Vehicle window regulator having angled sprockets

Information

  • Patent Grant
  • 6779307
  • Patent Number
    6,779,307
  • Date Filed
    Tuesday, March 19, 2002
    23 years ago
  • Date Issued
    Tuesday, August 24, 2004
    21 years ago
Abstract
A vehicle window regulator including an elongate drive shaft having a drive axis and first and second drive sprockets connected at spaced locations to the drive shaft. The first and second drive sprockets may be connected to the drive shaft constant velocity joints. The first and second drive sprockets are connected to respective first and second idler wheels via respective first and second toothed drive belts, with each drive belt including a cursor for connection to a window glass.
Description




This patent application claims priority to United Kingdom (GB) patent application number 0107064.8 filed on Mar. 21, 2001.




BACKGROUND OF THE INVENTION




The present invention relates to vehicle window regulators.




Vehicles are known which include passenger doors having windows with window glass which can be lowered to open the window and raised to close the window. The window glass is raised and lowered by a window regulator. The window regulator and associated guide rails must control the pitch, roll and yaw of the window glass and must also locate the window glass in the X (fore and aft) Y (lateral) and Z (vertical) directions.




Various window regulator mechanisms are known including single and dual arm regulators and single and twin cable operated regulators.




Modern vehicle side windows have curved glass (having an axis of curvature orientated substantially in the X direction) which when raised and lowered must be guided for rotation about the center of curvature of the glass. As such, when considering a side window on a car, the lower edge of the glass (where the window regulator is attached) must be allowed to move laterally relative to the vehicle. Window regulators must therefore allow for such lateral movement.




Furthermore, on some modern vehicles the window glass is designed to move slightly rearwardly as the window glass is closed. Again the window regulator must allow for this movement.




A problem with known window regulators is that a window regulator designed for a particular door is unlikely to be usable in a different door.




SUMMARY OF THE INVENTION




An object of the present invention to provide a window regulator which can be adapted for different installations.




A further object of the present invention is to provide a window regulator which is simple and reliable in operation.




The present invention meets these objects and comprises a vehicle window regulator with an elongate drive shaft. The drive shaft has a drive axis connected at spaced locations to a first and a second drive sprocket. Each drive sprocket is connected via a first and second toothed drive belt to respective first and second idler wheels. Each drive belt includes a cursor for connection to a window glass.











BRIEF DESCRIPTION OF THE DRAWINGS




The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawings that accompany the detailed description can be briefly described as follows:





FIG. 1

is a side view of a window regulator according to the present invention;





FIG. 2

is a view of the window regulator of

FIG. 1

taken in the direction of arrow A; and





FIG. 3A

is a representative diagram showing various components of the window regulator to be connected together;





FIG. 3B

is a representative diagram illustrating a toothed belt being inserted into a mouth of a cursor;





FIG. 3C

is a representative diagram illustrating an array of teeth in the belt being engaged by an array of teeth engaged in the mouth of the cursor;





FIG. 3D

is a representative diagram of a wedge inserted into the mouth of the cursor;





FIG. 4

is a representative diagram illustrating possible relationships between the drive sprockets;





FIG. 5

is a representative diagram illustrating an alternative connection between a drive sprocket and a bore;





FIG. 6

is a representative diagram of an alternative belt and cursor arrangement.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




With reference to

FIGS. 1 and 2

, there is shown a window regulator


10


including a drive shaft


12


having a drive shaft axis


13


.




Mounted on drive shaft


12


, at spaced locations, is a first drive sprocket


14


rotatable about sprocket axis


15


and a second drive sprocket


16


rotatable about sprocket axis


17


.




Each drive sprocket is drivingly connected to the drive shaft by a constant velocity joint, in this case a Rzeppa type ball joint.




The drive shaft


12


is of hexagonal cross section and drivably engages the bores of the Rzeppa ball joint. The outside of the Rzeppa ball joints are drivably connected to the drive sprockets. As such rotation of drive shaft


12


causes corresponding rotation of drive sprockets


14


and


16


.




A motor is drivingly connected to end


12


A of shaft


12


.




An idler wheel


20


is positioned remote from the drive sprocket


14


.




A toothed belt


22


connects drive sprocket


14


and idler wheel


20


.




Secured to toothed belt


22


is a cursor


24


.




A similar arrangement of idler wheel


21


, toothed belt


23


and cursor


25


is associated with drive sprocket


16


.




