Vehicle vision system with reduction of temporal noise in images

Information

  • Patent Grant
  • 10326969
  • Patent Number
    10,326,969
  • Date Filed
    Monday, August 11, 2014
    10 years ago
  • Date Issued
    Tuesday, June 18, 2019
    5 years ago
Abstract
A vision system of a vehicle includes a camera disposed at a vehicle and having a field of view exterior of the vehicle. The camera includes an imaging array having rows and columns of photosensing elements that may include red light sensing elements, green light sensing elements and blue light sensing elements. An image processor is operable to process image data captured by the camera. A display is disposed in the vehicle and viewable by a driver of the vehicle and is operable to display images derived from captured image data. Responsive to image processing of captured image data by the image processor, temporal noise in images derived from captured image data is reduced by determining a change in luminance of photosensing elements from a first frame of captured image data to a second frame of captured image data.
Description
FIELD OF THE INVENTION

The present invention relates generally to a vehicle vision system for a vehicle and, more particularly, to a vehicle vision system that utilizes one or more cameras at a vehicle.


BACKGROUND OF THE INVENTION

Use of imaging sensors in vehicle imaging systems is common and known. Examples of such known systems are described in U.S. Pat. Nos. 5,949,331; 5,670,935 and/or 5,550,677, which are hereby incorporated herein by reference in their entireties.


SUMMARY OF THE INVENTION

The present invention provides a vision system or imaging system for a vehicle that utilizes one or more cameras (preferably one or more CMOS cameras) to capture image data representative of images exterior of the vehicle, and provides an algorithm that is applied to image data captured an imaging array of photosensing pixels of the camera, with the algorithm determining and reducing temporal noise in the captured image data.


According to an aspect of the present invention, the system may reduce the temporal noise by making a pixel-wise or photosensor element-wise comparison of consecutive frames of captured image data. If a pixel illumination value or luminance value (such as the luminance value of individual pixels from one frame to a subsequent frame or such as the luminance value of groups of pixels, such as a group comprising a red pixel, a green pixel and a blue pixel, from one frame to a subsequent frame) jumps or spikes (in the range of a noise spike), the jump is dampened by not fully adopting its change (such as by weighting the values of those pixels with pixel values of those pixels from the other frame or frames of captured image data). If there is a substantial increase or spike in luminance value (for any given individual pixel or group of pixels), the increase may be indicative of a real change in luminance value at the scene that is being imaged, so the adoption ratio gets increased to weight the jumped or spiked value accordingly. Thus, noise changes may get filtered out or smoothed while substantial changes (not indicative of noise) will not be filtered out or ignored.


According to another aspect of the present invention, the system may address or reduce fix pattern noise (FPN) caused by dark Signal non uniformity (DSNU), which appears column wise in the captured image data, and may comprise a steady offset in luminance. By column-wise comparing the green photosensing elements (since green bears illuminance) of a column with a neighboring column and averaging the luminance differences, the base offset of that column can be found and corrected by subtracting it from the values of all of the photosensing elements in that column.


These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a plan view of a vehicle with a vision system that incorporates cameras in accordance with the present invention;



FIG. 2 is a noisy color image or frame of a night scene captured by an automotive vehicle front camera while the vehicle is in motion;



FIG. 3 is a temporal noise reduced color image as a result of an algorithm in accordance with the present invention;



FIG. 4 is a FPNR color image shown in gray tones as a result of the FPNR algorithm in accordance with the invention as described (in the second section) above, having FIG. 2 as input source;



FIG. 5 is a FPNR and TNR color image shown in gray tones as a result of combining the TNR algorithm and FPNR algorithm in accordance with the present invention;



FIGS. 6-9 show the operation of the algorithm of the present invention;



FIG. 10 is a graph showing a curve of the luminance;



FIG. 11A is a table of values of an array in accordance with the present invention; and



FIG. 11B is a graph of the array of the present invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

A vehicle vision system and/or driver assist system and/or object detection system and/or alert system operates to capture images exterior of the vehicle and may process the captured image data to display images and to detect objects at or near the vehicle and in the predicted path of the vehicle, such as to assist a driver of the vehicle in maneuvering the vehicle in a rearward direction. The vision system includes an image processor or image processing system that is operable to receive image data from one or more cameras and provide an output to a display device for displaying images representative of the captured image data. Optionally, the vision system may provide a top down or bird's eye or surround view display and may provide a displayed image that is representative of the subject vehicle, and optionally with the displayed image being customized to at least partially correspond to the actual subject vehicle.


Referring now to the drawings and the illustrative embodiments depicted therein, a vehicle 10 includes an imaging system or vision system 12 that includes at least one exterior facing imaging sensor or camera, such as a rearward facing imaging sensor or camera 14a (and the system may optionally include multiple exterior facing imaging sensors or cameras, such as a forwardly facing camera 14b at the front (or at the windshield) of the vehicle, and a sidewardly/rearwardly facing camera 14c, 14d at respective sides of the vehicle), which captures images exterior of the vehicle, with the camera having a lens for focusing images at or onto an imaging array or imaging plane or imager of the camera (FIG. 1). The vision system 12 includes a control or electronic control unit (ECU) or processor 18 that is operable to process image data captured by the cameras and may provide displayed images at a display device 16 for viewing by the driver of the vehicle (although shown in FIG. 1 as being part of or incorporated in or at an interior rearview mirror assembly 20 of the vehicle, the control and/or the display device may be disposed elsewhere at or in the vehicle). The data transfer or signal communication from the camera to the ECU may comprise any suitable data or communication link, such as a vehicle network bus or the like of the equipped vehicle.


There are several methods for reducing pixel noise of images captured by imagers. Most are meant for post shot processing of single shots commodity cameras. These are either executed on image enhancement PC programs or in the commodity camera. Both do not require working fast. When enhancing a real time video data stream images there is typically just the time between two consecutive frames, typically less, for executing a noise reduction measure. Because of this, typical noise reduction methods for post shot processing don't apply for real time video image data stream image enhancing.


There are two basic approaches to noise filtering of images: temporal filtering and spatial filtering. There are filters that do both. Spatial filtering often comes or is based on a blurring effect by averaging a to-be-de-noised pixel with its neighborhood pixels. Spatial-temporal filters combine to exploit the neighborhood pixels time domain and frequency domain. Some are based on wavelet based shrinkage [see, for example, Aleksandra Pi{hacek over ( )}zurica; Vladimir Zlokolica; Wilfried Philips; Noise Reduction in Video Sequences Using Wavelet-Domain and temporal filtering, which is hereby incorporated herein by reference in its entirety].


Known temporal filters either show problems on fast moving objects through the image (due to inherent statistical adaption time constants) or require motion determination. In there, rapidly changing regions become spared from temporal filtering but just filtering a steady background [see, for example, Olgierd Stankiewicz; Antoni Roszak; Adam custom characteruczak; Temporal Noise Shaping, Quantization and Coding Methods in Perceptual Audio Coding A Tutorial Introduction, which is hereby incorporated herein by reference in its entirety]. This method is comparably poor when high motion is within the image scene as such when a vehicle camera is capturing the motion flow during driving.


The present invention provides an algorithm for temporal noise reduction (TNR) lean in memory space and computing time is suggested. It is well implementable on DSPs, GPUs and processor programs, but is limited in FPGA applications due to its required memory access.


Input is the luminance of pixels at the same position. One way to calculate the luminance is L=0.3 R+0.6 G+0.1 B (RGB color room).


There may be memory allocated having the identical size as a full single image coming from a video camera. All images have a certain size in spatial and resolution per pixel dimension.


A first image In (at time step n so one frame later is referred as In−1) coming from the camera may be stored unaltered in that memory which may be called ‘pixel-accumulator’ later on referred as PA.


A consecutive (one time step n so a frame later) image In coming from the camera is compared to the image in the PAn−1 by pixel wise subtracting the new image In from PAn−1 and forming the absolute value of the result afterwards. The resulting difference may be called delta ‘Dn’, see equation (1) below.

