The present invention relates to wheel balance weights.
In order to reduce excessive vibration, vehicle wheels are often balanced by placing weights at selected locations. The weights include a mass portion which is attached to the wheel's rim using a spring clip or a suitable adhesive. Due to high mass and low cost, such weights have been made of lead. Because of various factors, however, it is becoming desirable to manufacture such weights of materials other than lead.
Various configurations of wheel weights made from nonlead material are shown and described in U.S. Pat. No. 8,066,335, incorporated fully herein by reference for all purposes.
The present invention provides a variety of configurations for a vehicle wheel weight. Preferred embodiments utilize iron or low carbon steel for mass instead of lead as has generally been used in the past. According to one aspect, the present invention provides a vehicle wheel weight for attachment to a wheel rim. The wheel weight comprises a mass portion formed of nonlead material and configured to be juxtaposed against a wheel rim when attached to a wheel. The mass portion defines a clip groove on an exterior side thereof having an upper radial end and a lower radial end, the clip groove being defined in part by opposed first and second sidewalls. The wheel weight further comprises a clip having an extended portion for engaging the wheel rim and an attachment portion seated in the clip groove. The attachment portion of the clip has first and second side edges, at least one of which includes at least one lateral bulge extending outwardly from other portions of the corresponding side edge and engaging a corresponding one of the first and second sidewalls of the clip groove such that the clip is fixed to the mass portion. The attachment portion of the clip defines therein a bulge forming opening, with a portion of the clip defining the opening being deformed to produce the at least one lateral bulge.
A method of manufacturing a vehicle wheel weight is also provided in accordance with this aspect of the present invention. One step of the method involves providing a mass portion formed of nonlead material and configured to be juxtaposed against a wheel rim when attached to a wheel, the mass portion defining a clip groove on an exterior side thereof defined in part by opposed first and second sidewalls. According to another step of the method, a clip is provided having an extended portion for engaging the wheel rim and an attachment portion having substantially straight first and second side edges, the attachment portion further defining at least one bulge forming opening. The attachment portion of the clip is seated in the clip groove of the mass portion. The bulge forming opening is deformed to produce at least one lateral bulge extending outwardly from other portions of the corresponding side edge such that the clip is fixed to the mass portion.
Another aspect of the present invention provides a vehicle wheel weight for attachment to a wheel rim. The wheel weight comprises a mass portion formed of nonlead material and configured to be juxtaposed against a wheel rim when attached to a wheel. The mass portion defines a clip groove on an exterior side thereof, with the clip groove being defined by opposed first and second sidewalls. The wheel weight also includes a clip having an extended portion for engaging the wheel rim and an attachment portion seated in the clip groove. A self-locking arrangement is provided on the clip and the mass portion for interconnecting the attachment portion of the clip with the mass portion such that when the attachment portion is seated in the clip groove the self-locking arrangement secures the clip to the mass portion.
A method of manufacturing a vehicle wheel weight is also provided in accordance with this aspect of the present invention. One step of the method involves providing a mass portion formed of nonlead material and configured to be juxtaposed against a wheel rim when attached to a wheel, the mass portion defining a clip groove on an exterior side thereof with the clip groove being defined by first and second sidewalls. According to another step, a clip is provided having an extended portion for engaging the wheel rim and an attachment portion, the attachment portion defining at least one flexible finger configured to provide a self-locking arrangement. The attachment portion of the clip is seated in the clip groove of the mass portion such that the at least one flexible finger engages an adjacent portion of the mass portion, whereby the clip is fixed to the mass portion.
According to another aspect, the present invention provides a vehicle wheel weight for attachment to a wheel rim. The wheel weight comprises a mass portion formed of nonlead material and configured to be juxtaposed against a wheel rim when attached to a wheel. The mass portion defines a clip groove on an exterior side thereof, the clip groove having an attachment member receiving hole defined therein. The wheel weight also comprises a clip having an extended portion for engaging the wheel rim and an attachment portion seated in the clip groove. The attachment portion of the clip defines at least one securement hole in register with the attachment member receiving hole of the mass portion when the attachment portion of the clip is positioned in the clip groove. An attachment member extends through the securement hole and into the attachment member receiving hole such that the clip is fixed to the mass portion.
A method of manufacturing a vehicle wheel weight is also provided in accordance with this aspect of the present invention. One step of the method involves providing a mass portion formed of nonlead material and configured to be juxtaposed against a wheel rim when attached to a wheel, the mass portion defining a clip groove on an exterior side thereof having an attachment member receiving hole defined therein. A clip is also provided having an extended portion for engaging the wheel rim and an attachment portion, the attachment portion defining at least one securement hole located to register with the attachment member receiving hole. The attachment portion of the clip is seated in the clip groove of the mass portion. An attachment member is inserted through the securement hole and into the attachment member receiving hole, whereby the clip is fixed to the mass portion.