A window glass


26


(shown chain dotted) is connected either directly or via connectors (not shown) to cursors


24


and


25


.




The teeth


32


of belts


22


and


23


engage corresponding teeth on drive sprockets


14


and


16


. However, wheels


20


and


21


may or may not include teeth.





FIGS. 3A

to


3


D show a method of connecting end


22


A of toothed belt


22


to cursor


24


.




Cursor


24


includes a portion


26


having a mouth


28


. One side of mouth


28


includes an array of teeth


30


corresponding to teeth


32


of toothed belt


22


.




It can be seen from

FIG. 3B

that end


22


A of toothed belt


22


is inserted into mouth


28


.





FIG. 3C

shows the array of teeth


30


of mouth


28


having been engaged by teeth


32


of toothed belt


22


.




A wedge


34


is then inserted into mouth


28


(see

FIG. 3D

) to ensure teeth


30


and


32


remain engaged. A similar arrangement is used to secure end


22


B of belt


22


to a further portion of cursor


24


, and cursor


25


is identical to cursor


24


in this regard.




A tensioning wheel


34


(shown schematically in

FIG. 2

) is spring loaded by spring


36


on to belt


23


. This ensures the belt is kept under tension and allows for manufacturing tolerance errors and also for the cursor


25


to move laterally (in the Y direction) relative to an associated vehicle as the curved window glass


26


rotates about its curved axis as it is raised and lowered.




A similar arrangement of tensioning wheel and spring is used on belt


22


.




Operation of the vehicle window regulator is as follows.




Motor


18


is selectively operated to rotate in a clockwise direction when viewing

FIG. 2

such that shaft


12


is also rotated in a clockwise direction. This results in drive sprockets


14


and


16


also rotating in a clockwise direction and driving belts


22


and


23


and hence causing cursors


24


and


25


move towards idler wheels


20


and


21


respectively, thus closing the window.




By powering motor


18


in an opposite direction the window can be caused to open.




The invention is adaptable to fit in different installations.




Thus, belts


22


and


23


can both be cut shorter or cut longer to fit within different types of doors as to allow for different heights of window glass.




Belt


22


can be a different length to belt


23


in order to vary the position of wheel


20


relative to wheel


21


, though window opening is limited by the shorter belt.




Axes


15


and


17


can be tilted more relative to axis


12


(thus moving idler wheels


20


and


21


to the right when viewing

FIG. 1

) to allow for a window glass which is designed to lift at a greater angle to the vertical. Alternatively axes


15


and


17


can be brought further in line with including parallel with axis


13


where the associated window glass lifts more vertically.




During assembly, drive sprocket


14


is slid on to shaft


12


and can be positioned at various locations along shaft


12


, as can drive sprocket


16


. This allows for the varying of the distance between cursors


24


and


25


for different lengths of window glass.




Furthermore, it can be seen that motor


18


could be positioned either between drive sprockets


14


and


16


or even to the right of drive sprocket


16


when viewing FIG.


1


.




It is also possible to provide alternative or complementary belt tensioning systems.




Thus, idler wheels


20


and


21


can be resiliently biased away from corresponding drive sprockets


14


and


16


to provide for belt tensioning. This method is particularly applicable where the toothed belts are endless belts.




Where the toothed belts have first and second ends connected to first and second portions of associated cursors then it is possible to bias the first and second portions of the cursor towards each other to effect belt tensioning, a representative view of which is shown in FIG.


6


.




In an alternative embodiment idler wheel


20


or


21


could be a toothed wheel and could be driven by a motor. As such this allows the motor to be positioned at location B or C (with a toothed wheel


20


) or at D or E (with a toothed wheel


21


). This is particularly advantageous when differing installations have differing space envelopes.




It should be noted that the invention is not limited to being operated by a motor and, alternatively, a manual arrangement could be used to raise and lower the window glass.




The components shown in

FIG. 1

(other than the window glass


26


) can be assembled into their relative positions and held there by a support structure (not shown). The components and support structure can then be assembled and secured into the door, with the support structure remaining within the door.




Alternatively, the support structure can be a temporary support structure and once the components of FIG.


1


and support structure has been positioned within the door, the components of

FIG. 1

can be secured to the door and the temporary support structure can then be removed from the door.




An alternative drive arrangement between the drive shaft and the sprocket would be a toothed periphery of the drive shaft which engages a toothed bore of the sprocket thereby allowing the shaft axis to be angled relative to the sprocket axis. An example of such a drive arrangement is shown in FIG.


