The present invention relates generally to a vehicle vision system for a vehicle and, more particularly, to a vehicle vision system that utilizes one or more cameras at a vehicle.
Use of imaging sensors in vehicle imaging systems is common and known. Examples of such known systems are described in U.S. Pat. Nos. 5,949,331; 5,670,935 and/or 5,550,677, which are hereby incorporated herein by reference in their entireties.
The present invention provides a vision system or imaging system for a vehicle that utilizes one or more cameras (preferably one or more CMOS cameras) to capture image data representative of images exterior of the vehicle, and provides an algorithm that is applied to image data captured an imaging array of photosensing pixels of the camera, with the algorithm determining and reducing temporal noise in the captured image data.
According to an aspect of the present invention, the system may reduce the temporal noise by making a pixel-wise or photosensor element-wise comparison of consecutive frames of captured image data. If a pixel illumination value or luminance value (such as the luminance value of individual pixels from one frame to a subsequent frame or such as the luminance value of groups of pixels, such as a group comprising a red pixel, a green pixel and a blue pixel, from one frame to a subsequent frame) jumps or spikes (in the range of a noise spike), the jump is dampened by not fully adopting its change (such as by weighting the values of those pixels with pixel values of those pixels from the other frame or frames of captured image data). If there is a substantial increase or spike in luminance value (for any given individual pixel or group of pixels), the increase may be indicative of a real change in luminance value at the scene that is being imaged, so the adoption ratio gets increased to weight the jumped or spiked value accordingly. Thus, noise changes may get filtered out or smoothed while substantial changes (not indicative of noise) will not be filtered out or ignored.
According to another aspect of the present invention, the system may address or reduce fix pattern noise (FPN) caused by dark Signal non uniformity (DSNU), which appears column wise in the captured image data, and may comprise a steady offset in luminance. By column-wise comparing the green photosensing elements (since green bears illuminance) of a column with a neighboring column and averaging the luminance differences, the base offset of that column can be found and corrected by subtracting it from the values of all of the photosensing elements in that column.
These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
A vehicle vision system and/or driver assist system and/or object detection system and/or alert system operates to capture images exterior of the vehicle and may process the captured image data to display images and to detect objects at or near the vehicle and in the predicted path of the vehicle, such as to assist a driver of the vehicle in maneuvering the vehicle in a rearward direction. The vision system includes an image processor or image processing system that is operable to receive image data from one or more cameras and provide an output to a display device for displaying images representative of the captured image data. Optionally, the vision system may provide a top down or bird's eye or surround view display and may provide a displayed image that is representative of the subject vehicle, and optionally with the displayed image being customized to at least partially correspond to the actual subject vehicle.
Referring now to the drawings and the illustrative embodiments depicted therein, a vehicle 10 includes an imaging system or vision system 12 that includes at least one exterior facing imaging sensor or camera, such as a rearward facing imaging sensor or camera 14a (and the system may optionally include multiple exterior facing imaging sensors or cameras, such as a forwardly facing camera 14b at the front (or at the windshield) of the vehicle, and a sidewardly/rearwardly facing camera 14c, 14d at respective sides of the vehicle), which captures images exterior of the vehicle, with the camera having a lens for focusing images at or onto an imaging array or imaging plane or imager of the camera (
There are several methods for reducing pixel noise of images captured by imagers. Most are meant for post shot processing of single shots commodity cameras. These are either executed on image enhancement PC programs or in the commodity camera. Both do not require working fast. When enhancing a real time video data stream images there is typically just the time between two consecutive frames, typically less, for executing a noise reduction measure. Because of this, typical noise reduction methods for post shot processing don't apply for real time video image data stream image enhancing.
There are two basic approaches to noise filtering of images: temporal filtering and spatial filtering. There are filters that do both. Spatial filtering often comes or is based on a blurring effect by averaging a to-be-de-noised pixel with its neighborhood pixels. Spatial-temporal filters combine to exploit the neighborhood pixels time domain and frequency domain. Some are based on wavelet based shrinkage [see, for example, Aleksandra Pi{hacek over ( )}zurica; Vladimir Zlokolica; Wilfried Philips; Noise Reduction in Video Sequences Using Wavelet-Domain and temporal filtering, which is hereby incorporated herein by reference in its entirety].
Known temporal filters either show problems on fast moving objects through the image (due to inherent statistical adaption time constants) or require motion determination. In there, rapidly changing regions become spared from temporal filtering but just filtering a steady background [see, for example, Olgierd Stankiewicz; Antoni Roszak; Adam uczak; Temporal Noise Shaping, Quantization and Coding Methods in Perceptual Audio Coding A Tutorial Introduction, which is hereby incorporated herein by reference in its entirety]. This method is comparably poor when high motion is within the image scene as such when a vehicle camera is capturing the motion flow during driving.
The present invention provides an algorithm for temporal noise reduction (TNR) lean in memory space and computing time is suggested. It is well implementable on DSPs, GPUs and processor programs, but is limited in FPGA applications due to its required memory access.
Input is the luminance of pixels at the same position. One way to calculate the luminance is L=0.3 R+0.6 G+0.1 B (RGB color room).
There may be memory allocated having the identical size as a full single image coming from a video camera. All images have a certain size in spatial and resolution per pixel dimension.
A first image In (at time step n so one frame later is referred as In−1) coming from the camera may be stored unaltered in that memory which may be called ‘pixel-accumulator’ later on referred as PA.
A consecutive (one time step n so a frame later) image In coming from the camera is compared to the image in the PAn−1 by pixel wise subtracting the new image In from PAn−1 and forming the absolute value of the result afterwards. The resulting difference may be called delta ‘Dn’, see equation (1) below.
Dn=|(PAn−1−In)| (1)
At times D may be smaller than a certain threshold (off luminance change) Tn. The fraction of the new image In carried over to PAn may be different than when Dn may be higher than Tn. As a preferred embodiment of the present invention, the fraction of In carried over to PAn may be substantially higher when Dn may be higher than Tn as when Dn may be lower than Tn. As a more specific example of the present invention, when Dn<Tn, then the new value PAn may be a blend of about 10 percent of the value of the new camera image In and about 90 percent of the old value of PAn−1 (see equation (2) below), and when Dn>Tn, the new value PAn may be a blend of about 70 percent of the value of the new camera image In and about 30 percent of the old value of PAn−1 (see equation (3) below). The blending is done in the actual image format such as RGB.
PAn=0.9·PAn−1+0.1·In;Dn<Tn (2)
PAn=0.3·PAn−1+0.7·In;Dn>Tn (3)
D as intermediate result can be eliminated;
PAn=0.9·PAn−1+0.1·In;|(PAn−1−In)|<Tn (4)
PAn=0.3·PAn−1+0.7·In;|(PAn−1−In)|>Tn (5)
The output to the further image processing or display at the time step n will then be the pixel-accumulator itself: PAn. The algorithm above describes a temporal filter. The possibility of using filters of any order or a Kalman filter may be incorporated in the present invention. The dependency of the update factor from the difference between current luminance and PA ensures that a rapid change in luminance becomes dominant faster than changes that are small, such as just noise. Rapid changes in luminance may be caused by light sources or reflections moving through the image (typically mainly caused by the ego motion [of the own or subject or equipped vehicle]). Slow adaption to the new values instead would cause follow marks/feathers especially of bright image parts which cross a dark image region.