A further aspect of the present invention provides a vehicle wheel weight for attachment to a wheel rim. The wheel weight comprises a mass portion having a radial arc along a length extending from a first end side to a second end side, the mass portion further having an inner axial side for juxtaposition to the wheel rim when attached to a wheel, an outer axial side, an upper radial side and a lower radial side. The mass portion defines a clip groove on one of the inner axial side and the outer axial side, with the clip groove being defined by first and second side walls. The wheel weight further includes a clip having an extended portion for engaging the wheel rim and an attachment portion seated in the clip groove. In addition, the mass portion has an axial arc in a direction of one of the inner axial side and the outer axial side at which the clip groove is located. The mass portion is configurable into a first configuration in which the first and second sidewalls are spaced are apart a distance greater than the width of the clip to enable placement of the clip into the clip groove and a second configuration in which portions of the first and second sidewalls are spaced apart less than the width of the clip to capture and hold the clip in the clip groove, whereby respective first and second sidewalls of the clip groove pinch the attachment portion of the clip to fix the clip to the mass portion.
A method of manufacturing a vehicle wheel weight is also provided in accordance with this aspect of the present invention. One step of the method involves providing a mass portion formed of nonlead material, the mass portion configured having an inner axial side, an outer axial side, an upper radial side and a lower radial side, and defining a clip groove in one of the inner axial side and the outer axial side defined by first and second sidewalls. A clip is provided having an extended portion for engaging the wheel rim and an attachment portion having first and second side edges. The attachment portion of the clip is seated in the clip groove. According to another step, the mass portion is bent toward the one of the inner axial side and the outer axial side in which the clip groove is located such that the first and second sidewalls of the clip groove will pinch the first and second side edges of the attachment portion of the clip, thereby fixing the clip to the mass portion.
A full and enabling disclosure of the present invention, including the best mode thereof, to one of ordinary skill in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying drawings, in which:
Repeat use of reference characters in the present specification and drawings is intended to represent same or analogous features or elements of the invention.
It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only, and is not intended as limiting the broader aspects of the present invention, which broader aspects are embodied in the exemplary constructions.
In particular, clip 14 has an attachment portion 20 that is seated in clip groove 16 and an extended portion 22 for engaging wheel rim 18. In this embodiment, groove 16 is defined on the inner (or front) side of mass portion 12 (i.e., the side that is adjacent to wheel rim 18 when the weight is mounted to the wheel). As shown, mass portion 12 has an arcuate shape in the radial direction of the wheel's axis of rotation to approximate the curvature of the rim. Mass portion 12 is preferably made from a nonlead material having suitable mass, such as iron, low carbon steel or an impregnated polymeric. (See U.S. Pat. No. 6,364,422 to Sakaki et al., incorporated herein by reference.) In the illustrated embodiment, mass portion 12 is preferably made entirely of iron or low carbon steel. Often, a 1008 steel will be especially preferred.
Referring now particularly to
In this example, it can be seen that openings 24 and 26 will have a D-shaped configuration after deformation. The deformation may be produced by inserting two prongs of a deforming tool in the respective openings. The prongs of the deforming tool are then moved apart until the appropriate amount of deformation is achieved. Preferably, the material of attachment portion 20 will have a greater hardness than the material of mass portion 12 (at least in the area of groove 16) such that the bulges are more effectively secured in the sidewalls of groove 16.
Referring now to
In particular, clip 114 has an attachment portion 120 that is seated in clip groove 116 and an extended portion 122 for engaging the wheel rim. In this embodiment, groove 116 is defined on the inner (or front) side of mass portion 116 (i.e., the side that is adjacent to the wheel rim when the weight is mounted to the wheel). As shown, mass portion 112 has an arcuate shape in the radial direction of the wheel's axis of rotation to approximate the curvature of the rim. Mass portion 112 is preferably made from a nonlead material having suitable mass, such as iron, low carbon steel or an impregnated polymeric.
Referring particularly to
As can be most clearly seen in
A third embodiment, similar in many respects to the second embodiment, is illustrated in
As shown, a portion of clip 214 (which may be made from spring steel) is located in a groove 216 (
Referring particularly to
In particular, clip 314 has an attachment portion 320 that is seated in clip groove 316 and an extended portion 322 for engaging the wheel rim. In this embodiment, groove 316 is defined on the inner (or front) side of mass portion 312 (i.e., the side that is adjacent to the wheel rim when the weight is mounted to the wheel). As shown, mass portion 312 has an arcuate shape in the radial direction of the wheel's axis of rotation to approximate the curvature of the rim. Mass portion 312 is preferably made from a nonlead material having suitable mass, such as iron, low carbon steel or an impregnated polymeric.