Dn=|(PAn−1−In)|  (1)


At times D may be smaller than a certain threshold (off luminance change) Tn. The fraction of the new image In carried over to PAn may be different than when Dn may be higher than Tn. As a preferred embodiment of the present invention, the fraction of In carried over to PAn may be substantially higher when Dn may be higher than Tn as when Dn may be lower than Tn. As a more specific example of the present invention, when Dn<Tn, then the new value PAn may be a blend of about 10 percent of the value of the new camera image In and about 90 percent of the old value of PAn−1 (see equation (2) below), and when Dn>Tn, the new value PAn may be a blend of about 70 percent of the value of the new camera image In and about 30 percent of the old value of PAn−1 (see equation (3) below). The blending is done in the actual image format such as RGB.

PAn=0.9·PAn−1+0.1·In;Dn<Tn  (2)
PAn=0.3·PAn−1+0.7·In;Dn>Tn  (3)


D as intermediate result can be eliminated;

PAn=0.9·PAn−1+0.1·In;|(PAn−1−In)|<Tn  (4)
PAn=0.3·PAn−1+0.7·In;|(PAn−1−In)|>Tn  (5)


The output to the further image processing or display at the time step n will then be the pixel-accumulator itself: PAn. The algorithm above describes a temporal filter. The possibility of using filters of any order or a Kalman filter may be incorporated in the present invention. The dependency of the update factor from the difference between current luminance and PA ensures that a rapid change in luminance becomes dominant faster than changes that are small, such as just noise. Rapid changes in luminance may be caused by light sources or reflections moving through the image (typically mainly caused by the ego motion [of the own or subject or equipped vehicle]). Slow adaption to the new values instead would cause follow marks/feathers especially of bright image parts which cross a dark image region.

PAn=kol·PAn−1+knl·In;Dn<Tn  (6)
PAn=koh·PAn−1+knh·In;Dn>Tn  (7)


Equations (6) and (7) show the general form with its parameters kol (old low), knl (new low), koh (old high) and knh (new high). These parameters and the threshold T may be optimized in any kind of evolutional or hill climbing algorithm. When using other filters or higher order filters, these filter parameters may be optimized in any kind of evolutional or hill climbing algorithm. In all cases, the optimization may run during operation time or offline or is partially preprocessed and partially done during run time.


As another aspect of the present invention, the parameter set may be adaptively changing on different light conditions. This may happen in steps or may be interleaved. Optionally, the threshold T may be dependent to the overall image luminance or to local regions luminance level. Optionally, the algorithm may just run at comparably low light conditions and may be off at bright light condition. Optionally, the algorithm may only effect low light image regions within an image while comparably bright illuminated regions are untouched. Optionally, the algorithm may be a subcontrol of an HDR control.



FIGS. 2 and 3 show how the algorithm according to the present invention achieves to substantially reduce the temporal noise. FIG. 2 is a noisy color image (frame out of a video stream) of a night scene (partially bright, partially dark) shown in gray tones as source image captured by an automotive vehicle front camera while the vehicle is in motion. FIG. 3 is a temporal noise reduced color image shown in gray tones as a result of the algorithm according to the present invention, such as described above.


In the implementation of the present invention as described above, there were two fraction ratios of PAn−1 to In depending on being above or below a single threshold. As a more advanced implementation of the present invention, the multiplier ‘c’ (carry over) as fraction ratio of PAn−1 and (1-c) (accumulate newly) as a fraction ratio of In may be set in a relation of D the and the Signal to Noise Ratio (SNR); cn=R (Dn, SNR), see equation (8) below. While PAn and Dn are calculated pixel-wise, the SNR is determined in general for the whole image.












PA
n

=



c
n

·

PA

n
-
1



+


(

1
-

c
n


)

·

I
n




;








c
n

=

R


(


D
n

,

S





N





R


)







(
8
)






;


D
n

=



(


PA

n
-
1


-

I
n


)








;


S





N





R

=

f


(

ϑ
,
gain

)







(
1
)







The relation may be given by a characteristic field array in the system's memory. An example of such an array is shown in FIGS. 11A and 11B.


The characteristic field array's entries may be entered according to known imager parameters and a measurement of the noise level dependent on the temperature.


During run time, in case the imager provides a proper temperature signal, the Signal to Noise Ratio (SNR) is directly ascertainable out of the imager's parameter data and the current gain level, if not there may be optional thermal models implemented to estimate the imager's temperature. The thermal models may be based on start-up temperature (assumed similar to a known temperature of a near device), run time, outside temperature, current consumption and heat resistance of the camera.


Optionally, the algorithm may run at comparably low light conditions and may be off during bright light conditions. Optionally, the algorithm may only effect low light image regions within an image while comparably bright illuminated regions are untouched. Optionally, the algorithm may be a subcontrol of an HDR control.


It strikes the eye that some vertical shape like noise is still remaining in the image of FIG. 3. As another aspect of the present invention, there may be an additional or alternative (as standalone without TNR) algorithm in place to address image noise present non stochastically but more or less statically called ‘Fix pattern noise’ (FPN) (‘fix pattern’ since the noise offset stays in a steady pattern). One of the causes for FPN is the imager's hardware structure. Each column of pixels possesses one amplifier. In practice, these amplifier have a Dark Signal Non Uniformity (DSNU) in the region of five to ten percent. With the Bayer pattern (of common RGB imagers) pixel array, a column may possess red and green pixels in alternation or alternating blue and green. In RGB, green is typically the dominating color which usually incorporates the majority of the luminance level, such that, for simplification, green can be handled as to be the luminance.


The FPN reduction (FPNR) algorithm of the present invention may compare all green values as luminance measure ‘Ik’ of one column ‘k’ with its diagonal right neighbor column ‘k+1’ by subtracting from another in pairs (see, for example, FIGS. 6 and 7). Then the (used) differences are summed up and divided by the total number of (used) lines resulting Dk as being the average of the luminance difference. This is done for all columns ‘m’ (see FIG. 8). The operation may only be done when the luminance of the specific pixels is below a certain threshold A (for processing dark areas only) and the absolute difference of two diagonal neighboring pixel pair |Ik−Ik+1| is below a certain value S (for preventing high contrast regions from being equalized). That reduces the number of used difference elements which incur to the mean value of differences Dk, with c being the count of used elements in a column (see equation (9) below and FIG. 9).











D
k

=



1
n




(


I

k
+

1
n



-

I

k

n
+
1




)

c











from





k

=


1





to





k

=
m


;





(
9
)









    • in case: Ikn+1<A; Ikn+1<A;





By summing all left neighbors plus the current mean difference D0+ . . . +Dk of a column k with k=1 to k=m, a curve of the luminance 21 is reconstructed. The curves lowest point 22 in FIG. 10 (which may be any of it) is then set as baseline.


For reducing the fix pattern noise during run time, the resulting luminance value Vk at a given column (k) in the curve 23 will be subtracted from each pixel of this column independent of its color.



FIG. 4 is a FPNR color image shown in gray tones as a result of the FPNR algorithm according the invention as described (in the second section) above having FIG. 2 as input source.



FIG. 5 is a FPNR and TNR color image shown in gray tones as a result of combining the TNR algorithm and FPNR algorithm in accordance with the present invention as described (in the first and second section) above. FIG. 3 is already processed by the TNR algorithm and is the source for the FPNR algorithm.


The camera or sensor may comprise any suitable camera or sensor. Optionally, the camera may comprise a “smart camera” that includes the imaging sensor array and associated circuitry and image processing circuitry and electrical connectors and the like as part of a camera module, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2013/081984 and/or WO 2013/081985, which are hereby incorporated herein by reference in their entireties.


The system includes an image processor operable to process image data captured by the camera or cameras, such as for detecting objects or other vehicles or pedestrians or the like in the field of view of one or more of the cameras. For example, the image processor may comprise an EyeQ2 or EyeQ3 image processing chip available from Mobileye Vision Technologies Ltd. of Jerusalem, Israel, and may include object detection software (such as the types described in U.S. Pat. Nos. 7,855,755; 7,720,580; and/or 7,038,577, which are hereby incorporated herein by reference in their entireties), and may analyze image data to detect vehicles and/or other objects. Responsive to such image processing, and when an object or other vehicle is detected, the system may generate an alert to the driver of the vehicle and/or may generate an overlay at the displayed image to highlight or enhance display of the detected object or vehicle, in order to enhance the driver's awareness of the detected object or vehicle or hazardous condition during a driving maneuver of the equipped vehicle.