PAn=kol·PAn−1+knl·In;Dn<Tn (6)
PAn=koh·PAn−1+knh·In;Dn>Tn (7)
Equations (6) and (7) show the general form with its parameters kol (old low), knl (new low), koh (old high) and knh (new high). These parameters and the threshold T may be optimized in any kind of evolutional or hill climbing algorithm. When using other filters or higher order filters, these filter parameters may be optimized in any kind of evolutional or hill climbing algorithm. In all cases, the optimization may run during operation time or offline or is partially preprocessed and partially done during run time.
As another aspect of the present invention, the parameter set may be adaptively changing on different light conditions. This may happen in steps or may be interleaved. Optionally, the threshold T may be dependent to the overall image luminance or to local regions luminance level. Optionally, the algorithm may just run at comparably low light conditions and may be off at bright light condition. Optionally, the algorithm may only effect low light image regions within an image while comparably bright illuminated regions are untouched. Optionally, the algorithm may be a subcontrol of an HDR control.
In the implementation of the present invention as described above, there were two fraction ratios of PAn−1 to In depending on being above or below a single threshold. As a more advanced implementation of the present invention, the multiplier ‘c’ (carry over) as fraction ratio of PAn−1 and (1-c) (accumulate newly) as a fraction ratio of In may be set in a relation of D the and the Signal to Noise Ratio (SNR); cn=R (Dn, SNR), see equation (8) below. While PAn and Dn are calculated pixel-wise, the SNR is determined in general for the whole image.
The relation may be given by a characteristic field array in the system's memory. An example of such an array is shown in
The characteristic field array's entries may be entered according to known imager parameters and a measurement of the noise level dependent on the temperature.
During run time, in case the imager provides a proper temperature signal, the Signal to Noise Ratio (SNR) is directly ascertainable out of the imager's parameter data and the current gain level, if not there may be optional thermal models implemented to estimate the imager's temperature. The thermal models may be based on start-up temperature (assumed similar to a known temperature of a near device), run time, outside temperature, current consumption and heat resistance of the camera.
Optionally, the algorithm may run at comparably low light conditions and may be off during bright light conditions. Optionally, the algorithm may only effect low light image regions within an image while comparably bright illuminated regions are untouched. Optionally, the algorithm may be a subcontrol of an HDR control.
It strikes the eye that some vertical shape like noise is still remaining in the image of
The FPN reduction (FPNR) algorithm of the present invention may compare all green values as luminance measure ‘Ik’ of one column ‘k’ with its diagonal right neighbor column ‘k+1’ by subtracting from another in pairs (see, for example,
By summing all left neighbors plus the current mean difference D0+ . . . +Dk of a column k with k=1 to k=m, a curve of the luminance 21 is reconstructed. The curves lowest point 22 in
For reducing the fix pattern noise during run time, the resulting luminance value Vk at a given column (k) in the curve 23 will be subtracted from each pixel of this column independent of its color.
The camera or sensor may comprise any suitable camera or sensor. Optionally, the camera may comprise a “smart camera” that includes the imaging sensor array and associated circuitry and image processing circuitry and electrical connectors and the like as part of a camera module, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2013/081984 and/or WO 2013/081985, which are hereby incorporated herein by reference in their entireties.
The system includes an image processor operable to process image data captured by the camera or cameras, such as for detecting objects or other vehicles or pedestrians or the like in the field of view of one or more of the cameras. For example, the image processor may comprise an EyeQ2 or EyeQ3 image processing chip available from Mobileye Vision Technologies Ltd. of Jerusalem, Israel, and may include object detection software (such as the types described in U.S. Pat. Nos. 7,855,755; 7,720,580; and/or 7,038,577, which are hereby incorporated herein by reference in their entireties), and may analyze image data to detect vehicles and/or other objects. Responsive to such image processing, and when an object or other vehicle is detected, the system may generate an alert to the driver of the vehicle and/or may generate an overlay at the displayed image to highlight or enhance display of the detected object or vehicle, in order to enhance the driver's awareness of the detected object or vehicle or hazardous condition during a driving maneuver of the equipped vehicle.
The vehicle may include any type of sensor or sensors, such as imaging sensors or radar sensors or lidar sensors or ladar sensors or ultrasonic sensors or the like. The imaging sensor or camera may capture image data for image processing and may comprise any suitable camera or sensing device, such as, for example, a two dimensional array of a plurality of photosensor elements arranged in at least 640 columns and 480 rows (at least a 640×480 imaging array, such as a megapixel imaging array or the like), with a respective lens focusing images onto respective portions of the array. The photosensor array may comprise a plurality of photosensor elements arranged in a photosensor array having rows and columns. Preferably, the imaging array has at least 300,000 photosensor elements or pixels, more preferably at least 500,000 photosensor elements or pixels and more preferably at least 1 million photosensor elements or pixels. The imaging array may capture color image data, such as via spectral filtering at the array, such as via an RGB (red, green and blue) filter or via a red/red complement filter or such as via an RCC (red, clear, clear) filter or the like. The logic and control circuit of the imaging sensor may function in any known manner, and the image processing and algorithmic processing may comprise any suitable means for processing the images and/or image data.
