The present invention relates generally to a wheeled vehicle and, more particularly, to a drivetrain of a wheeled vehicle where the engine and transmission are distinct units.
All-terrain vehicles (ATVs) are designed to traverse rugged terrain. Accordingly, vehicle stability is one of the primary design considerations. As is well known in the art, vehicle stability can be improved by lowering and centralizing mass without unduly compromising ground clearance and ergonomics. Mass centralization can be improved by locating heavy components as close as possible to the geometrical center of the vehicle.
In the prior art, some ATV manufacturers (e.g. Polaris™, Yamaha™, and Kawasaki™) have developed drivetrains in which a transmission is separated from the engine. These have benefits in terms of assembly and maintenance. For example, U.S. Pat. No. 6,286,619 (Uchiyama et al.) discloses an ATV transmission in which a final drive assembly is mounted to a rear of the frame and is operatively connected to the engine via a belt or chain. This drivetrain design expedites assembly by obviating the need to install a fully assembled drivetrain (engine and transmission). Likewise, in U.S. Pat. No. 6,601,668 (Kitai et al.), a rear reduction gear case is mounted at the rear of the ATV and receives power from the engine via a rear propeller shaft.
However, since these prior-art drivetrains have a transmission mounted behind the engine, it is problematic to deliver power to the front differential and front wheels to achieve full four-wheel-drive traction.
Where a transmission is rearward of the engine casing, the conventional approach has been to route the drivetrain around the side of the engine casing or, alternatively, to route the drivetrain under the engine casing.
In the former case, routing the drivetrain around the side of the engine casing adds a number of extra components (intermediary shafts and gears). This design solution undesirably adds cost and weight, not to mention creating packaging problems, especially with respect to the footboards. This prior-art solution is also inefficient in terms of transmitting power as a greater number of joints are involved. Power transmission is also less efficient because of the meshing of angled gears needed to circumvent the engine. The increased number of rotating parts that are exposed to the environment also augments the amount of maintenance required to keep the drivetrain in proper running condition.
In the latter case, routing the drivetrain under the engine is undesirable as it elevates the center of gravity of the vehicle, thereby undermining the vehicle's handling and stability.
In light of the foregoing, there remains a need for a vehicle, and in particular an ATV, with a drivetrain that ameliorates at least one of the aforementioned deficiencies of the prior art.
It is therefore an object of the present invention to provide a wheeled vehicle with a drivetrain that ameliorates at least one of the foregoing deficiencies. To overcome at least one of the foregoing deficiencies, a wheeled vehicle is provided with a drivetrain in which a drive shaft passes through an engine casing to deliver torque from a transmission on one side of the casing to a differential on the other side of the casing. The driveshaft could be one of a front and rear driveshaft which delivers torque to a corresponding one of a front and rear differential.
In accordance with an aspect of the present invention, a wheeled vehicle has a frame; a straddle seat mounted on the frame for supporting a driver; a plurality of wheels suspended from the frame, each wheel having a tire; a steering assembly disposed on the frame forwardly of the straddle seat for steering at least one of the plurality of wheels; an engine mounted to the frame, the engine having an engine casing and a crankshaft; a transmission being driven by the crankshaft, the transmission being disposed outside of the engine casing, a drive shaft passing through the engine casing, the drive shaft being driven by the transmission and being separate from the crankshaft; and a differential being driven by the drive shaft, the drive shaft driving at least one of the plurality of wheels via the differential and other conventional components.
For the sake of clarity, the expression “different unit” refers to an element being separate from other element, although they may be connected to each other. For example, in embodiments of the present invention, although the transmission can be connected from the engine casing, it does not form part of the engine casing, it is therefore a “different unit” from the engine casing. The term “engine casing” does not require that a casing separate from the engine be disposed about the engine. An “engine casing” is generally considered to be the outside portion of the engine containing the internal components of the engine, for example the crankcase and cylinder block which respectively contain the crankshaft and cylinders. A “drive shaft” means either a unitary shaft or a shaft constructed by a number of subshafts. Other constructions of driveshaft are also contemplated. Also, the expressions “driving” and “driven” refer to the action of transmitting power from one element to another, the “driving” element transmitting power to the “driven” element.