The vehicle may include any type of sensor or sensors, such as imaging sensors or radar sensors or lidar sensors or ladar sensors or ultrasonic sensors or the like. The imaging sensor or camera may capture image data for image processing and may comprise any suitable camera or sensing device, such as, for example, a two dimensional array of a plurality of photosensor elements arranged in at least 640 columns and 480 rows (at least a 640×480 imaging array, such as a megapixel imaging array or the like), with a respective lens focusing images onto respective portions of the array. The photosensor array may comprise a plurality of photosensor elements arranged in a photosensor array having rows and columns. Preferably, the imaging array has at least 300,000 photosensor elements or pixels, more preferably at least 500,000 photosensor elements or pixels and more preferably at least 1 million photosensor elements or pixels. The imaging array may capture color image data, such as via spectral filtering at the array, such as via an RGB (red, green and blue) filter or via a red/red complement filter or such as via an RCC (red, clear, clear) filter or the like. The logic and control circuit of the imaging sensor may function in any known manner, and the image processing and algorithmic processing may comprise any suitable means for processing the images and/or image data.


For example, the vision system and/or processing and/or camera and/or circuitry may utilize aspects described in U.S. Pat. Nos. 7,005,974; 5,760,962; 5,877,897; 5,796,094; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; 7,859,565; 5,550,677; 5,670,935; 6,636,258; 7,145,519; 7,161,616; 7,230,640; 7,248,283; 7,295,229; 7,301,466; 7,592,928; 7,881,496; 7,720,580; 7,038,577; 6,882,287; 5,929,786 and/or 5,786,772, and/or International Publication Nos. WO 2011/028686; WO 2010/099416; WO 2012/061567; WO 2012/068331; WO 2012/075250; WO 2012/103193; WO 2012/0116043; WO 2012/0145313; WO 2012/0145501; WO 2012/145818; WO 2012/145822; WO 2012/158167; WO 2012/075250; WO 2012/0116043; WO 2012/0145501; WO 2012/154919; WO 2013/019707; WO 2013/016409; WO 2013/019795; WO 2013/067083; WO 2013/070539; WO 2013/043661; WO 2013/048994; WO 2013/063014, WO 2013/081984; WO 2013/081985; WO 2013/074604; WO 2013/086249; WO 2013/103548; WO 2013/109869; WO 2013/123161; WO 2013/126715; WO 2013/043661; WO 2013/158592 and/or PCT Application No. PCT/US2014/042229, filed Jun. 13, 2014, and published Dec. 24, 2014 as International Publication No. WO 2014/204794, and/or U.S. patent application Ser. No. 14/324,696, filed Jul. 7, 2014, now U.S. Pat. No. 9,701,258; Ser. No. 14/369,229, filed Jun. 27, 2014, now U.S. Pat. No. 9,491,342; Ser. No. 14/316,940, filed Jun. 27, 2014, and published Jan. 8, 2015 as U.S. Patent Publication No. US-2015-0009010; Ser. No. 14/316,939, filed Jun. 27, 2014, and published Jan. 1, 2015 as U.S. Patent Publication No. US-2015-0002670; Ser. No. 14/303,696, filed Jun. 13, 2014, now U.S. Pat. No. 9,609,757; Ser. No. 14/303,695, filed Jun. 13, 2014, and published Dec. 25, 2014 as U.S. Patent Publication No. US-2014-0375476; Ser. No. 14/303,694, filed Jun. 13, 2014, now U.S. Pat. No. 9,260,095; Ser. No. 14/303,693, filed Jun. 13, 2014, and published Dec. 18, 2014 as U.S. Patent Publication No. US-2014-0368654; Ser. No. 14/297,663, filed Jun. 6, 2014, and published Dec. 11, 2014 as U.S. Patent Publication No. US-2014-0362209; Ser. No. 14/362,636, filed Jun. 4, 2014, now U.S. Pat. No. 9,762,880; Ser. No. 14/290,028, filed May 29, 2014, now U.S. Pat. No. 9,800,794; Ser. No. 14/290,026, filed May 29, 2014, now U.S. Pat. No. 9,476,398; Ser. No. 14/359,341, filed May 20, 2014, now U.S. Pat. No. 10,071,687; Ser. No. 14/359,340, filed May 20, 2014, now U.S. Pat. No. 10,099,614; Ser. No. 14/282,029, filed May 20, 2014, now U.S. Pat. No. 9,205,776; Ser. No. 14/282,028, filed May 20, 2014, now U.S. Pat. No. 9,563,951; Ser. No. 14/358,232, filed May 15, 2014, now U.S. Pat. No. 9,491,451; Ser. No. 14/272,834, filed May 8, 2014, now U.S. Pat. No. 9,280,202; Ser. No. 14/356,330, filed May 5, 2014, now U.S. Pat. No. 9,604,581; Ser. No. 14/269,788, filed May 5, 2014, now U.S. Pat. No. 9,508,014; Ser. No. 14/268,169, filed May 2, 2014, and published Nov. 6, 2014 as U.S. Patent Publication No. US-2014-0327772; Ser. No. 14/264,443, filed Apr. 29, 2014, and published Oct. 30, 2014 as U.S. Patent Publication No. US-2014-0320636; Ser. No. 14/354,675, filed Apr. 28, 2014, now U.S. Pat. No. 9,580,013; Ser. No. 14/248,602, filed Apr. 9, 2014, now U.S. Pat. No. 9,327,693; Ser. No. 14/242,038, filed Apr. 1, 2014, now U.S. Pat. No. 9,487,159; Ser. No. 14/229,061, filed Mar. 28, 2014, now U.S. Pat. No. 10,027,930; Ser. No. 14/343,937, filed Mar. 10, 2014, now U.S. Pat. No. 9,681,062; Ser. No. 14/343,936, filed Mar. 10, 2014, and published Aug. 7, 2014 as U.S. Patent Publication No. US-2014-0218535; Ser. No. 14/195,135, filed Mar. 3, 2014, now U.S. Pat. No. 9,688,200; Ser. No. 14/195,136, filed Mar. 3, 2014, now U.S. Pat. No. 10,057,544; Ser. No. 14/191,512, filed Feb. 27, 2014, now U.S. Pat. No. 10,179,543; Ser. No. 14/183,613, filed Feb. 19, 2014, now U.S. Pat. No. 9,445,057; Ser. No. 14/169,329, filed Jan. 31, 2014, and published Aug. 7 2014 as U.S. Patent Publication No. US-2014-0218529; Ser. No. 14/169,328, filed Jan. 31, 2014, now U.S. Pat. No. 9,092,986; Ser. No. 14/163,325, filed Jan. 24, 2014, and published Jul. 31, 2014 as U.S. Patent Publication No. US-2014-0211009; Ser. No. 14/159,772, filed Jan. 21, 2014, now U.S. Pat. No. 9,068,390; Ser. No. 14/107,624, filed Dec. 16, 2013, now U.S. Pat. No. 9,140,789; Ser. No. 14/102,981, filed Dec. 11, 2013, now U.S. Pat. No. 9,558,409; Ser. No. 14/102,980, filed Dec. 11, 2013, and published Jun. 19, 2014 as U.S. Patent