For example, the vision system and/or processing and/or camera and/or circuitry may utilize aspects described in U.S. Pat. Nos. 7,005,974; 5,760,962; 5,877,897; 5,796,094; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; 7,859,565; 5,550,677; 5,670,935; 6,636,258; 7,145,519; 7,161,616; 7,230,640; 7,248,283; 7,295,229; 7,301,466; 7,592,928; 7,881,496; 7,720,580; 7,038,577; 6,882,287; 5,929,786 and/or 5,786,772, and/or International Publication Nos. WO 2011/028686; WO 2010/099416; WO 2012/061567; WO 2012/068331; WO 2012/075250; WO 2012/103193; WO 2012/0116043; WO 2012/0145313; WO 2012/0145501; WO 2012/145818; WO 2012/145822; WO 2012/158167; WO 2012/075250; WO 2012/0116043; WO 2012/0145501; WO 2012/154919; WO 2013/019707; WO 2013/016409; WO 2013/019795; WO 2013/067083; WO 2013/070539; WO 2013/043661; WO 2013/048994; WO 2013/063014, WO 2013/081984; WO 2013/081985; WO 2013/074604; WO 2013/086249; WO 2013/103548; WO 2013/109869; WO 2013/123161; WO 2013/126715; WO 2013/043661; WO 2013/158592 and/or PCT Application No. PCT/US2014/042229, filed Jun. 13, 2014, and published Dec. 24, 2014 as International Publication No. WO 2014/204794, and/or U.S. patent application Ser. No. 14/324,696, filed Jul. 7, 2014, now U.S. Pat. No. 9,701,258; Ser. No. 14/369,229, filed Jun. 27, 2014, now U.S. Pat. No. 9,491,342; Ser. No. 14/316,940, filed Jun. 27, 2014, and published Jan. 8, 2015 as U.S. Patent Publication No. US-2015-0009010; Ser. No. 14/316,939, filed Jun. 27, 2014, and published Jan. 1, 2015 as U.S. Patent Publication No. US-2015-0002670; Ser. No. 14/303,696, filed Jun. 13, 2014, now U.S. Pat. No. 9,609,757; Ser. No. 14/303,695, filed Jun. 13, 2014, and published Dec. 25, 2014 as U.S. Patent Publication No. US-2014-0375476; Ser. No. 14/303,694, filed Jun. 13, 2014, now U.S. Pat. No. 9,260,095; Ser. No. 14/303,693, filed Jun. 13, 2014, and published Dec. 18, 2014 as U.S. Patent Publication No. US-2014-0368654; Ser. No. 14/297,663, filed Jun. 6, 2014, and published Dec. 11, 2014 as U.S. Patent Publication No. US-2014-0362209; Ser. No. 14/362,636, filed Jun. 4, 2014, now U.S. Pat. No. 9,762,880; Ser. No. 14/290,028, filed May 29, 2014, now U.S. Pat. No. 9,800,794; Ser. No. 14/290,026, filed May 29, 2014, now U.S. Pat. No. 9,476,398; Ser. No. 14/359,341, filed May 20, 2014, now U.S. Pat. No. 10,071,687; Ser. No. 14/359,340, filed May 20, 2014, now U.S. Pat. No. 10,099,614; Ser. No. 14/282,029, filed May 20, 2014, now U.S. Pat. No. 9,205,776; Ser. No. 14/282,028, filed May 20, 2014, now U.S. Pat. No. 9,563,951; Ser. No. 14/358,232, filed May 15, 2014, now U.S. Pat. No. 9,491,451; Ser. No. 14/272,834, filed May 8, 2014, now U.S. Pat. No. 9,280,202; Ser. No. 14/356,330, filed May 5, 2014, now U.S. Pat. No. 9,604,581; Ser. No. 14/269,788, filed May 5, 2014, now U.S. Pat. No. 9,508,014; Ser. No. 14/268,169, filed May 2, 2014, and published Nov. 6, 2014 as U.S. Patent Publication No. US-2014-0327772; Ser. No. 14/264,443, filed Apr. 29, 2014, and published Oct. 30, 2014 as U.S. Patent Publication No. US-2014-0320636; Ser. No. 14/354,675, filed Apr. 28, 2014, now U.S. Pat. No. 9,580,013; Ser. No. 14/248,602, filed Apr. 9, 2014, now U.S. Pat. No. 9,327,693; Ser. No. 14/242,038, filed Apr. 1, 2014, now U.S. Pat. No. 9,487,159; Ser. No. 14/229,061, filed Mar. 28, 2014, now U.S. Pat. No. 10,027,930; Ser. No. 14/343,937, filed Mar. 10, 2014, now U.S. Pat. No. 9,681,062; Ser. No. 14/343,936, filed Mar. 10, 2014, and published Aug. 7, 2014 as U.S. Patent Publication No. US-2014-0218535; Ser. No. 14/195,135, filed Mar. 3, 2014, now U.S. Pat. No. 9,688,200; Ser. No. 14/195,136, filed Mar. 3, 2014, now U.S. Pat. No. 10,057,544; Ser. No. 14/191,512, filed Feb. 27, 2014, now U.S. Pat. No. 10,179,543; Ser. No. 14/183,613, filed Feb. 19, 2014, now U.S. Pat. No. 9,445,057; Ser. No. 14/169,329, filed Jan. 31, 2014, and published Aug. 7 2014 as U.S. Patent Publication No. US-2014-0218529; Ser. No. 14/169,328, filed Jan. 31, 2014, now U.S. Pat. No. 9,092,986; Ser. No. 14/163,325, filed Jan. 24, 2014, and published Jul. 31, 2014 as U.S. Patent Publication No. US-2014-0211009; Ser. No. 14/159,772, filed Jan. 21, 2014, now U.S. Pat. No. 9,068,390; Ser. No. 14/107,624, filed Dec. 16, 2013, now U.S. Pat. No. 9,140,789; Ser. No. 14/102,981, filed Dec. 11, 2013, now U.S. Pat. No. 9,558,409; Ser. No. 14/102,980, filed Dec. 11, 2013, and published Jun. 19, 2014 as U.S. Patent Publication No. US-2014-0168437; Ser. No. 14/098,817, filed Dec. 6, 2013, and published Jun. 19, 2014 as U.S. Patent Publication No. US-2014-0168415; Ser. No. 14/097,581, filed Dec. 5, 2013, now U.S. Pat. No. 9,481,301; Ser. No. 14/093,981, filed Dec. 2, 2013, now U.S. Pat. No. 8,917,169; Ser. No. 14/093,980, filed Dec. 2, 2013, now U.S. Pat. No. 10,025,994; Ser. No. 14/082,573, filed Nov. 18, 2013, now U.S. Pat. No. 9,743,002; Ser. No. 14/082,574, filed Nov. 18, 2013, now U.S. Pat. No. 9,307,640; Ser. No. 14/082,575, filed Nov. 18, 2013, now U.S. Pat. No. 9,090,234; Ser. No. 14/082,577, filed Nov. 18, 2013, now U.S. Pat. No. 8,818,042; Ser. No. 14/071,086, filed Nov. 4, 2013, now