The present invention relates generally to a vehicle vision system for a vehicle and, more particularly, to a vehicle vision system that utilizes one or more cameras at a vehicle.
Use of imaging sensors in vehicle imaging systems is common and known. Examples of such known systems are described in U.S. Pat. Nos. 5,949,331; 5,670,935 and/or 5,550,677, which are hereby incorporated herein by reference in their entireties.
The present invention provides a driver assistance system or vision system or imaging system for a vehicle that utilizes one or more cameras (preferably one or more CMOS cameras) to capture image data representative of images exterior of the vehicle, and provides a failsafe algorithm operable to determine true positives and true negatives and avoid false positives and false negatives.
These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
A vehicle vision system and/or driver assist system and/or object detection system and/or alert system operates to capture images exterior of the vehicle and may process the captured image data to display images and to detect objects at or near the vehicle and in the predicted path of the vehicle, such as to assist a driver of the vehicle in maneuvering the vehicle in a rearward direction. The vision system includes an image processor or image processing system that is operable to receive image data from one or more cameras and provide an output to a display device for displaying images representative of the captured image data. Optionally, the vision system may provide display, such as a rearview display or a top down or bird's eye or surround view display or the like.
Referring now to the drawings and the illustrative embodiments depicted therein, a vehicle 10 includes an imaging system or vision system 12 that includes at least one exterior facing imaging sensor or camera, such as a rearward facing imaging sensor or camera 14a (and the system may optionally include multiple exterior facing imaging sensors or cameras, such as a forward facing camera 14b at the front (or at the windshield) of the vehicle, and a sideward/rearward facing camera 14c, 14d at respective sides of the vehicle), which captures images exterior of the vehicle, with the camera having a lens for focusing images at or onto an imaging array or imaging plane or imager of the camera (
The system of the present invention determines the conditions where machine vision may degrade in performance due to specific environmental conditions. Such determination is independent from hardware failures. The system determines inputs or parameters to define a safe state for machine vision quality to the user and/or safety implications, depending on the application requirements.
The failsafe feature should not experience degradation in the following conditions: when the vehicle is stationary, when the vehicle is moving, when there is snow on the ground, when there is a wet road surface, when it is raining, when there is a very bright scene, during daytime, during nighttime and at dusk. Depending on the conditions and the severity level of the failsafe, recommendations on when each vehicle function should be disabled to prevent incorrect operation is customizable. The decision is dependent on the application or usage of the outputs.
During operation, some conditions are considered when integrating the failsafe feature. These conditions may affect the feature performance, but may not be directly related to the feature. For example, no camera related detected trouble codes (DTCs) feature should be present while the failsafe feature is active. The ignition should be in the RUN position, and all doors, the tailgate and the trunk lid of the vehicle should be closed, and the camera badge (if applicable) is open, and the exterior rear view mirrors should be unfolded (if applicable). The ECU should be properly configured and variant coding should be successfully completed before the failsafe feature is active.
The pre-conditions are met in order to meet all functional and performance requirements. For example, the intrinsic parameters of cameras are calibrated and the input images utilized by the failsafe algorithm are uncompressed. There are no image quality pre-conditions that need to be met since it is the purpose of the failsafe feature to detect certain image conditions affecting machine vision performance negatively. The nominal camera position Ka_FS_I_CamPos of all cameras may be provided to the failsafe algorithm, and the intrinsic camera parameters Ka_FS_I_Cam Intrinsic of all cameras may be provided to the failsafe algorithm. Optionally, and desirably, the images provided to the failsafe algorithm may have a minimum resolution of 1280×800 pixels, and the provided images may have a minimum frame rate of 30 fps, and the provided images may include color information. The images provided to the failsafe algorithm may comprise un-distorted fisheye-type raw images, and a camera lens model (lens distortion polynomials) may be provided. Also, details of the ISP (image signal processing) design may be provided to the failsafe algorithm. The failsafe feature may be fully functional in all lighting conditions. A purpose of the failsafe feature is to detect adverse lighting conditions.
The failsafe feature is applicable to a forward facing camera mounted at and behind the windshield of the vehicle or at the front grille or bumper of the vehicle. The failsafe feature is also or otherwise applicable to a rear facing camera mounted at a rear portion of the vehicle, such as at a trunk lid or tailgate of the vehicle. The failsafe feature is also or otherwise applicable to a left and/or right side camera mounted in the driver and/or passenger side rear view mirror of the vehicle.
