The technical field generally relates to wheel mounting assemblies for vehicles, and more particularly to a knuckle for a wheel mounting assembly configured to receive a self-retaining bearing.
Contemporary motor vehicles have wheel assemblies for mounting wheels and tires to a vehicle. These wheel assemblies include one or more bearings facilitating rotation of the wheels. For wheel assemblies involved in steering the vehicle, the wheel assembly is provided with a pivoted steering knuckle that typically forms part of the wheel suspension. In this case, a wheel hub or mounting unit is coupled to the steering knuckle, which in turn, is mounted on the vehicle chassis. The wheel bearings are mounted to the knuckle and coupled to the wheel hub allowing the wheel hub (and thus the wheels) to rotate relative to the vehicle.
In conventional wheel assemblies, the wheel bearings are mounting to the knuckle via several fasteners (e.g., bolts). These fasteners add mass to the knuckle and increase drag, as well as increasing assembly and repair time due to each fastener having to be individually handled.
Accordingly, it is desirable to provide a wheel assembly for a vehicle that overcomes the detriments of prior, conventional wheel assemblies. Also, it is desirable to provide a vehicle wheel assembly with a self-retaining bearing that facilitates assembly and repair. Additionally, other desirable features and characteristics of the present disclosure will become apparent from the subsequent description taken in conjunction with the accompanying drawings and the foregoing technical field and background.
In accordance with first exemplary embodiments, a wheel assembly is provided for a vehicle. The wheel assembly includes a knuckle having a tapered inner surface coupled to a tapered sleeve. The tapered sleeve couples to an outer flange of a bearing that is retained by a threaded fastener coupled to a threaded end of the tapered sleeve. A wheel hub is coupled to an inner flange of the bearing permitting rotation of the wheel hub relative to the knuckle.
In accordance with second exemplary embodiments, a wheel assembly is provided for a vehicle. The wheel assembly includes a knuckle having a tapered inner surface to interface with an outer flange of a bearing. A threaded fastener couples to a threaded portion of the outer flange to retain the bearing. A wheel hub couples to an inner flange of the bearing permitting rotation of the wheel hub relative to the knuckle.
The subject matter will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and:
The following detailed description is merely exemplary in nature and is not intended to limit the subject matter of the disclosure or its uses. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
In this document, relational terms such as first and second, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. Numerical ordinals such as “first,” “second,” “third,” etc. simply denote different singles of a plurality and do not imply any order or sequence unless specifically defined by the claim language.
Additionally, the following description refers to elements or features being “connected” or “coupled” together. As used herein, “connected” may refer to one element/feature being directly joined to (or directly communicating with) another element/feature, and not necessarily mechanically. Likewise, “coupled” may refer to one element/feature being directly or indirectly joined to (or directly or indirectly communicating with) another element/feature, and not necessarily mechanically. However, it should be understood that, although two elements may be described below, in one embodiment, as being “connected,” in alternative embodiments similar elements may be “coupled,” and vice versa. Thus, although the schematic diagrams shown herein depict example arrangements of elements, additional intervening elements, devices, features, or components may be present in an actual embodiment.
Finally, for the sake of brevity, conventional techniques and components related to vehicle mechanical parts and other functional aspects of the system (and the individual operating components of the system) may not be described in detail herein. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent example functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in an embodiment of the invention. It should also be understood that
Referring to the drawings, wherein like reference numbers refer to like components,
The illustrated embodiment of the electric vehicle 100 includes, without limitation an energy storage system 104, a control module 106 and a powertrain 108.
The energy storage system 104 may be realized as a rechargeable battery pack having a single battery module or any number of individual battery cells operatively interconnected (e.g., in series or in parallel), to supply electrical energy. A variety of battery chemistries may be employed within the energy storage system 104 such as, lead-acid, lithium-ion, nickel-cadmium, nickel-metal hydride, etc. In an electric vehicle embodiment, the energy storage system 104 may include a generator for charging the energy storage system. In a hybrid-electric vehicle embodiment, the internal combustion engine component of the drivetrain 108 may be used for charging the energy storage system. Also, in an internal combustion engine embodiment, an alternator may be used to change the energy storage system, which in this embodiment, comprises the vehicle batter to operate the starter and other electrical systems of the vehicle 100.