U.S. Pat. No. 8,886,401; Ser. No. 14/076,524, filed Nov. 11, 2013, now U.S. Pat. No. 9,077,962; Ser. No. 14/052,945, filed Oct. 14, 2013, now U.S. Pat. No. 9,707,896; Ser. No. 14/046,174, filed Oct. 4, 2013, now U.S. Pat. No. 9,723,272; Ser. No. 14/016,790, filed Oct. 3, 2013, now U.S. Pat. No. 9,761,142; Ser. No. 14/036,723, filed Sep. 25, 2013, now U.S. Pat. No. 9,446,713; Ser. No. 14/016,790, filed Sep. 3, 2013, now U.S. Pat. No. 9,761,142; Ser. No. 14/001,272, filed Aug. 23, 2013, now U.S. Pat. No. 9,233,641; Ser. No. 13/970,868, filed Aug. 20, 2013, now U.S. Pat. No. 9,365,162; Ser. No. 13/964,134, filed Aug. 12, 2013, now U.S. Pat. No. 9,340,227; Ser. No. 13/942,758, filed Jul. 16, 2013, and published on Jan. 23, 2014 as U.S. Patent Publication No. US-2014-0025240; Ser. No. 13/942,753, filed Jul. 16, 2013, and published Jan. 30, 2014 as U.S. Patent Publication No. US-2014-0028852; Ser. No. 13/927,680, filed Jun. 26, 2013, and published Jan. 2, 2014 as U.S. Patent Publication No. US-204-00015907; Ser. No. 13/916,051, filed Jun. 12, 2013, now U.S. Pat. No. 9,077,098; Ser. No. 13/894,870, filed May 15, 2013, now U.S. Pat. No. 10,089,537; Ser. No. 13/887,724, filed May 6, 2013, now U.S. Pat. No. 9,670,895; Ser. No. 13/852,190, filed Mar. 28, 2013, and published Aug. 29, 2013 as U.S. Patent Publication No. US-2013-0222593; Ser. No. 13/851,378, filed Mar. 27, 2013, now U.S. Pat. No. 9,319,637; Ser. No. 13/848,796, filed Mar. 22, 2012, and published Oct. 24, 2013 as U.S. Patent Publication No. US-2013-0278769; Ser. No. 13/847,815, filed Mar. 20, 2013, and published Oct. 31, 2013 as U.S. Patent Publication No. US-2013-0286193; Ser. No. 13/800,697, filed Mar. 13, 2013, now U.S. Pat. No. 10,182,228; Ser. No. 13/785,099, filed Mar. 5, 2013, now U.S. Pat. No. 9,565,342; Ser. No. 13/779,881, filed Feb. 28, 2013, now U.S. Pat. No. 8,694,224; Ser. No. 13/774,317, filed Feb. 22, 2013, now U.S. Pat. No. 9,269,263; Ser. No. 13/774,315, filed Feb. 22, 2013, and published Aug. 22, 2013 as U.S. Patent Publication No. US-2013-0215271; Ser. No. 13/681,963, filed Nov. 20, 2012, now U.S. Pat. No. 9,264,673; Ser. No. 13/660,306, filed Oct. 25, 2012, now U.S. Pat. No. 9,143,898; Ser. No. 13/653,577, filed Oct. 17, 2012, now U.S. Pat. No. 9,174,574; and/or Ser. No. 13/534,657, filed Jun. 27, 2012, and published Jan. 3, 2013 as U.S. Patent Publication No. US-2013-0002873, and/or U.S. provisional applications, Ser. No. 62/018,868, filed Jun. 30, 2014; Ser. No. 62/018,867, filed Jun. 30, 2014; Ser. No. 62/010,597, filed Jun. 11, 2014; Ser. No. 62/010,596, filed Jun. 11, 2014; Ser. No. 62/007,542, filed Jun. 4, 2014; Ser. No. 62/006,391, filed Jun. 2, 2014; Ser. No. 62/003,734, filed May 28, 2014; Ser. No. 62/001,796, filed May 22, 2014; Ser. No. 62/001,796, filed May 22, 2014; Ser. No. 61/993,736, filed May 15, 2014; Ser. 61/991,810, filed May 12, 2014; Ser. No. 61/991,809, filed May 12, 2014; Ser. No. 61/990,927, filed May 9, 2014; Ser. No. 61/989,652, filed May 7, 2014; Ser. No. 61/981,938, filed Apr. 21, 2014; Ser. No. 61/977,941, filed Apr. 10, 2014; Ser. No. 61/977,940. filed Apr. 10, 2014; Ser. No. 61/977,929, filed Apr. 10, 2014; Ser. No. 61/973,922, filed Apr. 2, 2014; Ser. No. 61/972,708, filed Mar. 31, 2014; Ser. No. 61/972,707, filed Mar. 31, 2014; Ser. No. 61/969,474, filed Mar. 24, 2014; Ser. No. 61/955,831, filed Mar. 20, 2014; Ser. No. 61/953,970, filed Mar. 17, 2014; Ser. No. 61/952,335, filed Mar. 13, 2014; Ser. No. 61/952,334, filed Mar. 13, 2014; Ser. No. 61/950,261, filed Mar. 10, 2014; Ser. No. 61/950,261, filed Mar. 10, 2014; Ser. No. 61/947,638, filed Mar. 4, 2014; Ser. No. 61/947,053, filed Mar. 3, 2014; Ser. No. 61/941,568, filed Feb. 19, 2014; Ser. No. 61/935,485, filed Feb. 4, 2014; Ser. No. 61/935,056, filed Feb. 3, 2014; Ser. No. 61/935,055, filed Feb. 3, 2014; Ser. No. 61/919,129, filed Dec. 20, 2013; Ser. No. 61/919,130, filed Dec. 20, 2013; Ser. No. 61/919,131, filed Dec. 20, 2013; Ser. No. 61/919,147, filed Dec. 20, 2013; Ser. No. 61/919,133, filed Dec. 20, 2013; Ser. No. 61/918,290, filed Dec. 19, 2013; Ser. No. 61/915,218, filed Dec. 12, 2013; Ser. No. 61/912,146, filed Dec. 5, 2013; Ser. No. 61/911,666, filed Dec. 4, 2013; Ser. No. 61/905,461, filed Nov. 18, 2013; Ser. No. 61/905,462, filed Nov. 18, 2013; Ser. No. 61/901,127, filed Nov. 7, 2013; Ser. No. 61/895,610, filed Oct. 25, 2013; Ser. No. 61/879,837, filed Sep. 19, 2013; Ser. No. 61/875,351, filed Sep. 9, 2013; Ser. No. 61/869,195, filed. Aug. 23, 2013; Ser. No. 61/864,836, filed Aug. 12, 2013; Ser. No. 61/864,838, filed Aug. 12, 2013 and/or Ser. No. 61/844,173, filed Jul. 9, 2013; which are all hereby incorporated herein by reference in their entireties. The system may communicate with other communication systems via any suitable means, such as by utilizing aspects of the systems described in International Publication Nos. WO/2010/144900; WO 2013/043661 and/or WO 2013/081985, and/or U.S. patent application Ser. No. 13/202,005, filed Aug. 17, 2011, now U.S. Pat. No. 9,126,525, which are hereby incorporated herein by reference in their entireties.