The failsafe feature allows a variation of the vehicle roll and vehicle pitch angles by +/−Ke_FS_deg_ExtrinsicAngleTolerance, without causing degradation of the performance. The failsafe feature detects all failsafe conditions independent of vehicle motion and independent of motion or changes in the scene (camera image). The failsafe feature detects all failsafe conditions independent of the ground surface and/or weather conditions. The failsafe feature detects all failsafe conditions if the illumination measured on the ground plane a selected distance (such as, for example, 1 m) from the camera is greater than Ke_FS_lux_Illumination. The failsafe feature detects all failsafe conditions in the normal life camera feed. No special targets, maneuvers, conditions are required for the detection of the failsafe conditions.
The failsafe feature detects a “blockage condition” utilizing a variable M_FS_Blocked if the camera lens is blocked fully or partially by solid materials such as mud, dirt, and/or the like. The failsafe feature detects a “Transparent Blockage Condition” utilizing a variable M_FS_TransBlocked if the camera lens is covered fully or partially by transparent materials such as film causing a loss of contrast or focus or brightness in the camera image. The failsafe feature detects a “Water Drop Condition” utilizing a variable M_FS_WaterDrop if the camera lens is fully or partially covered by water drops or if condensation is present of the camera lens. In situations where the camera lens is covered by condensation, the failsafe feature may detect “transparent blockage conditions” alternately. The failsafe feature detects a “Low Light Condition” utilizing the variable M_FS_Lowlight if the illumination is equal to or less than Ke_FS_lux_MinIllumination measured on the ground plane around 1 m from the camera. In situations where the camera lens is covered by more than 95 percent by a solid material, the failsafe feature may detect low light condition rather than blockage condition.
The failsafe feature detects a “shadow condition” utilizing a variable M_FS_Shadow if the host vehicle casts a shadow onto the ground plane in an area with a radius of Ke_FS_I_ShadowDetectRadius from the camera and if the illumination measured on the ground plane about 1 m from the camera is greater than a threshold value (such as designated by Ke_FS_lux_ShadowDetectMinIllum). The failsafe feature detects a “highlight/glare condition” utilizing a variable M_FS_HighlightGlare if the illumination is greater than a threshold level, Ke_FS_lux_MaxIllumination, as measured on the ground plane about 1 m from the camera. The failsafe feature may also detect a “highlight/glare condition” utilizing a variable M_FS_HighlightGlare when lens flare is present in the image. The failsafe feature also detects a “highlight/glare condition” utilizing a variable M_FS_HighlightGlare when a sun ray is present in the image. The failsafe feature also detects “highlight/glare condition” utilizing a variable M_FS_HighlightGlare when the sun is reflected on a surface into the camera lens. The failsafe feature detects a “sun condition” utilizing a variable M_FS_Sun when the sun is partially or entirely visible in the camera image.
The failsafe feature detects an “out of focus condition” utilizing a variable M_FS_OOF when the camera focus is less than a threshold focus level, Ke_FS_MTF_MinFocus. The failsafe feature detects an “out of calibration condition” utilizing a variable M_FS_OOC if any of the actual extrinsic camera orientation angles differ more than a threshold level from a nominal or threshold amount (e.g., a difference of Ke_FS_deg_ExtrinsicAngleTolerance from Ka_FS_I_CamExtrinsic). The failsafe feature detect an “imager damaged condition” utilizing a variable M_FS_ImagerDamaged if, for example, more than 25 percent of the pixels in a region larger than 50 pixels are damaged.
In accordance with the failsafe algorithm of the present invention, blockage is determined within ten video frames based on the following levels per the accompanying description:
Similarly, condensation and/or water on the lens surface is determined within ten video frames of the image display based on the following levels per the accompanying description:
Also, shadows cast by the host vehicle are determined within ten video frames of the image display based on the following levels per the accompanying description:
Also, highlight and glare conditions are determined within ten video frames of the image display based on the following levels per the accompanying description. In case several conditions are present (for example illumination is greater than a threshold level (>Ke_FS_lux_MaxIllumination) and glare is visible in the image, the larger level shall be reported for each image region).