The control module 106, may include any type of processing element or vehicle controller, and may be equipped with nonvolatile memory, random access memory (RAM), discrete and analog input/output (I/O), a central processing unit, and/or communications interfaces for networking within a vehicular communications network. The control module 106 is coupled to the energy storage system 104 and the powertrain 108 and controls the flow of electrical energy between these modules depending on a required power command, the state of charge of the energy storage system 104, etc.
The powertrain 108 includes an electric motor and a transmission for driving front wheels 110 via drive shafts 112 to propel the vehicle 100. The front wheels 110 are coupled to the vehicle 100 in a rotary manner via wheel assemblies 114. The wheel assemblies 114 allow the wheels 110 to pivot with respect to the vehicle to enable the user to steer the vehicle during operation. According to various embodiment of the present disclosure, the wheel assemblies 114 afford an efficient and effective mechanism for assembly (and repair) as compared to conventional wheel assemblies.
To develop clamp loading for the bearing 122, the knuckle 116 and the tapered sleeve 118 couple along a tapered interface 130. In some embodiments, the bearing 122 is retained within the tapered sleeve 118, and thus the knuckle 116, via a retaining ring 132. In other embodiments, the retaining ring 132 could be integrally formed with the tapered sleeve 118. The opposite end of the tapered sleeve is threaded to receive a threaded fastener 134 along a threaded interface 136. The threaded fastener 134 couples to the knuckle 116 along a tapered interface 138, which also develops clamp load for the bearing 122. According to various embodiments, the threaded fastener 134 replaces the plurality of individual fasteners required by conventional wheel assemblies, thus reducing mass and drag for the vehicle (100 in
Operationally, the wheel assembly includes a wheel hub 144 that couples to the inner flange 126 of the bearing 122. This allows the wheel hub (and thus a wheel for the vehicle) to rotate with respect to the knuckle 116 which is fixed, but pivotably mounted to the vehicle chassis and suspension system (not shown in
As discussed above with the embodiment of
Accordingly, a wheel assembly is provided for a vehicle. The various embodiment of the disclosed wheel assembly employ a threaded fastener to retain the bearing within the knuckle. This configuration eliminates the multiple fasteners required by conventional wheel assemblies, which reduces mass and drag for the vehicle. Also, assembly and repair are facilitated by the more efficient fastening mechanism provided by the present disclosure, which provides an expedient and effective bearing coupling interface between the wheel hub and the knuckle.
While at least one exemplary embodiment has been presented in the foregoing summary and detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the disclosure in any way. Rather, the foregoing summary and detailed description will provide those skilled in the art with a convenient road map for implementing the exemplary embodiment or exemplary embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope of the disclosure as set forth in the appended claims and the legal equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
1759640 | Brunner et al. | May 1930 | A |
2895771 | Ridgeway | Jul 1959 | A |
5263731 | Deutschel | Nov 1993 | A |
5489156 | Martinie | Feb 1996 | A |
5685650 | Martinie et al. | Nov 1997 | A |
5799524 | Schäfer et al. | Sep 1998 | A |
5908249 | Nisley et al. | Jun 1999 | A |
6006568 | Bihrer | Dec 1999 | A |
6098437 | Kocer et al. | Aug 2000 | A |
6131932 | Bunker | Oct 2000 | A |
6394472 | Graf et al. | May 2002 | B1 |
6513818 | Seuser et al. | Feb 2003 | B1 |
6880841 | Wang et al. | Apr 2005 | B2 |
6939053 | Nisley et al. | Sep 2005 | B2 |
7490840 | Luttinen et al. | Feb 2009 | B2 |
7604415 | Casey et al. | Oct 2009 | B2 |
7651105 | Webster et al. | Jan 2010 | B2 |
8137000 | Stephan et al. | Mar 2012 | B2 |
20030234504 | Frantzen | Dec 2003 | A1 |
20040026885 | Lin | Feb 2004 | A1 |
20060093251 | Casey et al. | May 2006 | A1 |
20090180726 | Siebeneick et al. | Jul 2009 | A1 |
20090261550 | Siebeneick | Oct 2009 | A1 |
20110135233 | Sutherlin et al. | Jun 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20130146380 A1 | Jun 2013 | US |