The imaging device and control and image processor and any associated illumination source, if applicable, may comprise any suitable components, and may utilize aspects of the cameras and vision systems described in U.S. Pat. Nos. 5,550,677; 5,877,897; 6,498,620; 5,670,935; 5,796,094; 6,396,397; 6,806,452; 6,690,268; 7,005,974; 7,937,667; 7,123,168; 7,004,606; 6,946,978; 7,038,577; 6,353,392; 6,320,176; 6,313,454; and/or 6,824,281, and/or International Publication Nos. WO 2010/099416; WO 2011/028686; and/or WO 2013/016409, and/or U.S. Pat. Publication No. US 2010-0020170, and/or U.S. patent application Ser. No. 13/534,657, filed Jun. 27, 2012, and published Jan. 3, 2013 as U.S. Patent Publication No. US-2013-0002873, which are all hereby incorporated herein by reference in their entireties. The camera or cameras may comprise any suitable cameras or imaging sensors or camera modules, and may utilize aspects of the cameras or sensors described in U.S. Publication No. US-2009-0244361 and/or U.S. patent application Ser. No. 13/260,400, filed Sep. 26, 2011, now U.S. Pat. No. 8,542,451, and/or U.S. Pat. Nos. 7,965,336 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties. The imaging array sensor may comprise any suitable sensor, and may utilize various imaging sensors or imaging array sensors or cameras or the like, such as a CMOS imaging array sensor, a CCD sensor or other sensors or the like, such as the types described in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,715,093; 5,877,897; 6,922,292; 6,757,109; 6,717,610; 6,590,719; 6,201,642; 6,498,620; 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 6,806,452; 6,396,397; 6,822,563; 6,946,978; 7,339,149; 7,038,577; 7,004,606; 7,720,580; and/or 7,965,336, and/or International Publication Nos. WO/2009/036176 and/or WO/2009/046268, which are all hereby incorporated herein by reference in their entireties.
The camera module and circuit chip or board and imaging sensor may be implemented and operated in connection with various vehicular vision-based systems, and/or may be operable utilizing the principles of such other vehicular systems, such as a vehicle headlamp control system, such as the type disclosed in U.S. Pat. Nos. 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 7,004,606; 7,339,149; and/or 7,526,103, which are all hereby incorporated herein by reference in their entireties, a rain sensor, such as the types disclosed in commonly assigned U.S. Pat. Nos. 6,353,392; 6,313,454; 6,320,176; and/or 7,480,149, which are hereby incorporated herein by reference in their entireties, a vehicle vision system, such as a forwardly, sidewardly or rearwardly directed vehicle vision system utilizing principles disclosed in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,877,897; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; and/or 7,859,565, which are all hereby incorporated herein by reference in their entireties, a trailer hitching aid or tow check system, such as the type disclosed in U.S. Pat. No. 7,005,974, which is hereby incorporated herein by reference in its entirety, a reverse or sideward imaging system, such as for a lane change assistance system or lane departure warning system or for a blind spot or object detection system, such as imaging or detection systems of the types disclosed in U.S. Pat. Nos. 7,881,496; 7,720,580; 7,038,577; 5,929,786 and/or 5,786,772, and/or U.S. provisional applications, Ser. No. 60/628,709, filed Nov. 17, 2004; Ser. No. 60/614,644, filed Sep. 30, 2004; Ser. No. 60/618,686, filed Oct. 14, 2004; Ser. No. 60/638,687, filed Dec. 23, 2004, which are hereby incorporated herein by reference in their entireties, a video device for internal cabin surveillance and/or video telephone function, such as disclosed in U.S. Pat. Nos. 5,760,962; 5,877,897; 6,690,268; and/or 7,370,983, and/or U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties, a traffic sign recognition system, a system for determining a distance to a leading or trailing vehicle or object, such as a system utilizing the principles disclosed in U.S. Pat. Nos. 6,396,397 and/or 7,123,168, which are hereby incorporated herein by reference in their entireties, and/or the like.
Optionally, the circuit board or chip may include circuitry for the imaging array sensor and or other electronic accessories or features, such as by utilizing compass-on-a-chip or EC driver-on-a-chip technology and aspects such as described in U.S. Pat. No. 7,255,451 and/or U.S. Pat. No. 7,480,149; and/or U.S. Publication No. US-2006-0061008 and/or U.S. patent application Ser. No. 12/578,732, filed Oct. 14, 2009, now U.S. Pat. No. 9,487,144, which are hereby incorporated herein by reference in their entireties.
Optionally, the vision system may include a display for displaying images captured by one or more of the imaging sensors for viewing by the driver of the vehicle while the driver is normally operating the vehicle. Optionally, for example, the vision system may include a video display device disposed at or in the interior rearview mirror assembly of the vehicle, such as by utilizing aspects of the video mirror display systems described in U.S. Pat. No. 6,690,268 and/or U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, now U.S. Pat. No. 9,264,672, which are hereby incorporated herein by reference in their entireties. The video mirror display may comprise any suitable devices and systems and optionally may utilize aspects of the compass display systems described in U.S. Pat. Nos. 7,370,983; 7,329,013; 7,308,341; 7,289,037; 7,249,860; 7,004,593; 4,546,551; 5,699,044; 4,953,305; 5,576,687; 5,632,092; 5,677,851; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,508; 6,222,460; 6,513,252; and/or 6,642,851, and/or European patent application, published Oct. 11, 2000 under Publication No. EP 0 1043566, and/or U.S. Publication No. US-2006-0061008, which are all hereby incorporated herein by reference in their entireties. Optionally, the video mirror display screen or device may be operable to display images captured by a rearward viewing camera of the vehicle during a reversing maneuver of the vehicle (such as responsive to the vehicle gear actuator being placed in a reverse gear position or the like) to assist the driver in backing up the vehicle, and optionally may be operable to display the compass heading or directional heading character or icon when the vehicle is not undertaking a reversing maneuver, such as when the vehicle is being driven in a forward direction along a road (such as by utilizing aspects of the display system described in International Publication No. WO 2012/051500, which is hereby incorporated herein by reference in its entirety).
Optionally, the vision system (utilizing the forward facing camera and a rearward facing camera and other cameras disposed at the vehicle with exterior fields of view) may be part of or may provide a display of a top-down view or birds-eye view system of the vehicle or a surround view at the vehicle, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2010/099416; WO 2011/028686; WO 2012/075250; WO 2013/019795; WO 2012/075250; WO 2012/145822; WO 2013/081985; WO 2013/086249; and/or WO 2013/109869, and/or U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, now U.S. Pat. No. 9,264,672, which are hereby incorporated herein by reference in their entireties 7,255,451 and/or U.S. Pat. No. 7,480,149; and/or U.S. Publication No. US-2006-0061008 and/or U.S. patent application Ser. No. 12/578,732, filed Oct. 14, 2009, now U.S. Pat. No. 9,487,144, which are hereby incorporated herein by reference in their entireties.