Referring now particularly to
In this embodiment, attachment member 328 is configured as a pin having a larger diameter head portion and a smaller diameter shank portion. The shank portion is inserted into receiving hole 324 whereas the head portion engages clip 314. It will be appreciated that receiving hole 324 may be formed as a blind bore which extends only partially through mass portion 312. Embodiments are contemplated in which attachment member 328 is retained in receiving hole 324 by press fit. In this regard, the material of attachment member 328 may preferably have a greater hardness than the material of mass portion 312 (at least in the area of groove 316) such that the attachment member is more effectively retained. Embodiments are contemplated in which the attachment member is threaded, in which case receiving hole 324 may be preformed with threads, or not if the attachment member is self-tapping.
A further embodiment will now be described with reference to
In particular, clip 414 has an attachment portion 420 that is seated in clip groove 416 and an extended portion 422 for engaging the wheel rim. In this case, groove 416 is illustrated as being defined on the outer (or back) side of mass portion 412 (i.e., the side that is away from the wheel rim when the weight is mounted to the wheel). As shown, mass portion 412 has an arcuate shape in the radial direction of the wheel's axis of rotation to approximate the curvature of the rim. In the illustrated embodiment, mass portion 412 also has an axial arc in the direction toward clip groove 416 (see
In this embodiment, the axial arc described above results from the process of attaching clip 414 to mass portion 412. As shown in
Next, mass portion 412 is bent to provide the axial arc discussed above. The sidewalls of groove 416 will engage the side edges of attachment portion 420 to pinch and thereby retain clip 414. Preferably, clip attachment portion 420 of clip 414 may have lateral interference features, such as indentions 428 and 430 (
While the above example results in a mass portion having an axial arc after attachment of the clip, one skilled in the art will appreciate that the reverse could also be done. In other words, mass portion 412 could have an axial arc before clip attachment. The bending used to attach the clip would straighten the mass portion so that it may end up axially straight. In this case, it may be desirable to define the clip groove on the inner (or front) face of the mass portion.
As noted above, the weight mass portions are preferably cold-formed from iron or low carbon steel For example, raw material that is either round in cross-section or preformed with a shape that is either the same as or is substantially similar to the cross-section of the mass portion to be formed (such as round for a wheel balance weight) may be provided. One “piece” of raw material would contain enough material for numerous wheel weight masses. For example, this may be either a long rod or a coil with enough material for hundreds or thousands of finished mass portions.
In this case, the mass forming machinery comprises several subsystems working together. These may be described as follows: 1. Material handling and supply—Either an “uncoiler” or rod feeding equipment is provided to deliver the raw material (e.g., iron). 2. Forming rolls (or other suitable rolling machine) are provided to form the long (wheel size) radius and pre-form the shape that will fit into the rim flange. The amount of pre-forming would be inversely proportional to the size of press being used. 3. A metal forming press may then be used bs used to finish the rim flange shape, form a groove for the wheel balance weight clip, stamp product information into the surface, and cut to the required length. The press working surfaces would be a die that may be progressive or not depending on press size and part details. A large press forming a large part may be able to form all surfaces and cut to length in one stroke. Alternatively, small parts may need to be made in a progressive fashion to get all forming surfaces to bear on a small area. A small press could form a large part by using a progressive die and distributing the work over more than one press cycle. In some cases, it may be desirable in some cases to form the cut-off preform prior to shape finishing, or to form the clip groove by cutting. In fact some of the die operations might be done before the die. The die could then be a stamping/trim die.
Finally, suitable corrosion protection materials may be applied after assembling the mass and clip. Other finishing may or may not be required depending on customer finishing requirements.
While preferred embodiments of the invention have been shown and described, modifications and variations may be made thereto by those of ordinary skill in the art without departing from the spirit and scope of the present invention. In addition, it should be understood that aspects of the various embodiments may be interchanged both in whole or in part. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is by way of example only, and is not intended to be limitative of the invention as further described in the appended claims.