Publication No. US-2014-0168437; Ser. No. 14/098,817, filed Dec. 6, 2013, and published Jun. 19, 2014 as U.S. Patent Publication No. US-2014-0168415; Ser. No. 14/097,581, filed Dec. 5, 2013, now U.S. Pat. No. 9,481,301; Ser. No. 14/093,981, filed Dec. 2, 2013, now U.S. Pat. No. 8,917,169; Ser. No. 14/093,980, filed Dec. 2, 2013, now U.S. Pat. No. 10,025,994; Ser. No. 14/082,573, filed Nov. 18, 2013, now U.S. Pat. No. 9,743,002; Ser. No. 14/082,574, filed Nov. 18, 2013, now U.S. Pat. No. 9,307,640; Ser. No. 14/082,575, filed Nov. 18, 2013, now U.S. Pat. No. 9,090,234; Ser. No. 14/082,577, filed Nov. 18, 2013, now U.S. Pat. No. 8,818,042; Ser. No. 14/071,086, filed Nov. 4, 2013, now U.S. Pat. No. 8,886,401; Ser. No. 14/076,524, filed Nov. 11, 2013, now U.S. Pat. No. 9,077,962; Ser. No. 14/052,945, filed Oct. 14, 2013, now U.S. Pat. No. 9,707,896; Ser. No. 14/046,174, filed Oct. 4, 2013, now U.S. Pat. No. 9,723,272; Ser. No. 14/016,790, filed Oct. 3, 2013, now U.S. Pat. No. 9,761,142; Ser. No. 14/036,723, filed Sep. 25, 2013, now U.S. Pat. No. 9,446,713; Ser. No. 14/016,790, filed Sep. 3, 2013, now U.S. Pat. No. 9,761,142; Ser. No. 14/001,272, filed Aug. 23, 2013, now U.S. Pat. No. 9,233,641; Ser. No. 13/970,868, filed Aug. 20, 2013, now U.S. Pat. No. 9,365,162; Ser. No. 13/964,134, filed Aug. 12, 2013, now U.S. Pat. No. 9,340,227; Ser. No. 13/942,758, filed Jul. 16, 2013, and published on Jan. 23, 2014 as U.S. Patent Publication No. US-2014-0025240; Ser. No. 13/942,753, filed Jul. 16, 2013, and published Jan. 30, 2014 as U.S. Patent Publication No. US-2014-0028852; Ser. No. 13/927,680, filed Jun. 26, 2013, and published Jan. 2, 2014 as U.S. Patent Publication No. US-204-00015907; Ser. No. 13/916,051, filed Jun. 12, 2013, now U.S. Pat. No. 9,077,098; Ser. No. 13/894,870, filed May 15, 2013, now U.S. Pat. No. 10,089,537; Ser. No. 13/887,724, filed May 6, 2013, now U.S. Pat. No. 9,670,895; Ser. No. 13/852,190, filed Mar. 28, 2013, and published Aug. 29, 2013 as U.S. Patent Publication No. US-2013-0222593; Ser. No. 13/851,378, filed Mar. 27, 2013, now U.S. Pat. No. 9,319,637; Ser. No. 13/848,796, filed Mar. 22, 2012, and published Oct. 24, 2013 as U.S. Patent Publication No. US-2013-0278769; Ser. No. 13/847,815, filed Mar. 20, 2013, and published Oct. 31, 2013 as U.S. Patent Publication No. US-2013-0286193; Ser. No. 13/800,697, filed Mar. 13, 2013, now U.S. Pat. No. 10,182,228; Ser. No. 13/785,099, filed Mar. 5, 2013, now U.S. Pat. No. 9,565,342; Ser. No. 13/779,881, filed Feb. 28, 2013, now U.S. Pat. No. 8,694,224; Ser. No. 13/774,317, filed Feb. 22, 2013, now U.S. Pat. No. 9,269,263; Ser. No. 13/774,315, filed Feb. 22, 2013, and published Aug. 22, 2013 as U.S. Patent Publication No. US-2013-0215271; Ser. No. 13/681,963, filed Nov. 20, 2012, now U.S. Pat. No. 9,264,673; Ser. No. 13/660,306, filed Oct. 25, 2012, now U.S. Pat. No. 9,143,898; Ser. No. 13/653,577, filed Oct. 17, 2012, now U.S. Pat. No. 9,174,574; and/or Ser. No. 13/534,657, filed Jun. 27, 2012, and published Jan. 3, 2013 as U.S. Patent Publication No. US-2013-0002873, and/or U.S. provisional applications, Ser. No. 62/018,868, filed Jun. 30, 2014; Ser. No. 62/018,867, filed Jun. 30, 2014; Ser. No. 62/010,597, filed Jun. 11, 2014; Ser. No. 62/010,596, filed Jun. 11, 2014; Ser. No. 62/007,542, filed Jun. 4, 2014; Ser. No. 62/006,391, filed Jun. 2, 2014; Ser. No. 62/003,734, filed May 28, 2014; Ser. No. 62/001,796, filed May 22, 2014; Ser. No. 62/001,796, filed May 22, 2014; Ser. No. 61/993,736, filed May 15, 2014; Ser. 61/991,810, filed May 12, 2014; Ser. No. 61/991,809, filed May 12, 2014; Ser. No. 61/990,927, filed May 9, 2014; Ser. No. 61/989,652, filed May 7, 2014; Ser. No. 61/981,938, filed Apr. 21, 2014; Ser. No. 61/977,941, filed Apr. 10, 2014; Ser. No. 61/977,940. filed Apr. 10, 2014; Ser. No. 61/977,929, filed Apr. 10, 2014; Ser. No. 61/973,922, filed Apr. 2, 2014; Ser. No. 61/972,708, filed Mar. 31, 2014; Ser. No. 61/972,707, filed Mar. 31, 2014; Ser. No. 61/969,474, filed Mar. 24, 2014; Ser. No. 61/955,831, filed Mar. 20, 2014; Ser. No. 61/953,970, filed Mar. 17, 2014; Ser. No. 61/952,335, filed Mar. 13, 2014; Ser. No. 61/952,334, filed Mar. 13, 2014; Ser. No. 61/950,261, filed Mar. 10, 2014; Ser. No. 61/950,261, filed Mar. 10, 2014; Ser. No. 61/947,638, filed Mar. 4, 2014; Ser. No. 61/947,053, filed Mar. 3, 2014; Ser. No. 61/941,568, filed Feb. 19, 2014; Ser. No. 61/935,485, filed Feb. 4, 2014; Ser. No. 61/935,056, filed Feb. 3, 2014; Ser. No. 61/935,055, filed Feb. 3, 2014; Ser. No. 61/919,129, filed Dec. 20, 2013; Ser. No. 61/919,130, filed Dec. 20, 2013; Ser. No. 61/919,131, filed Dec. 20, 2013; Ser. No. 61/919,147, filed Dec. 20, 2013; Ser. No. 61/919,133, filed Dec. 20, 2013; Ser. No. 61/918,290, filed Dec. 19, 2013; Ser. No. 61/915,218, filed Dec. 12, 2013; Ser. No. 61/912,146, filed Dec. 5, 2013; Ser. No. 61/911,666, filed Dec. 4, 2013; Ser. No. 61/905,461, filed Nov. 18, 2013; Ser. No. 61/905,462, filed Nov. 18, 2013; Ser. No. 61/901,127, filed Nov. 7, 2013; Ser. No. 61/895,610, filed Oct. 25, 2013; Ser. No. 61/879,837, filed Sep. 19, 2013; Ser. No. 61/875,351, filed Sep. 9, 2013; Ser. No. 61/869,195, filed. Aug. 23, 2013; Ser. No. 61/864,836, filed Aug. 12, 2013; Ser. No. 61/864,838, filed Aug. 12, 2013 and/or Ser. No. 61/844,173, filed Jul. 9, 2013; which are all hereby incorporated herein by reference in their entireties. The system may communicate with other communication systems via any suitable means, such as by utilizing aspects of the systems described in International Publication Nos. WO/2010/144900; WO 2013/043661 and/or WO 2013/081985, and/or U.S. patent application Ser. No. 13/202,005, filed Aug. 17, 2011, now U.S. Pat. No. 9,126,525, which are hereby incorporated herein by reference in their entireties.