The presence of the sun shall be determined within ten video frames of the image display based on the following levels per the accompanying description:
An out of calibration (OOC) condition is determined within two minutes of operation of the image display based on the following levels per the accompanying description:
An out of focus (OOF) condition is also determined within two minutes of operation of the image display based on the following levels per the accompanying description:
An imager damaged condition is determined within two minutes of operation of the image display based on the following levels per the accompanying description:
With respect to non-functional requirements for the failsafe algorithm and system of the present invention, the levels of failsafe shall be defined as follows:
Optionally, a Boolean shall be provided for out of calibration cases, out of focus cases, low light cases, sun present cases and/or imager damaged cases.
The failsafe feature updates the output at a frequency of 50 msec. The camera image is divided into KS_FS_cnt_NumOutRows and KS_FS_cnt_NumOutCols equally sized image regions. The Failsafe feature reports the output variables for each image region (see
A filtering or hysteresis strategy is also implemented for optimal performance and consistent outputting of the failsafe conditions.
Performance requirements for the failsafe algorithm or system include the system's ability to determine true positives, true negatives, false positives and false negatives for various conditions. The confusion matrix of
With reference to
With reference to
During testing of the system, the fail-safe feature algorithm may be applied to recorded videos. A design position (Ka_FS_I_CamExtrinsic) may be varied in order to simulate an out-of-calibration condition. The simulation may include positions where roll, pitch and yaw angles are randomly chosen in a range of +/−a given value (4*Ke_FS_deg_ExtrinsicAngleTolerance). The chosen individual randomized angles are normal distributed with a mean of zero. Each simulation run or combination of roll, pitch and yaw angle presents one data-point. The simulation may be completed when 1000 data-points were simulated where at least one of the extrinsic angles exceeds Ke_FS_deg_ExtrinsicAngleTolerance from the nominal design position (OOC condition present). The confusion matrix of
For testing for false positive use cases, a minimum of 1000 videos with a minimum length of 1 minute may be recorded while no failsafe conditions are present. The videos for false positive testing are linearly distributed between the following conditions:
The videos for false positive testing are linearly distributed between the following road surface conditions and locations:
The camera or sensor may comprise any suitable camera or sensor. Optionally, the camera may comprise a “smart camera” that includes the imaging sensor array and associated circuitry and image processing circuitry and electrical connectors and the like as part of a camera module, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2013/081984 and/or WO 2013/081985, which are hereby incorporated herein by reference in their entireties.
The system includes an image processor operable to process image data captured by the camera or cameras, such as for detecting objects or other vehicles or pedestrians or the like in the field of view of one or more of the cameras. For example, the image processor may comprise an image processing chip selected from the EYEQ family of image processing chips available from Mobileye Vision Technologies Ltd. of Jerusalem, Israel, and may include object detection software (such as the types described in U.S. Pat. Nos. 7,855,755; 7,720,580 and/or 7,038,577, which are hereby incorporated herein by reference in their entireties), and may analyze image data to detect vehicles and/or other objects. Responsive to such image processing, and when an object or other vehicle is detected, the system may generate an alert to the driver of the vehicle and/or may generate an overlay at the displayed image to highlight or enhance display of the detected object or vehicle, in order to enhance the driver's awareness of the detected object or vehicle or hazardous condition during a driving maneuver of the equipped vehicle.
The vehicle may include any type of sensor or sensors, such as imaging sensors or radar sensors or lidar sensors or ladar sensors or ultrasonic sensors or the like. The imaging sensor or camera may capture image data for image processing and may comprise any suitable camera or sensing device, such as, for example, a two dimensional array of a plurality of photosensor elements arranged in at least 640 columns and 480 rows (at least a 640×480 imaging array, such as a megapixel imaging array or the like), with a respective lens focusing images onto respective portions of the array. The photosensor array may comprise a plurality of photosensor elements arranged in a photosensor array having rows and columns. Preferably, the imaging array has at least 300,000 photosensor elements or pixels, more preferably at least 500,000 photosensor elements or pixels and more preferably at least 1 million photosensor elements or pixels. The imaging array may capture color image data, such as via spectral filtering at the array, such as via an RGB (red, green and blue) filter or via a red/red complement filter or such as via an RCC (red, clear, clear) filter or the like. The logic and control circuit of the imaging sensor may function in any known manner, and the image processing and algorithmic processing may comprise any suitable means for processing the images and/or image data.