This application claims the benefit of U.S. Provisional Application Ser. No. 61/564,640, filed Nov. 29, 2011, which is hereby relied upon and incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1889577 | Tibbetts | Nov 1932 | A |
1973173 | Le Jeune | Sep 1934 | A |
2122065 | Hume | Jun 1935 | A |
2026454 | Benzing | Dec 1935 | A |
2029132 | Skelton | Jan 1936 | A |
2049703 | Hume | Aug 1936 | A |
2137415 | Rubsam | Nov 1938 | A |
2221747 | Turner | Nov 1940 | A |
2336920 | Beaman | Dec 1943 | A |
2640727 | Kennedy | Jun 1953 | A |
2696408 | Merriman | Dec 1954 | A |
3008768 | Kinsey et al. | Nov 1961 | A |
3011828 | Karing | Dec 1961 | A |
3221790 | Poupitch | Dec 1965 | A |
3495877 | Morne | Feb 1970 | A |
3633263 | Hoeksema | Jan 1972 | A |
3669500 | Ende | Jun 1972 | A |
3688380 | Dionys Hofmann et al. | Sep 1972 | A |
3786850 | Turoczi, Jr. | Jan 1974 | A |
4027549 | Colletti | Jun 1977 | A |
4300803 | Chorosevic | Nov 1981 | A |
4379596 | Green et al. | Apr 1983 | A |
4728154 | Boyle et al. | Mar 1988 | A |
5228754 | Rogers | Jul 1993 | A |
5350220 | Atwell, Jr. | Sep 1994 | A |
5367909 | Heilman et al. | Nov 1994 | A |
5733016 | Brown | Mar 1998 | A |
5778737 | Welsh et al. | Jul 1998 | A |
5959205 | Yamaya et al. | Sep 1999 | A |
6238005 | Sugayauchi et al. | May 2001 | B1 |
6238006 | Manojlovic | May 2001 | B1 |
6250721 | Oba et al. | Jun 2001 | B1 |
6260929 | Oba et al. | Jul 2001 | B1 |
6286906 | Nagashima et al. | Sep 2001 | B1 |
6364422 | Sakaki et al. | Apr 2002 | B1 |
6488341 | Maruyama et al. | Dec 2002 | B2 |
6698845 | Corte et al. | Mar 2004 | B2 |
6811633 | Myers | Nov 2004 | B1 |
6948781 | Sery | Sep 2005 | B2 |
7093907 | Jenkins et al. | Aug 2006 | B2 |
7216938 | Phillips | May 2007 | B2 |
7566101 | Jenkins et al. | Jul 2009 | B2 |
7818868 | Chancharoen et al. | Oct 2010 | B2 |
8066335 | Jenkins et al. | Nov 2011 | B2 |
8414086 | Jenkins et al. | Apr 2013 | B2 |
8628149 | Lussier et al. | Jan 2014 | B2 |
20030067208 | Maruyama | Apr 2003 | A1 |
20030127906 | Yamaguchi | Jul 2003 | A1 |
20040007912 | Amyot et al. | Jan 2004 | A1 |
20050104439 | Phillips | May 2005 | A1 |
20070013225 | Jenkins et al. | Jan 2007 | A1 |
20070120414 | Jenkins et al. | May 2007 | A1 |
20080042486 | Malbos | Feb 2008 | A1 |
20100007194 | Zank | Jan 2010 | A1 |
20100007195 | Pursley et al. | Jan 2010 | A1 |
20100007196 | Astorino et al. | Jan 2010 | A1 |
20100066992 | Ono | Mar 2010 | A1 |
20100117471 | Huang | May 2010 | A1 |
20100276001 | Sawada et al. | Nov 2010 | A1 |
20110186131 | Mukai et al. | Aug 2011 | A1 |
20110266862 | Halle | Nov 2011 | A1 |
20120062018 | Jenkins et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
3118222 | Nov 1982 | DE |
3529513 | Feb 1987 | DE |
1302695 | Apr 2003 | EP |
2878957 | Jun 2006 | FR |
4317521 | Jul 1948 | JP |
5316201 | Feb 1978 | JP |
3139401 | Jun 1991 | JP |
3272347 | Dec 1991 | JP |
3046046 | Feb 1998 | JP |
3051017 | Aug 1998 | JP |
3053876 | Nov 1998 | JP |
3057630 | Jun 1999 | JP |
2933098 | Aug 1999 | JP |
11210835 | Aug 1999 | JP |
11210836 | Aug 1999 | JP |
2000035087 | Feb 2000 | JP |
2000046120 | Feb 2000 | JP |
3066654 | Mar 2000 | JP |
2000145894 | May 2000 | JP |
2001234980 | Aug 2001 | JP |
3333914 | Oct 2002 | JP |
2003113900 | Apr 2003 | JP |
2004092685 | Mar 2004 | JP |
3663066 | Jun 2005 | JP |
3897905 | Mar 2007 | JP |
Entry |
---|
Partial machine translation of JP3053876U, 2 pages. |
Brochure entitled “BADA Wheel Weight Solutions”, Jun. 2002. |
Web translation of foreign document DE 3118222, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20130134766 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
61564640 | Nov 2011 | US |