The imaging device and control and image processor and any associated illumination source, if applicable, may comprise any suitable components, and may utilize aspects of the cameras and vision systems described in U.S. Pat. Nos. 5,550,677; 5,877,897; 6,498,620; 5,670,935; 5,796,094; 6,396,397; 6,806,452; 6,690,268; 7,005,974; 7,937,667; 7,123,168; 7,004,606; 6,946,978; 7,038,577; 6,353,392; 6,320,176; 6,313,454; and/or 6,824,281, and/or International Publication Nos. WO 2010/099416; WO 2011/028686; and/or WO 2013/016409, and/or U.S. Pat. Publication No. US 2010-0020170, and/or U.S. patent application Ser. No. 13/534,657, filed Jun. 27, 2012, and published Jan. 3, 2013 as U.S. Patent Publication No. US-2013-0002873, which are all hereby incorporated herein by reference in their entireties. The camera or cameras may comprise any suitable cameras or imaging sensors or camera modules, and may utilize aspects of the cameras or sensors described in U.S. Publication No. US-2009-0244361 and/or U.S. patent application Ser. No. 13/260,400, filed Sep. 26, 2011, now U.S. Pat. No. 8,542,451, and/or U.S. Pat. Nos. 7,965,336 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties. The imaging array sensor may comprise any suitable sensor, and may utilize various imaging sensors or imaging array sensors or cameras or the like, such as a CMOS imaging array sensor, a CCD sensor or other sensors or the like, such as the types described in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,715,093; 5,877,897; 6,922,292; 6,757,109; 6,717,610; 6,590,719; 6,201,642; 6,498,620; 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 6,806,452; 6,396,397; 6,822,563; 6,946,978; 7,339,149; 7,038,577; 7,004,606; 7,720,580; and/or 7,965,336, and/or International Publication Nos. WO/2009/036176 and/or WO/2009/046268, which are all hereby incorporated herein by reference in their entireties.


The camera module and circuit chip or board and imaging sensor may be implemented and operated in connection with various vehicular vision-based systems, and/or may be operable utilizing the principles of such other vehicular systems, such as a vehicle headlamp control system, such as the type disclosed in U.S. Pat. Nos. 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 7,004,606; 7,339,149; and/or 7,526,103, which are all hereby incorporated herein by reference in their entireties, a rain sensor, such as the types disclosed in commonly assigned U.S. Pat. Nos. 6,353,392; 6,313,454; 6,320,176; and/or 7,480,149, which are hereby incorporated herein by reference in their entireties, a vehicle vision system, such as a forwardly, sidewardly or rearwardly directed vehicle vision system utilizing principles disclosed in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,877,897; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; and/or 7,859,565, which are all hereby incorporated herein by reference in their entireties, a trailer hitching aid or tow check system, such as the type disclosed in U.S. Pat. No. 7,005,974, which is hereby incorporated herein by reference in its entirety, a reverse or sideward imaging system, such as for a lane change assistance system or lane departure warning system or for a blind spot or object detection system, such as imaging or detection systems of the types disclosed in U.S. Pat. Nos. 7,881,496; 7,720,580; 7,038,577; 5,929,786 and/or 5,786,772, and/or U.S. provisional applications, Ser. No. 60/628,709, filed Nov. 17, 2004; Ser. No. 60/614,644, filed Sep. 30, 2004; Ser. No. 60/618,686, filed Oct. 14, 2004; Ser. No. 60/638,687, filed Dec. 23, 2004, which are hereby incorporated herein by reference in their entireties, a video device for internal cabin surveillance and/or video telephone function, such as disclosed in U.S. Pat. Nos. 5,760,962; 5,877,897; 6,690,268; and/or 7,370,983, and/or U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties, a traffic sign recognition system, a system for determining a distance to a leading or trailing vehicle or object, such as a system utilizing the principles disclosed in U.S. Pat. Nos. 6,396,397 and/or 7,123,168, which are hereby incorporated herein by reference in their entireties, and/or the like.


Optionally, the circuit board or chip may include circuitry for the imaging array sensor and or other electronic accessories or features, such as by utilizing compass-on-a-chip or EC driver-on-a-chip technology and aspects such as described in U.S. Pat. No. 7,255,451 and/or U.S. Pat. No. 7,480,149; and/or U.S. Publication No. US-2006-0061008 and/or U.S. patent application Ser. No. 12/578,732, filed Oct. 14, 2009, now U.S. Pat. No. 9,487,144, which are hereby incorporated herein by reference in their entireties.


Optionally, the vision system may include a display for displaying images captured by one or more of the imaging sensors for viewing by the driver of the vehicle while the driver is normally operating the vehicle. Optionally, for example, the vision system may include a video display device disposed at or in the interior rearview mirror assembly of the vehicle, such as by utilizing aspects of the video mirror display systems described in U.S. Pat. No. 6,690,268 and/or U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, now U.S. Pat. No. 9,264,672, which are hereby incorporated herein by reference in their entireties. The video mirror display may comprise any suitable devices and systems and optionally may utilize aspects of the compass display systems described in U.S. Pat. Nos. 7,370,983; 7,329,013; 7,308,341; 7,289,037; 7,249,860; 7,004,593; 4,546,551; 5,699,044; 4,953,305; 5,576,687; 5,632,092; 5,677,851; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,508; 6,222,460; 6,513,252; and/or 6,642,851, and/or European patent application, published Oct. 11, 2000 under Publication No. EP 0 1043566, and/or U.S. Publication No. US-2006-0061008, which are all hereby incorporated herein by reference in their entireties. Optionally, the video mirror display screen or device may be operable to display images captured by a rearward viewing camera of the vehicle during a reversing maneuver of the vehicle (such as responsive to the vehicle gear actuator being placed in a reverse gear position or the like) to assist the driver in backing up the vehicle, and optionally may be operable to display the compass heading or directional heading character or icon when the vehicle is not undertaking a reversing maneuver, such as when the vehicle is being driven in a forward direction along a road (such as by utilizing aspects of the display system described in International Publication No. WO 2012/051500, which is hereby incorporated herein by reference in its entirety).


Optionally, the vision system (utilizing the forward facing camera and a rearward facing camera and other cameras disposed at the vehicle with exterior fields of view) may be part of or may provide a display of a top-down view or birds-eye view system of the vehicle or a surround view at the vehicle, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2010/099416; WO 2011/028686; WO 2012/075250; WO 2013/019795; WO 2012/075250; WO 2012/145822; WO 2013/081985; WO 2013/086249; and/or WO 2013/109869, and/or U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, now U.S. Pat. No. 9,264,672, which are hereby incorporated herein by reference in their entireties 7,255,451 and/or U.S. Pat. No. 7,480,149; and/or U.S. Publication No. US-2006-0061008 and/or U.S. patent application Ser. No. 12/578,732, filed Oct. 14, 2009, now U.S. Pat. No. 9,487,144, which are hereby incorporated herein by reference in their entireties.


Optionally, a video mirror display may be disposed rearward of and behind the reflective element assembly and may comprise a display such as the types disclosed in U.S. Pat. Nos. 5,530,240; 6,329,925; 7,855,755; 7,626,749; 7,581,859; 7,446,650; 7,370,983; 7,338,177; 7,274,501; 7,255,451; 7,195,381; 7,184,190; 5,668,663; 5,724,187 and/or 6,690,268, and/or in U.S. patent application Ser. No. 12/091,525, filed Apr. 25, 2008, now U.S. Pat. No. 7,855,755; Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No. US-2006-0061008; and/or Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. US-2006-0050018, which are all hereby incorporated herein by reference in their entireties. The display is viewable through the reflective element when the display is activated to display information. The display element may be any type of display element, such as a vacuum fluorescent (VF) display element, a light emitting diode (LED) display element, such as an organic light emitting diode (OLED) or an inorganic light emitting diode, an electroluminescent (EL) display element, a liquid crystal display (LCD) element, a video screen display element or backlit thin film transistor (TFT) display element or the like, and may be operable to display various information (as discrete characters, icons or the like, or in a multi-pixel manner) to the driver of the vehicle, such as passenger side inflatable restraint (PSIR) information, tire pressure status, and/or the like. The mirror assembly and/or display may utilize aspects described in U.S. Pat. Nos. 7,184,190; 7,255,451; 7,446,924 and/or 7,338,177, which are all hereby incorporated herein by reference in their entireties. The thicknesses and materials of the coatings on the substrates of the reflective element may be selected to provide a desired color or tint to the mirror reflective element, such as a blue colored reflector, such as is known in the art and such as described in U.S. Pat. Nos. 5,910,854; 6,420,036; and/or 7,274,501, which are hereby incorporated herein by reference in their entireties.