For example, the vision system and/or processing and/or camera and/or circuitry may utilize aspects described in U.S. Pat. Nos. 9,233,641; 9,146,898; 9,174,574; 9,090,234; 9,077,098; 8,818,042; 8,886,401; 9,077,962; 9,068,390; 9,140,789; 9,092,986; 9,205,776; 8,917,169; 8,694,224; 7,005,974; 5,760,962; 5,877,897; 5,796,094; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; 7,859,565; 5,550,677; 5,670,935; 6,636,258; 7,145,519; 7,161,616; 7,230,640; 7,248,283; 7,295,229; 7,301,466; 7,592,928; 7,881,496; 7,720,580; 7,038,577; 6,882,287; 5,929,786 and/or 5,786,772, and/or U.S. Publication Nos. US-2014-0340510; US-2014-0313339; US-2014-0347486; US-2014-0320658; US-2014-0336876; US-2014-0307095; US-2014-0327774; US-2014-0327772; US-2014-0320636; US-2014-0293057; US-2014-0309884; US-2014-0226012; US-2014-0293042; US-2014-0218535; US-2014-0218535; US-2014-0247354; US-2014-0247355; US-2014-0247352; US-2014-0232869; US-2014-0211009; US-2014-0160276; US-2014-0168437; US-2014-0168415; US-2014-0160291; US-2014-0152825; US-2014-0139676; US-2014-0138140; US-2014-0104426; US-2014-0098229; US-2014-0085472; US-2014-0067206; US-2014-0049646; US-2014-0052340; US-2014-0025240; US-2014-0028852; US-2014-005907; US-2013-0314503; US-2013-0298866; US-2013-0222593; US-2013-0300869; US-2013-0278769; US-2013-0258077; US-2013-0258077; US-2013-0242099; US-2013-0215271; US-2013-0141578 and/or US-2013-0002873, which are all hereby incorporated herein by reference in their entireties. The system may communicate with other communication systems via any suitable means, such as by utilizing aspects of the systems described in International Publication Nos. WO/2010/144900; WO 2013/043661 and/or WO 2013/081985, and/or U.S. Pat. No. 9,126,525, which are hereby incorporated herein by reference in their entireties.
Optionally, the camera may comprise a forward facing camera, such as disposed at a windshield electronics module (WEM) or the like. The forward facing camera may utilize aspects of the systems described in U.S. Pat. Nos. 8,256,821; 7,480,149; 6,824,281 and/or 6,690,268, and/or U.S. Publication Nos. US-2015-0327398; US-2015-0015713; US-2014-0160284; US-2014-0226012 and/or US-2009-0295181, which are all hereby incorporated herein by reference in their entireties.
Optionally, the vision system may include a display for displaying images captured by one or more of the imaging sensors for viewing by the driver of the vehicle while the driver is normally operating the vehicle. Optionally, for example, the vision system may include a video display device, such as by utilizing aspects of the video display systems described in U.S. Pat. Nos. 5,530,240; 6,329,925; 7,855,755; 7,626,749; 7,581,859; 7,446,650; 7,338,177; 7,274,501; 7,255,451; 7,195,381; 7,184,190; 5,668,663; 5,724,187; 6,690,268; 7,370,983; 7,329,013; 7,308,341; 7,289,037; 7,249,860; 7,004,593; 4,546,551; 5,699,044; 4,953,305; 5,576,687; 5,632,092; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,501; 6,222,460; 6,513,252 and/or 6,642,851, and/or U.S. Publication Nos. US-2014-0022390; US-2012-0162427; US-2006-0050018 and/or US-2006-0061008, which are all hereby incorporated herein by reference in their entireties.
Optionally, the vision system (utilizing the forward facing camera and a rearward facing camera and other cameras disposed at the vehicle with exterior fields of view) may be part of or may provide a display of a top-down view or bird's-eye view system of the vehicle or a surround view at the vehicle, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2010/099416; WO 2011/028686; WO 2012/075250; WO 2013/019795; WO 2012/075250; WO 2012/145822; WO 2013/081985; WO 2013/086249 and/or WO 2013/109869, and/or U.S. Publication No. US-2012-0162427, which are hereby incorporated herein by reference in their entireties.
Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.
The present application is a continuation of U.S. patent application Ser. No. 17/249,376, filed Mar. 1, 2021, now U.S. Pat. No. 11,657,620, which is a continuation of U.S. patent application Ser. No. 15/876,235, filed Jan. 22, 2018, now U.S. Pat. No. 10,936,884, which claims the filing benefits of U.S. provisional application Ser. No. 62/449,224, filed Jan. 23, 2017, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5550677 | Schofield et al. | Aug 1996 | A |
5670935 | Schofield et al. | Sep 1997 | A |
5796094 | Schofield et al. | Aug 1998 | A |
5949331 | Schofield et al. | Sep 1999 | A |
6690268 | Schofield et al. | Feb 2004 | B2 |
7004593 | Weller et al. | Feb 2006 | B2 |
7038577 | Pawlicki et al. | May 2006 | B2 |
7167796 | Taylor et al. | Jan 2007 | B2 |
7526103 | Schofield et al. | Apr 2009 | B2 |
7720580 | Higgins-Luthman | May 2010 | B2 |
7855755 | Weller et al. | Dec 2010 | B2 |
9183447 | Gdalyahu | Nov 2015 | B1 |
10071687 | Ihlenburg et al. | Sep 2018 | B2 |
10936884 | Diessner et al. | Mar 2021 | B2 |
11657620 | Diessner et al. | May 2023 | B2 |
20030161500 | Blake | Aug 2003 | A1 |
20040212686 | Usami | Oct 2004 | A1 |
20050152581 | Hoki et al. | Jul 2005 | A1 |
20070003154 | Sun | Jan 2007 | A1 |
20070221822 | Stein et al. | Sep 2007 | A1 |
20070253597 | Utida et al. | Nov 2007 | A1 |
20080043099 | Stein et al. | Feb 2008 | A1 |
20080219505 | Morimitsu | Sep 2008 | A1 |
20100118156 | Saito | May 2010 | A1 |
20110109476 | Porikli | May 2011 | A1 |
20120062743 | Lynam | Mar 2012 | A1 |
20120249789 | Satoh | Oct 2012 | A1 |
20130016877 | Feris | Jan 2013 | A1 |
20130169155 | Nakashima | Jul 2013 | A1 |
20130231830 | Van Dan Elzen | Sep 2013 | A1 |
20130242188 | Tripathi | Sep 2013 | A1 |
20140218529 | Mahmoud | Aug 2014 | A1 |
20140232869 | May | Aug 2014 | A1 |
20140241589 | Weber | Aug 2014 | A1 |
20140324266 | Zhu | Oct 2014 | A1 |
20140347486 | Okouneva | Nov 2014 | A1 |
20140350834 | Turk | Nov 2014 | A1 |
20150286897 | Spaith | Oct 2015 | A1 |
20150307024 | Fukuda | Oct 2015 | A1 |
20160082887 | Turk | Mar 2016 | A1 |
20160137126 | Fursich et al. | May 2016 | A1 |
20160284076 | Voros | Sep 2016 | A1 |
20160297365 | Nix | Oct 2016 | A1 |
20160342850 | Elimalech | Nov 2016 | A1 |
20170023945 | Cavalcanti | Jan 2017 | A1 |
20170104986 | Zhang | Apr 2017 | A1 |
20170133426 | Tekleab | May 2017 | A1 |
20170169301 | Kunze | Jun 2017 | A1 |
20170270381 | Itoh | Sep 2017 | A1 |
20180032823 | Ohizumi | Feb 2018 | A1 |
20180058127 | Ikeda | Mar 2018 | A1 |
20180134217 | Peterson et al. | May 2018 | A1 |
20180151066 | Oba | May 2018 | A1 |
20180315167 | Akiyama | Nov 2018 | A1 |
20180357484 | Omata | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
2007038773 | Feb 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20230290155 A1 | Sep 2023 | US |
Number | Date | Country | |
---|---|---|---|
62449224 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17249376 | Mar 2021 | US |
Child | 18321014 | US | |
Parent | 15876235 | Jan 2018 | US |
Child | 17249376 | US |