Optionally, a video mirror display may be disposed rearward of and behind the reflective element assembly and may comprise a display such as the types disclosed in U.S. Pat. Nos. 5,530,240; 6,329,925; 7,855,755; 7,626,749; 7,581,859; 7,446,650; 7,370,983; 7,338,177; 7,274,501; 7,255,451; 7,195,381; 7,184,190; 5,668,663; 5,724,187 and/or 6,690,268, and/or in U.S. patent application Ser. No. 12/091,525, filed Apr. 25, 2008, now U.S. Pat. No. 7,855,755; Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No. US-2006-0061008; and/or Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. US-2006-0050018, which are all hereby incorporated herein by reference in their entireties. The display is viewable through the reflective element when the display is activated to display information. The display element may be any type of display element, such as a vacuum fluorescent (VF) display element, a light emitting diode (LED) display element, such as an organic light emitting diode (OLED) or an inorganic light emitting diode, an electroluminescent (EL) display element, a liquid crystal display (LCD) element, a video screen display element or backlit thin film transistor (TFT) display element or the like, and may be operable to display various information (as discrete characters, icons or the like, or in a multi-pixel manner) to the driver of the vehicle, such as passenger side inflatable restraint (PSIR) information, tire pressure status, and/or the like. The mirror assembly and/or display may utilize aspects described in U.S. Pat. Nos. 7,184,190; 7,255,451; 7,446,924 and/or 7,338,177, which are all hereby incorporated herein by reference in their entireties. The thicknesses and materials of the coatings on the substrates of the reflective element may be selected to provide a desired color or tint to the mirror reflective element, such as a blue colored reflector, such as is known in the art and such as described in U.S. Pat. Nos. 5,910,854; 6,420,036; and/or 7,274,501, which are hereby incorporated herein by reference in their entireties.
Optionally, the display or displays and any associated user inputs may be associated with various accessories or systems, such as, for example, a tire pressure monitoring system or a passenger air bag status or a garage door opening system or a telematics system or any other accessory or system of the mirror assembly or of the vehicle or of an accessory module or console of the vehicle, such as an accessory module or console of the types described in U.S. Pat. Nos. 7,289,037; 6,877,888; 6,824,281; 6,690,268; 6,672,744; 6,386,742; and/or 6,124,886, and/or U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties.
Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.
The present application claims the filing benefits of U.S. provisional applications, Ser. No. 61/919,138, filed Dec. 20, 2013, and Ser. No. 61/864,835, filed Aug. 12, 2013, which are hereby incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4987357 | Masaki | Jan 1991 | A |
5001558 | Burley et al. | Mar 1991 | A |
5003288 | Wilhelm | Mar 1991 | A |
5012082 | Watanabe | Apr 1991 | A |
5016977 | Baude et al. | May 1991 | A |
5027001 | Torbert | Jun 1991 | A |
5027200 | Petrossian et al. | Jun 1991 | A |
5059877 | Teder | Oct 1991 | A |
5086253 | Lawler | Feb 1992 | A |
5096287 | Kakinami et al. | Mar 1992 | A |
5097362 | Lynas | Mar 1992 | A |
5121200 | Choi | Jun 1992 | A |
5130709 | Toyama et al. | Jul 1992 | A |
5170374 | Shimohigashi et al. | Dec 1992 | A |
5172235 | Wilm et al. | Dec 1992 | A |
5177685 | Davis et al. | Jan 1993 | A |
5182502 | Slotkowski et al. | Jan 1993 | A |
5184956 | Langlais et al. | Feb 1993 | A |
5189561 | Hong | Feb 1993 | A |
5193000 | Lipton et al. | Mar 1993 | A |
5204778 | Bechtel | Apr 1993 | A |
5208701 | Maeda | May 1993 | A |
5245422 | Borcherts et al. | Sep 1993 | A |
5276389 | Levers | Jan 1994 | A |
5285060 | Larson et al. | Feb 1994 | A |
5289182 | Brillard et al. | Feb 1994 | A |
5289321 | Secor | Feb 1994 | A |
5307136 | Saneyoshi | Apr 1994 | A |
5309137 | Kajiwara | May 1994 | A |
5313072 | Vachss | May 1994 | A |
5325096 | Pakett | Jun 1994 | A |
5325386 | Jewell et al. | Jun 1994 | A |
5329206 | Slotkowski et al. | Jul 1994 | A |
5331312 | Kudoh | Jul 1994 | A |
5336980 | Levers | Aug 1994 | A |
5341437 | Nakayama | Aug 1994 | A |
5351044 | Mathur et al. | Sep 1994 | A |
5355118 | Fukuhara | Oct 1994 | A |
5374852 | Parkes | Dec 1994 | A |
5386285 | Asayama | Jan 1995 | A |
5394333 | Kao | Feb 1995 | A |
5406395 | Wilson et al. | Apr 1995 | A |
5410346 | Saneyoshi et al. | Apr 1995 | A |
5414257 | Stanton | May 1995 | A |
5414461 | Kishi et al. | May 1995 | A |
5416313 | Larson et al. | May 1995 | A |
5416318 | Hegyi | May 1995 | A |
5416478 | Morinaga | May 1995 | A |
5424952 | Asayama | Jun 1995 | A |
5426294 | Kobayashi et al. | Jun 1995 | A |
5430431 | Nelson | Jul 1995 | A |
5434407 | Bauer et al. | Jul 1995 | A |
5440428 | Hegg et al. | Aug 1995 | A |
5444478 | Lelong et al. | Aug 1995 | A |
5451822 | Bechtel et al. | Sep 1995 | A |
5461357 | Yoshioka et al. | Oct 1995 | A |
5469298 | Suman et al. | Nov 1995 | A |
5471515 | Fossum et al. | Nov 1995 | A |