Optionally, the display or displays and any associated user inputs may be associated with various accessories or systems, such as, for example, a tire pressure monitoring system or a passenger air bag status or a garage door opening system or a telematics system or any other accessory or system of the mirror assembly or of the vehicle or of an accessory module or console of the vehicle, such as an accessory module or console of the types described in U.S. Pat. Nos. 7,289,037; 6,877,888; 6,824,281; 6,690,268; 6,672,744; 6,386,742; and/or 6,124,886, and/or U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties.


Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.

Claims
  • 1. A vision system of a vehicle, said vision system comprising: a camera disposed at a vehicle and having a field of view exterior of the vehicle;wherein said camera comprises an imaging array having rows and columns of photosensing elements;an image processor operable to process image data captured by said camera;a display disposed in the vehicle and viewable by a driver of the vehicle, wherein said display is operable to display images derived from captured image data;wherein, responsive to image processing of captured image data by said image processor, temporal noise in displayed images derived from captured image data is reduced by determining a change in luminance values of photosensing elements from a first frame of captured image data to a second frame of captured image data and adjusting luminance values of photosensing elements for the displayed derived image responsive, at least in part, to the determined change in luminance of photosensing elements being above or below a threshold change;wherein, responsive to a determined change in a luminance value of a photosensing element being less than the threshold change from the first frame of captured image data to the second frame of captured image data, the change in luminance value for that photosensing element is dampened so as to not fully adopt the luminance value of that photosensing element of the second frame of captured image data for the displayed images; andwherein the threshold change is adjusted responsive to a determined ambient light level at the vehicle.
  • 2. The vision system of claim 1, wherein said imaging array comprises red photosensing elements, green photosensing elements and blue photosensing elements, and wherein a change in luminance values is determined for groups of red, green and blue photosensing elements from a first frame of captured image data to a second frame of captured image data.
  • 3. The vision system of claim 1, wherein, responsive to the determined change in luminance values of photosensing elements being greater than the threshold change, the change in luminance values is dampened via a first weighting ratio and, responsive to the determined change in luminance values of photosensing elements being less than the threshold change, the change in luminance values is dampened via a second weighting ratio, and wherein said first weighting ratio has a greater weighting of luminance values of said second frame of captured image data than said second weighting ratio.
  • 4. The vision system of claim 3, wherein said first weighting ratio is about 3:7 and said second weighting ratio is about 9:1.
  • 5. The vision system of claim 3, wherein said first and second weighting ratios are selected to ensure that a substantial change in luminance of photosensing elements is represented in the displayed derived image and a small change in luminance of photosensing elements is not substantially represented in the displayed derived image.
  • 6. The vision system of claim 1, wherein said vision system addresses temporal noise present randomly in captured image data.
  • 7. The vision system of claim 1, wherein an algorithm addresses fix pattern noise present statically in captured image data.
  • 8. The vision system of claim 7, wherein said algorithm (i) compares common color values of one column of photosensing elements with diagonal neighboring photosensing elements of the current frame by subtracting from another in pairs, and (ii) sums and divides by the total number of lines to determine an average luminance difference, and wherein the average luminance difference is used to determine and reduce fix pattern noise.
  • 9. The vision system of claim 8, wherein the fix pattern noise is reduced by subtracting the average luminance difference from individual photosensing elements in said column of photosensing elements.
  • 10. The vision system of claim 1, wherein a parameter set of said vision system adaptively changes in different light conditions.
  • 11. The vision system of claim 1, wherein a parameter set of said vision system adaptively changes in different signal to noise ratio conditions of said imaging array.
  • 12. The vision system of claim 11, wherein said parameter set of said vision system comprises a first weighted ratio applied responsive to the determined change in luminance values of photosensing elements being greater than the threshold change and a second weighted ratio applied responsive to the determined change in luminance of photosensing elements being less than the threshold change.
  • 13. The vision system of claim 1, wherein said image processor operates to reduce temporal noise during lower lighting conditions and does not operate to reduce temporal noise during higher lighting conditions.
  • 14. The vision system of claim 1, wherein said image processor operates to reduce temporal noise in a portion of the derived image while not reducing temporal noise in other portions of the derived image.
  • 15. The vision system of claim 14, wherein said portion of the derived image comprises a lower light level region and said other portions of the derived image comprise higher light level regions.
  • 16. A vision system of a vehicle, said vision system comprising: a camera disposed at a vehicle and having a field of view exterior of the vehicle;wherein said camera comprises an imaging array having rows and columns of photosensing elements, and wherein said imaging array comprises red photosensing elements, green photosensing elements and blue photosensing elements;an image processor operable to process image data captured by said camera;a display disposed in the vehicle and viewable by a driver of the vehicle, wherein said display is operable to display images derived from captured image data;wherein, responsive to image processing of captured image data by said image processor, temporal noise in displayed images derived from captured image data is reduced by determining a change in luminance of individual red, green and blue photosensing elements from a first frame of captured image data to a second frame of captured image data and adjusting luminance values of red, green and blue photosensing elements for the displayed derived image responsive, at least in part, to the determined change in luminance values of individual red, green and blue photosensing elements being above or below a threshold change;wherein, responsive to a determined change in a luminance values of individual photosensing elements being less than the threshold change from the first frame of captured image data to the second frame of captured image data, the change in luminance values for those photosensing elements is dampened via a first dampening ratio so as to not fully adopt the luminance value of the those photosensing elements of the second frame of captured image data for the displayed images;wherein, responsive to the determined change in luminance values of individual photosensing elements being greater than the threshold change, the change in luminance values for those photosensing elements is dampened via a second dampening ratio;wherein the first dampening ratio provides a greater dampening of luminance values of said second frame of captured image data than the second dampening ratio;wherein the first and second dampening ratios are selected to ensure that a substantial change in luminance values of individual red, green and blue photosensing elements is represented in the displayed derived image and a small change in luminance of individual red, green and blue photosensing elements is not substantially represented in the displayed derived image; andwherein the threshold change is adjusted responsive to a determined ambient light level at the vehicle.
  • 17. The vision system of claim 16, wherein the first and second dampening ratios are adjusted responsive to at least one of (i) changes in lighting conditions in the field of view of said camera and (ii) changes in signal to noise ratio conditions of said imaging array.
  • 18. The vision system of claim 16, wherein said image processor operates to reduce temporal noise in a portion of the derived image while not reducing temporal noise in other portions of the derived image, and wherein said portion of the derived image comprises a lower light level region and said other portions of the derived image comprise higher light level regions.
  • 19. A vision system of a vehicle, said vision system comprising: a camera disposed at a vehicle and having a field of view exterior of the vehicle;wherein said camera comprises an imaging array having rows and columns of photosensing elements and wherein said imaging array comprises red photosensing elements, green photosensing elements and blue photosensing elements;an image processor operable to process image data captured by said camera;a display disposed in the vehicle and viewable by a driver of the vehicle, wherein said display is operable to display images derived from captured image data;wherein, responsive to image processing of captured image data by said image processor, temporal noise in displayed images derived from captured image data is reduced by determining a change in luminance values of photosensing elements from a first frame of captured image data to a second frame of captured image data and adjusting luminance values of photosensing elements for the displayed derived image responsive, at least in part, to the determined change in luminance values of photosensing elements being above or below a threshold change;wherein luminance values of photosensing elements for the displayed derived image are adjusted by adjusting a dampening ratio of luminance values in said first frame of captured image data to luminance values in said second frame of captured image data;wherein, responsive to a determined change in a luminance values of individual photosensing elements being less than the threshold change from the first frame of captured image data to the second frame of captured image data, the change in luminance values for those photosensing elements is dampened via a first dampening ratio so as to not fully adopt the luminance value of the those photosensing elements of the second frame of captured image data for the displayed images;wherein, responsive to the determined change in luminance values of individual photosensing elements being greater than the threshold change, the change in luminance values for those photosensing elements is dampened via a second dampening ratio, and wherein the first dampening ratio provides a greater dampening of luminance values of said second frame of captured image data than the second dampening ratio;wherein an algorithm addresses fix pattern noise present statically in captured image data;wherein said algorithm (i) compares luminance values of green photosensing elements in one column of photosensing elements with diagonal neighboring green photosensing elements in another column of photosensing elements of the current frame by subtracting from another in pairs, and (ii) sums and divides by the total number of lines to determine an average change in luminance, and wherein the average change in luminance is used to determine and reduce fix pattern noise; andwherein the threshold change is adjusted responsive to a determined ambient light level at the vehicle.
  • 20. The vision system of claim 19, wherein the fix pattern noise is reduced by subtracting the average luminance difference from photosensing elements in said column of photosensing elements.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims the filing benefits of U.S. provisional applications, Ser. No. 61/919,138, filed Dec. 20, 2013, and Ser. No. 61/864,835, filed Aug. 12, 2013, which are hereby incorporated herein by reference in their entireties.

