information Display, Detroit Center, Santa Ana, CA.
Vincen, “An Analysis of Direct-View FPDs for Automotive Multi-Media Applications,” Proceedings of the 6th Annual Strategic and Technical Symposium “Vehicular Applications of Displays and Microsensors,” Sep. 22-23, 1999, pp. 39-46, Society for Information Display, Metropolitan Detroit Chapter, San Jose, CA.
Zuk, et al, “Flat Panel Display Applications in Agriculture Equipment,” Proceedings of the 5th Annual Flat Panel Display Strategic and Technical Symposium, Sep. 9-10, 1998, pp. 125-130, Society for Information Display, Metropolitan Detroit Chapter, CA.
Vijan, et al., “A 1.7-Mpixel Full-Color Diode Driven AM-LCD,” SID International Symposium, 1990, pp. 530-533, Society for Information Display, Playa del Rey, CA.
Vincen, “The Automotive Challenge to Active Matrix LCD Technology,” Proceedings of the Vehicle Display Symposium, 1996, pp. 17-21, Society for Information Display, Detroit Center, Santa Ana, CA.
Corsi, et al., “Reconfigurable Displays Used as Primary Automotive Instrumentation,” SAE Technical Paper Series, 1989, pp. 13-18, Society of Automotive Engineers, Inc., Warrendale, PA.
Schumacher, “Automotive Display Trends,” SID 96 Digest, 1997, pp. 1-6, Delco Electronics Corp., Kokomo, IN.
Knoll, “The Use of Displays in Automotive Applications,” Journal of the SID May 3, 1997, pp. 165-172, 315-316, Stuttgart, Germany.
Donofrio, “Looking Beyond the Dashboard,” SID 2002, pp. 30-34, Ann Arbor, MI.
Stone, “Automotive Display Specification,” Proceedings of the Vehicle Display Symposium, 1995, pp. 93-96, Society for Information Display, Detroit Center, Santa Ana, CA.
Related Publications (1)
Number Date Country
20160185297 A1 Jun 2016 US
Provisional Applications (1)
Number Date Country
62097315 Dec 2014 US