5475494 | Nishida et al. | Dec 1995 | A |
5498866 | Bendicks et al. | Mar 1996 | A |
5500766 | Stonecypher | Mar 1996 | A |
5510983 | Iino | Apr 1996 | A |
5515448 | Nishitani | May 1996 | A |
5521633 | Nakajima et al. | May 1996 | A |
5528698 | Kamei et al. | Jun 1996 | A |
5529138 | Shaw et al. | Jun 1996 | A |
5530240 | Larson et al. | Jun 1996 | A |
5530420 | Tsuchiya et al. | Jun 1996 | A |
5535314 | Alves et al. | Jul 1996 | A |
5537003 | Bechtel et al. | Jul 1996 | A |
5539397 | Asanuma et al. | Jul 1996 | A |
5541590 | Nishio | Jul 1996 | A |
5550677 | Schofield et al. | Aug 1996 | A |
5555555 | Sato et al. | Sep 1996 | A |
5568027 | Teder | Oct 1996 | A |
5574443 | Hsieh | Nov 1996 | A |
5581464 | Woll et al. | Dec 1996 | A |
5614788 | Mullins | Mar 1997 | A |
5634709 | Iwama | Jun 1997 | A |
5642299 | Hardin et al. | Jun 1997 | A |
5648835 | Uzawa | Jul 1997 | A |
5650944 | Kise | Jul 1997 | A |
5660454 | Mori et al. | Aug 1997 | A |
5661303 | Teder | Aug 1997 | A |
5666028 | Bechtel et al. | Sep 1997 | A |
5670935 | Schofield et al. | Sep 1997 | A |
5677851 | Kingdon et al. | Oct 1997 | A |
5699044 | Van Lente et al. | Dec 1997 | A |
5724316 | Brunts | Mar 1998 | A |
5732379 | Eckert et al. | Mar 1998 | A |
5737226 | Olson et al. | Apr 1998 | A |
5760828 | Cortes | Jun 1998 | A |
5760931 | Saburi et al. | Jun 1998 | A |
5761094 | Olson et al. | Jun 1998 | A |
5765116 | Wilson-Jones et al. | Jun 1998 | A |
5765118 | Fukatani | Jun 1998 | A |
5781437 | Wiemer et al. | Jul 1998 | A |
5786772 | Schofield et al. | Jul 1998 | A |
5790403 | Nakayama | Aug 1998 | A |
5790973 | Blaker et al. | Aug 1998 | A |
5793308 | Rosinski et al. | Aug 1998 | A |
5793420 | Schmidt | Aug 1998 | A |
5796094 | Schofield et al. | Aug 1998 | A |
5837994 | Stam et al. | Nov 1998 | A |
5844505 | Van Ryzin | Dec 1998 | A |
5844682 | Kiyomoto et al. | Dec 1998 | A |
5845000 | Breed et al. | Dec 1998 | A |
5848802 | Breed et al. | Dec 1998 | A |
5850176 | Kinoshita et al. | Dec 1998 | A |
5850254 | Takano et al. | Dec 1998 | A |
5867591 | Onda | Feb 1999 | A |
5877707 | Kowalick | Mar 1999 | A |
5877897 | Schofield et al. | Mar 1999 | A |
5878357 | Sivashankar et al. | Mar 1999 | A |
5878370 | Olson | Mar 1999 | A |
5880777 | Savoye | Mar 1999 | A |
5883739 | Ashihara et al. | Mar 1999 | A |
5884212 | Lion | Mar 1999 | A |
5890021 | Onoda | Mar 1999 | A |
5896085 | Mori et al. | Apr 1999 | A |
5899956 | Chan | May 1999 | A |
5915800 | Hiwatashi et al. | Jun 1999 | A |
5923027 | Stam et al. | Jul 1999 | A |
5924212 | Domanski | Jul 1999 | A |
5949331 | Schofield et al. | Sep 1999 | A |
5959555 | Furuta | Sep 1999 | A |
5963247 | Banitt | Oct 1999 | A |
5990469 | Bechtel et al. | Nov 1999 | A |
5990649 | Nagao et al. | Nov 1999 | A |
6020704 | Buschur | Feb 2000 | A |
6049171 | Stam et al. | Apr 2000 | A |
6066933 | Ponziana | May 2000 | A |
6084519 | Coulling et al. | Jul 2000 | A |
6097024 | Stam et al. | Aug 2000 | A |
6100799 | Fenk | Aug 2000 | A |
6144022 | Tenenbaum et al. | Nov 2000 | A |
6175300 | Kendrick | Jan 2001 | B1 |
6201642 | Bos et al. | Mar 2001 | B1 |
6223114 | Boros et al. | Apr 2001 | B1 |
6266082 | Yonezawa et al. | Jul 2001 | B1 |
6266442 | Laumeyer et al. | Jul 2001 | B1 |
6285393 | Shimoura et al. | Sep 2001 | B1 |
6294989 | Schofield et al. | Sep 2001 | B1 |
6297781 | Turnbull et al. | Oct 2001 | B1 |
6310611 | Caldwell | Oct 2001 | B1 |
6317057 | Lee | Nov 2001 | B1 |
6320282 | Caldwell | Nov 2001 | B1 |
6333759 | Mazzilli | Dec 2001 | B1 |
6353392 | Schofield et al. | Mar 2002 | B1 |
6370329 | Teuchert | Apr 2002 | B1 |
6392315 | Jones et al. | May 2002 | B1 |
6396397 | Bos et al. | May 2002 | B1 |
6411204 | Bloomfield et al. | Jun 2002 | B1 |
6424273 | Gutta et al. | Jul 2002 | B1 |
6430303 | Naoi et al. | Aug 2002 | B1 |
6442465 | Breed et al. | Aug 2002 | B2 |
6477464 | McCarthy et al. | Nov 2002 | B2 |
6497503 | Dassanayake et al. | Dec 2002 | B1 |
6498620 | Schofield et al. | Dec 2002 | B2 |
6523976 | Turnbull et al. | Feb 2003 | B1 |
6534884 | Marcus et al. | Mar 2003 | B2 |
6535617 | Hannigan | Mar 2003 | B1 |
6539306 | Turnbull | Mar 2003 | B2 |
6553130 | Lemelson et al. | Apr 2003 | B1 |
6593960 | Sugimoto et al. | Jul 2003 | B1 |
6594583 | Ogura et al. | Jul 2003 | B2 |
6611610 | Stam et al. | Aug 2003 | B1 |
6636258 | Strumolo | Oct 2003 | B2 |
6672731 | Schnell et al. | Jan 2004 | B2 |
6690268 | Schofield et al. | Feb 2004 | B2 |
6704621 | Stein et al. | Mar 2004 | B1 |
6711474 | Treyz et al. | Mar 2004 | B1 |
6735506 | Breed et al. | May 2004 | B2 |
6744353 | Sjönell | Jun 2004 | B2 |
6747766 | Kamisuwa et al. | Jun 2004 | B1 |
6795221 | Urey | Sep 2004 | B1 |
6806452 | Bos et al. | Oct 2004 | B2 |
6819231 | Berberich et al. | Nov 2004 | B2 |
6823241 | Shirato et al. | Nov 2004 | B2 |
6824281 | Schofield et al. | Nov 2004 | B2 |
6850156 | Bloomfield et al. | Feb 2005 | B2 |
6889161 | Winner et al. | May 2005 | B2 |
6903670 | Lee | Jun 2005 | B1 |
6909753 | Meehan et al. | Jun 2005 | B2 |
6946978 | Schofield | Sep 2005 | B2 |
6975775 | Rykowski et al. | Dec 2005 | B2 |
6989736 | Berberich et al. | Jan 2006 | B2 |
7004606 | Schofield | Feb 2006 | B2 |