US Referenced Citations (311)
Number Name Date Kind
4987357 Masaki Jan 1991 A
5001558 Burley et al. Mar 1991 A
5003288 Wilhelm Mar 1991 A
5012082 Watanabe Apr 1991 A
5016977 Baude et al. May 1991 A
5027001 Torbert Jun 1991 A
5027200 Petrossian et al. Jun 1991 A
5059877 Teder Oct 1991 A
5086253 Lawler Feb 1992 A
5096287 Kakinami et al. Mar 1992 A
5097362 Lynas Mar 1992 A
5121200 Choi Jun 1992 A
5130709 Toyama et al. Jul 1992 A
5170374 Shimohigashi et al. Dec 1992 A
5172235 Wilm et al. Dec 1992 A
5177685 Davis et al. Jan 1993 A
5182502 Slotkowski et al. Jan 1993 A
5184956 Langlais et al. Feb 1993 A
5189561 Hong Feb 1993 A
5193000 Lipton et al. Mar 1993 A
5204778 Bechtel Apr 1993 A
5208701 Maeda May 1993 A
5245422 Borcherts et al. Sep 1993 A
5276389 Levers Jan 1994 A
5285060 Larson et al. Feb 1994 A
5289182 Brillard et al. Feb 1994 A
5289321 Secor Feb 1994 A
5307136 Saneyoshi Apr 1994 A
5309137 Kajiwara May 1994 A
5313072 Vachss May 1994 A
5325096 Pakett Jun 1994 A
5325386 Jewell et al. Jun 1994 A
5329206 Slotkowski et al. Jul 1994 A
5331312 Kudoh Jul 1994 A
5336980 Levers Aug 1994 A
5341437 Nakayama Aug 1994 A
5351044 Mathur et al. Sep 1994 A
5355118 Fukuhara Oct 1994 A
5374852 Parkes Dec 1994 A
5386285 Asayama Jan 1995 A
5394333 Kao Feb 1995 A
5406395 Wilson et al. Apr 1995 A
5410346 Saneyoshi et al. Apr 1995 A
5414257 Stanton May 1995 A
5414461 Kishi et al. May 1995 A
5416313 Larson et al. May 1995 A
5416318 Hegyi May 1995 A
5416478 Morinaga May 1995 A
5424952 Asayama Jun 1995 A
5426294 Kobayashi et al. Jun 1995 A
5430431 Nelson Jul 1995 A
5434407 Bauer et al. Jul 1995 A
5440428 Hegg et al. Aug 1995 A
5444478 Lelong et al. Aug 1995 A
5451822 Bechtel et al. Sep 1995 A
5461357 Yoshioka et al. Oct 1995 A
5469298 Suman et al. Nov 1995 A
5471515 Fossum et al. Nov 1995 A
5475494 Nishida et al. Dec 1995 A
5498866 Bendicks et al. Mar 1996 A
5500766 Stonecypher Mar 1996 A
5510983 Iino Apr 1996 A
5515448 Nishitani May 1996 A
5521633 Nakajima et al. May 1996 A
5528698 Kamei et al. Jun 1996 A
5529138 Shaw et al. Jun 1996 A
5530240 Larson et al. Jun 1996 A
5530420 Tsuchiya et al. Jun 1996 A
5535314 Alves et al. Jul 1996 A
5537003 Bechtel et al. Jul 1996 A
5539397 Asanuma et al. Jul 1996 A
5541590 Nishio Jul 1996 A
5550677 Schofield et al. Aug 1996 A
5555555 Sato et al. Sep 1996 A
5568027 Teder Oct 1996 A
5574443 Hsieh Nov 1996 A
5581464 Woll et al. Dec 1996 A
5614788 Mullins Mar 1997 A
5634709 Iwama Jun 1997 A
5642299 Hardin et al. Jun 1997 A
5648835 Uzawa Jul 1997 A
5650944 Kise Jul 1997 A
5660454 Mori et al. Aug 1997 A
5661303 Teder Aug 1997 A
5666028 Bechtel et al. Sep 1997 A
5670935 Schofield et al. Sep 1997 A
5677851 Kingdon et al. Oct 1997 A
5699044 Van Lente et al. Dec 1997 A
5724316 Brunts Mar 1998 A
5732379 Eckert et al. Mar 1998 A
5737226 Olson et al. Apr 1998 A
5760828 Cortes Jun 1998 A
5760931 Saburi et al. Jun 1998 A
5761094 Olson et al. Jun 1998 A
5765116 Wilson-Jones et al. Jun 1998 A
5765118 Fukatani Jun 1998 A
5781437 Wiemer et al. Jul 1998 A
5786772 Schofield et al. Jul 1998 A
5790403 Nakayama Aug 1998 A
5790973 Blaker et al. Aug 1998 A
5793308 Rosinski et al. Aug 1998 A
5793420 Schmidt Aug 1998 A
5796094 Schofield et al. Aug 1998 A
5837994 Stam et al. Nov 1998 A
5844505 Van Ryzin Dec 1998 A
5844682 Kiyomoto et al. Dec 1998 A
5845000 Breed et al. Dec 1998 A
5848802 Breed et al. Dec 1998 A
5850176 Kinoshita et al. Dec 1998 A
5850254 Takano et al. Dec 1998 A
5867591 Onda Feb 1999 A
5877707 Kowalick Mar 1999 A
5877897 Schofield et al. Mar 1999 A
5878357 Sivashankar et al. Mar 1999 A
5878370 Olson Mar 1999 A
5880777 Savoye Mar 1999 A
5883739 Ashihara et al. Mar 1999 A
5884212 Lion Mar 1999 A
5890021 Onoda Mar 1999 A
5896085 Mori et al. Apr 1999 A
5899956 Chan May 1999 A
5915800 Hiwatashi et al. Jun 1999 A
5923027 Stam et al. Jul 1999 A
5924212 Domanski Jul 1999 A
5949331 Schofield et al. Sep 1999 A
5959555 Furuta Sep 1999 A
5963247 Banitt Oct 1999 A
5990469 Bechtel et al. Nov 1999 A
5990649 Nagao et al. Nov 1999 A
6020704 Buschur Feb 2000 A
6049171 Stam et al. Apr 2000 A
6066933 Ponziana May 2000 A
6084519 Coulling et al. Jul 2000 A
6097024 Stam et al. Aug 2000 A
6100799 Fenk Aug 2000 A
6144022 Tenenbaum et al. Nov 2000 A
6175300 Kendrick Jan 2001 B1
6201642 Bos et al. Mar 2001 B1
6223114 Boros et al. Apr 2001 B1
6266082 Yonezawa et al. Jul 2001 B1
6266442 Laumeyer et al. Jul 2001 B1
6285393 Shimoura et al. Sep 2001 B1
6294989 Schofield et al. Sep 2001 B1
6297781 Turnbull et al. Oct 2001 B1
6310611 Caldwell Oct 2001 B1
6317057 Lee Nov 2001 B1
6320282 Caldwell Nov 2001 B1
6333759 Mazzilli Dec 2001 B1
6353392 Schofield et al. Mar 2002 B1
6370329 Teuchert Apr 2002 B1
6392315 Jones et al. May 2002 B1
6396397 Bos et al. May 2002 B1
6411204 Bloomfield et al. Jun 2002 B1
6424273 Gutta et al. Jul 2002 B1
6430303 Naoi et al. Aug 2002 B1
6442465 Breed et al. Aug 2002 B2
6477464 McCarthy et al. Nov 2002 B2
6497503 Dassanayake et al. Dec 2002 B1
6498620 Schofield et al. Dec 2002 B2
6523976 Turnbull et al. Feb 2003 B1
6534884 Marcus et al. Mar 2003 B2
6535617 Hannigan Mar 2003 B1