5


.




Depending upon the installation and refinement of window glass raising and lowering required, constant velocity joints may not be required between the drive shaft and drive sprockets. In particular, where the axis of the drive sprocket is parallel to the axis of the drive shaft (as shown in

FIG. 4

) a simple hexagonal, square or other polygon or other non-circular shaft cross section can be used which engages with a corresponding bore of the sprocket to drive the sprocket.




The arrangement shown in

FIG. 1

shows idler wheels being positioned generally above the drive shaft and drive sprockets. Depending upon the installation the drive shaft and drive sprockets could be positioned above the idler wheels.




The aforementioned description is exemplary rather that limiting. Many modifications and variations of the present invention are possible in light of the above teachings. The preferred embodiments of this invention have been disclosed. However, one of ordinary skill in the art would recognize that certain modifications would come within the scope of this invention. Hence, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. For this reason the following claims should be studied to determine the true scope and content of this invention.



Claims
  • 1. A vehicle window regulator, comprising:an elongate drive shaft having a drive axis; first and second drive sprockets mounted at spaced locations on the drive shaft and surrounding the drive shaft; first and second toothed drive belts; first and second idler wheels connected to the first and second drive sprockets via the first and second drive belts, respectively; first and second cursors on the first and second drive belts, respectively, for connection to a window glass, wherein the drive sprockets are connected to and are driven by the drive shaft via respective first and second drive connections which enable axes of the first and second drive sprockets to be angled relative to the drive axis of the drive shaft that the drive sprockets surround.
  • 2. A vehicle window regulator as defined in claim 1, wherein a cross-section of the drive shaft has a non-circular shape.
  • 3. A vehicle window regulator as defined in claim 1, wherein a position of at least one of the first and second drive sprockets is adjustable along the drive shaft axis.
  • 4. A vehicle window regulator as defined in claim 1, wherein the drive sprockets axes are parallel to the drive shaft axis.
  • 5. A vehicle window regulator as defined in claim 1, wherein the drive connections are constant velocity drive connections.
  • 6. A vehicle window regulator as defined in claim 1, wherein each drive connection is defined by an army of teeth on the drive shaft engaging an array of teeth in a bore of the drive sprocket.
  • 7. A vehicle window regulator as defined in claim 1, wherein the first and second drive belts are endless belts.
  • 8. A vehicle window regulator as defined in claim 1, wherein at least one of the first and second drive belts includes a first end connected to a first portion of the respective cursor and a second end connected to a second portion of the respective cursor.
  • 9. A vehicle window regulator as defined in claim 8, wherein the teeth of the respective cursor second drive belts engage teeth of at least one of the first and to effect a connection there between.
  • 10. A vehicle window regulator as defined in claim 8, wherein the first and second portions of the respective cursor are elastomerically biased towards each other to provide drive belt tensioning.
  • 11. A vehicle window regulator as defined in claim 1, wherein the first and second idler wheels are biased away from the respective first and second drive sprockets to provide for belt tensioning.
  • 12. A vehicle window regulator as defined in claim 1, further comprising first and second tensioning wheels that act on the first and second drive belts to provide drive belt tensioning.
  • 13. A vehicle window regulator as defined in claim 1, further comprising a motor operably connected to the drive shaft.
  • 14. A vehicle window regulator as defined in claim 13, wherein one of the first and second drive sprockets is situated between the other of the first and second drive sprockets and the motor.
  • 15. A vehicle window regulator as defined in claim 13, wherein the motor is situated between the first and second drive sprockets.
Priority Claims (1)
Number Date Country Kind
0107064 Mar 2001 GB
US Referenced Citations (10)
Number Name Date Kind
1730204 Harris Oct 1929 A
3568366 Carella Mar 1971 A
3834080 Lystad Sep 1974 A
4893435 Shalit Jan 1990 A
4920697 Vail et al. May 1990 A
5142824 Le Compagnon et al. Sep 1992 A
5398449 Kobrehel et al. Mar 1995 A
5505022 Shibata et al. Apr 1996 A
6086133 Alonso Jul 2000 A
6119400 Ovenshire Sep 2000 A
Foreign Referenced Citations (2)
Number Date Country
1285358 Dec 1968 DE
9819034 May 1997 WO
Non-Patent Literature Citations (2)
Entry
European Search Report for Application No. EP 02 25 1111 dated May 8, 2002.
UK Patent Office Search Report under Section 17 Date of search: Jul. 26, 2001.