7038577 | Pawlicki et al. | May 2006 | B2 |
7062300 | Kim | Jun 2006 | B1 |
7065432 | Moisel et al. | Jun 2006 | B2 |
7079017 | Lang et al. | Jul 2006 | B2 |
7085637 | Breed et al. | Aug 2006 | B2 |
7092548 | Laumeyer et al. | Aug 2006 | B2 |
7111968 | Bauer et al. | Sep 2006 | B2 |
7116246 | Winter et al. | Oct 2006 | B2 |
7123168 | Schofield | Oct 2006 | B2 |
7136753 | Samukawa et al. | Nov 2006 | B2 |
7145519 | Takahashi et al. | Dec 2006 | B2 |
7149613 | Stam et al. | Dec 2006 | B2 |
7161616 | Okamoto et al. | Jan 2007 | B1 |
7195381 | Lynam et al. | Mar 2007 | B2 |
7202776 | Breed | Apr 2007 | B2 |
7227611 | Hull et al. | Jun 2007 | B2 |
7304670 | Hussey | Dec 2007 | B1 |
7365769 | Mager | Apr 2008 | B1 |
7375803 | Bamji | May 2008 | B1 |
7425988 | Okada et al. | Sep 2008 | B2 |
7460951 | Altan | Dec 2008 | B2 |
7490007 | Taylor et al. | Feb 2009 | B2 |
7526103 | Schofield et al. | Apr 2009 | B2 |
7592928 | Chinomi et al. | Sep 2009 | B2 |
7639149 | Katoh | Dec 2009 | B2 |
7667739 | Hsuan | Feb 2010 | B2 |
7681960 | Wanke et al. | Mar 2010 | B2 |
7720580 | Higgins-Luthman | May 2010 | B2 |
7724962 | Zhu et al. | May 2010 | B2 |
7855755 | Weller et al. | Dec 2010 | B2 |
7881496 | Camilleri et al. | Feb 2011 | B2 |
7952490 | Fechner et al. | May 2011 | B2 |
8013780 | Lynam et al. | Sep 2011 | B2 |
8027029 | Lu et al. | Sep 2011 | B2 |
8446470 | Lu et al. | May 2013 | B2 |
8849495 | Chundrlik, Jr. et al. | Sep 2014 | B2 |
20020015153 | Downs | Feb 2002 | A1 |
20020113873 | Williams | Aug 2002 | A1 |
20020196472 | Enomoto | Dec 2002 | A1 |
20030107664 | Suzuki | Jun 2003 | A1 |
20030137586 | Lewellen | Jul 2003 | A1 |
20030222982 | Hamdan et al. | Dec 2003 | A1 |
20040051796 | Kelly | Mar 2004 | A1 |
20040114381 | Salmeen et al. | Jun 2004 | A1 |
20040252208 | Lee | Dec 2004 | A1 |
20050140631 | Oh | Jun 2005 | A1 |
20060018511 | Stam et al. | Jan 2006 | A1 |
20060018512 | Stam et al. | Jan 2006 | A1 |
20060028492 | Yamaguchi | Feb 2006 | A1 |
20060091813 | Stam et al. | May 2006 | A1 |
20060103727 | Tseng | May 2006 | A1 |
20060153450 | Woodfill et al. | Jul 2006 | A1 |
20060164221 | Jensen | Jul 2006 | A1 |
20060188018 | Lin | Aug 2006 | A1 |
20060221100 | Kao | Oct 2006 | A1 |
20060228102 | Yang | Oct 2006 | A1 |
20060244844 | Oizumi | Nov 2006 | A1 |
20060250501 | Wildmann et al. | Nov 2006 | A1 |
20060262210 | Smith | Nov 2006 | A1 |
20060290479 | Akatsuka et al. | Dec 2006 | A1 |
20070041062 | Chinnaveerappan | Feb 2007 | A1 |
20070071343 | Zipnick | Mar 2007 | A1 |
20070104476 | Yasutomi et al. | May 2007 | A1 |
20070201738 | Toda et al. | Aug 2007 | A1 |
20080068328 | Jou | Mar 2008 | A1 |
20080118179 | Jeong | May 2008 | A1 |
20080151080 | Osaka | Jun 2008 | A1 |
20080204600 | Xu | Aug 2008 | A1 |
20080231710 | Asari et al. | Sep 2008 | A1 |
20080239110 | Hara | Oct 2008 | A1 |
20080266329 | Park | Oct 2008 | A1 |
20090073327 | Watanabe | Mar 2009 | A1 |
20090093938 | Isaji et al. | Apr 2009 | A1 |
20090113509 | Tseng et al. | Apr 2009 | A1 |
20090177347 | Breuer et al. | Jul 2009 | A1 |
20090201320 | Damberg | Aug 2009 | A1 |
20090207274 | Park et al. | Aug 2009 | A1 |
20090243824 | Peterson et al. | Oct 2009 | A1 |
20090243986 | Jung | Oct 2009 | A1 |
20090244361 | Gebauer et al. | Oct 2009 | A1 |
20090265069 | Desbrunes | Oct 2009 | A1 |
20100020170 | Higgins-Luthman et al. | Jan 2010 | A1 |
20100073515 | Conard | Mar 2010 | A1 |
20100228437 | Hanzawa et al. | Sep 2010 | A1 |
20100238355 | Blume | Sep 2010 | A1 |
20100260432 | Shimizu | Oct 2010 | A1 |
20100265281 | Furukawa | Oct 2010 | A1 |
20100271512 | Garten | Oct 2010 | A1 |
20110019031 | Tanigawa | Jan 2011 | A1 |
20110032394 | Peng | Feb 2011 | A1 |
20120002113 | Nishio et al. | Jan 2012 | A1 |
20120026402 | Zhong | Feb 2012 | A1 |
20120044066 | Mauderer et al. | Feb 2012 | A1 |
20120062743 | Lynam et al. | Mar 2012 | A1 |
20120154655 | Compton | Jun 2012 | A1 |
20120169936 | Persson | Jul 2012 | A1 |
20120182332 | Liu | Jul 2012 | A1 |
20120188403 | Gomita | Jul 2012 | A1 |
20120201454 | Sato | Aug 2012 | A1 |
20120212652 | Hsu | Aug 2012 | A1 |
20120218412 | Dellantoni et al. | Aug 2012 | A1 |
20120262340 | Hassan et al. | Oct 2012 | A1 |
20120293660 | Murakami | Nov 2012 | A1 |
20130120478 | Ishihara | May 2013 | A1 |
20130124052 | Hahne | May 2013 | A1 |
20130129150 | Saito | May 2013 | A1 |
20130131918 | Hahne | May 2013 | A1 |
20130229498 | Yano | Sep 2013 | A1 |
20130321672 | Silverstein | Dec 2013 | A1 |
20130321679 | Lim | Dec 2013 | A1 |
20130322746 | Cote | Dec 2013 | A1 |
20130335601 | Shiota | Dec 2013 | A1 |
20140067206 | Pflug | Mar 2014 | A1 |
20140156157 | Johnson et al. | Jun 2014 | A1 |
20140222280 | Salomonsson | Aug 2014 | A1 |
20140307095 | Wierich | Oct 2014 | A1 |
20140313339 | Diessner et al. | Oct 2014 | A1 |
20140349220 | Moon | Nov 2014 | A1 |
20140368654 | Wierich | Dec 2014 | A1 |
20140379233 | Chundrlik, Jr. et al. | Dec 2014 | A1 |
20150002689 | Weissman | Jan 2015 | A1 |
20150312499 | Panicacci | Oct 2015 | A1 |
20160137126 | Fursich | May 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20150042806 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
61919138 | Dec 2013 | US | |
61864835 | Aug 2013 | US |