6539306 Turnbull Mar 2003 B2
6553130 Lemelson et al. Apr 2003 B1
6593960 Sugimoto et al. Jul 2003 B1
6594583 Ogura et al. Jul 2003 B2
6611610 Stam et al. Aug 2003 B1
6636258 Strumolo Oct 2003 B2
6672731 Schnell et al. Jan 2004 B2
6690268 Schofield et al. Feb 2004 B2
6704621 Stein et al. Mar 2004 B1
6711474 Treyz et al. Mar 2004 B1
6735506 Breed et al. May 2004 B2
6744353 Sjönell Jun 2004 B2
6747766 Kamisuwa et al. Jun 2004 B1
6795221 Urey Sep 2004 B1
6806452 Bos et al. Oct 2004 B2
6819231 Berberich et al. Nov 2004 B2
6823241 Shirato et al. Nov 2004 B2
6824281 Schofield et al. Nov 2004 B2
6850156 Bloomfield et al. Feb 2005 B2
6889161 Winner et al. May 2005 B2
6903670 Lee Jun 2005 B1
6909753 Meehan et al. Jun 2005 B2
6946978 Schofield Sep 2005 B2
6975775 Rykowski et al. Dec 2005 B2
6989736 Berberich et al. Jan 2006 B2
7004606 Schofield Feb 2006 B2
7038577 Pawlicki et al. May 2006 B2
7062300 Kim Jun 2006 B1
7065432 Moisel et al. Jun 2006 B2
7079017 Lang et al. Jul 2006 B2
7085637 Breed et al. Aug 2006 B2
7092548 Laumeyer et al. Aug 2006 B2
7111968 Bauer et al. Sep 2006 B2
7116246 Winter et al. Oct 2006 B2
7123168 Schofield Oct 2006 B2
7136753 Samukawa et al. Nov 2006 B2
7145519 Takahashi et al. Dec 2006 B2
7149613 Stam et al. Dec 2006 B2
7161616 Okamoto et al. Jan 2007 B1
7195381 Lynam et al. Mar 2007 B2
7202776 Breed Apr 2007 B2
7227611 Hull et al. Jun 2007 B2
7304670 Hussey Dec 2007 B1
7365769 Mager Apr 2008 B1
7375803 Bamji May 2008 B1
7425988 Okada et al. Sep 2008 B2
7460951 Altan Dec 2008 B2
7490007 Taylor et al. Feb 2009 B2
7526103 Schofield et al. Apr 2009 B2
7592928 Chinomi et al. Sep 2009 B2
7639149 Katoh Dec 2009 B2
7667739 Hsuan Feb 2010 B2
7681960 Wanke et al. Mar 2010 B2
7720580 Higgins-Luthman May 2010 B2
7724962 Zhu et al. May 2010 B2
7855755 Weller et al. Dec 2010 B2
7881496 Camilleri et al. Feb 2011 B2
7952490 Fechner et al. May 2011 B2
8013780 Lynam et al. Sep 2011 B2
8027029 Lu et al. Sep 2011 B2
8446470 Lu et al. May 2013 B2
8849495 Chundrlik, Jr. et al. Sep 2014 B2
20020015153 Downs Feb 2002 A1
20020113873 Williams Aug 2002 A1
20020196472 Enomoto Dec 2002 A1
20030107664 Suzuki Jun 2003 A1
20030137586 Lewellen Jul 2003 A1
20030222982 Hamdan et al. Dec 2003 A1
20040051796 Kelly Mar 2004 A1
20040114381 Salmeen et al. Jun 2004 A1
20040252208 Lee Dec 2004 A1
20050140631 Oh Jun 2005 A1
20060018511 Stam et al. Jan 2006 A1
20060018512 Stam et al. Jan 2006 A1
20060028492 Yamaguchi Feb 2006 A1
20060091813 Stam et al. May 2006 A1
20060103727 Tseng May 2006 A1
20060153450 Woodfill et al. Jul 2006 A1
20060164221 Jensen Jul 2006 A1
20060188018 Lin Aug 2006 A1
20060221100 Kao Oct 2006 A1
20060228102 Yang Oct 2006 A1
20060244844 Oizumi Nov 2006 A1
20060250501 Wildmann et al. Nov 2006 A1
20060262210 Smith Nov 2006 A1
20060290479 Akatsuka et al. Dec 2006 A1
20070041062 Chinnaveerappan Feb 2007 A1
20070071343 Zipnick Mar 2007 A1
20070104476 Yasutomi et al. May 2007 A1
20070201738 Toda et al. Aug 2007 A1
20080068328 Jou Mar 2008 A1
20080118179 Jeong May 2008 A1
20080151080 Osaka Jun 2008 A1
20080204600 Xu Aug 2008 A1
20080231710 Asari et al. Sep 2008 A1
20080239110 Hara Oct 2008 A1
20080266329 Park Oct 2008 A1
20090073327 Watanabe Mar 2009 A1
20090093938 Isaji et al. Apr 2009 A1
20090113509 Tseng et al. Apr 2009 A1
20090177347 Breuer et al. Jul 2009 A1
20090201320 Damberg Aug 2009 A1
20090207274 Park et al. Aug 2009 A1
20090243824 Peterson et al. Oct 2009 A1
20090243986 Jung Oct 2009 A1
20090244361 Gebauer et al. Oct 2009 A1
20090265069 Desbrunes Oct 2009 A1
20100020170 Higgins-Luthman et al. Jan 2010 A1
20100073515 Conard Mar 2010 A1
20100228437 Hanzawa et al. Sep 2010 A1
20100238355 Blume Sep 2010 A1
20100260432 Shimizu Oct 2010 A1
20100265281 Furukawa Oct 2010 A1
20100271512 Garten Oct 2010 A1
20110019031 Tanigawa Jan 2011 A1
20110032394 Peng Feb 2011 A1
20120002113 Nishio et al. Jan 2012 A1
20120026402 Zhong Feb 2012 A1
20120044066 Mauderer et al. Feb 2012 A1
20120062743 Lynam et al. Mar 2012 A1
20120154655 Compton Jun 2012 A1
20120169936 Persson Jul 2012 A1
20120182332 Liu Jul 2012 A1
20120188403 Gomita Jul 2012 A1
20120201454 Sato Aug 2012 A1
20120212652 Hsu Aug 2012 A1
20120218412 Dellantoni et al. Aug 2012 A1
20120262340 Hassan et al. Oct 2012 A1
20120293660 Murakami Nov 2012 A1
20130120478 Ishihara May 2013 A1
20130124052 Hahne May 2013 A1
20130129150 Saito May 2013 A1
20130131918 Hahne May 2013 A1
20130229498 Yano Sep 2013 A1
20130321672 Silverstein Dec 2013 A1
20130321679 Lim Dec 2013 A1
20130322746 Cote Dec 2013 A1
20130335601 Shiota Dec 2013 A1
20140067206 Pflug Mar 2014 A1
20140156157 Johnson et al. Jun 2014 A1
20140222280 Salomonsson Aug 2014 A1
20140307095 Wierich Oct 2014 A1
20140313339 Diessner et al. Oct 2014 A1
20140349220 Moon Nov 2014 A1
20140368654 Wierich Dec 2014 A1
20140379233 Chundrlik, Jr. et al. Dec 2014 A1
20150002689 Weissman Jan 2015 A1
20150312499 Panicacci Oct 2015 A1
20160137126 Fursich May 2016 A1
Related Publications (1)
Number Date Country
20150042806 A1 Feb 2015 US
Provisional Applications (2)
Number Date Country
61919138 Dec 2013 US
61864835 Aug 2013 US