In accordance with another aspect of the present invention, a wheeled vehicle has a frame; a straddle seat mounted on the frame for supporting a driver; a plurality of wheels suspended from the frame, each wheel having a tire; a steering assembly disposed on the frame forwardly of the straddle seat for steering at least one of the plurality of wheels; an engine mounted to the frame, the engine having an engine casing and a crankshaft; means for transmitting power being driven by the crankshaft, the means for transmitting power being disposed outside of the engine casing; means for driving at least one of the wheels passing through the engine casing, the means for driving being driven by the means for transmitting power and being separate from the crankshaft; and a differential being driven by the means for driving, the means for driving driving at least one of the plurality of wheels via the differential.
In accordance with another aspect of the present invention, a wheeled vehicle has a frame; a straddle seat mounted on the frame for supporting a driver; a plurality of wheels suspended from the frame, each wheel having a tire; a steering assembly disposed on the frame forwardly of the straddle seat for steering at least one of the plurality of wheels; an engine mounted to the frame, the engine having an engine casing and a crankshaft; and a drivetrain. The drivetrain has a transmission operatively interconnecting the crankshaft with one of the wheels; and a plurality of shafts, at least one of the plurality of shafts passing through the engine.
In some embodiments, the transmission is disposed rearwardly of the engine casing, whereby a front drive shaft passes through the engine casing to deliver torque to the front wheels via a front differential. In other embodiments, the transmission is disposed forwardly of the engine casing, whereby a rear drive shaft passes through the engine casing to deliver torque to the rear wheels via a rear differential.
In embodiments of the present invention, the transmission is detachably connected to the engine casing. Where the transmission is disposed forwardly of the engine casing, then the transmission can be connected to the forward face of the engine casing. Conversely, where the transmission is disposed rearwardly of the engine casing, then the transmission can be connected to the rearward face of the engine casing.
In embodiments of the present invention, the drive shaft passes through the engine casing above an oil pan disposed at a bottom portion of the engine so that the drive shaft does not turn in the oil, which would result in power loss and undesirable heat transfer to the oil. The drive shaft could be disposed either above the oil in the oil pan or wholly beneath the oil pan in order to avoid contact with the oil.
In other embodiments, the drive shaft passes between a pair of crankshaft counterweights. Alternatively, the drive shaft passes to the side of the counterweights.
In embodiments of the present invention, a front drive shaft is parallel to a central longitudinal axis of the vehicle and perpendicular to the crankshaft. Preferably, the front drive shaft is co-axial with an input shaft of the front differential.
In yet a further embodiment, the front drive shaft, the front differential, a rear drive shaft and a rear differential are coaxial, defining an axis parallel to the central longitudinal axis of the vehicle.
By detachably connecting the transmission to a rear face of the engine casing and by routing the front drive shaft directly through the engine casing, the resulting drivetrain optimally lowers the center of gravity of the vehicle, thereby providing improved handling and stability.
Furthermore, with the drive shaft passing through the engine casing, the resulting drivetrain is compactly packaged, thereby minimizing space requirements. Because the drivetrain is compactly packaged, the vehicle can maintain an ergonomic width and properly spaced footboards can be easily accommodated.
Moreover, since the drive shaft passes through the engine casing, the engine can provide extra bearing support. This drivetrain layout also improves the ability to integrate the 2WD-4WD selector in the transmission. Furthermore, the drive shaft is protected from damage from off-road obstacles striking the underside of the vehicle. The drive shaft is also protected from the elements, thus reducing the likelihood of corrosion and obviating the need to provide extra corrosion-resistant coatings for the drive shaft.
In summary, therefore, the drivetrain has a front (or rear) drive shaft that passes through the engine casing from the transmission to the front (or rear) differential (as the case may be). The front drive shaft can include two (or more) subshafts, at least one of which traverses the engine casing. The front drive shaft preferably passes through the engine casing at the bottom of the engine casing, most preferably passing above the oil pan and between the counterweights.
Although the transmission is described as being mounted directly to the engine casing, it should be appreciated that the transmission could be mounted only to the frame rather than directly to the engine casing. In this arrangement, the engine casing and transmission are each independently mounted to the frame and are operatively connected by a belt-driven CVT.
Therefore, a vehicle in which the drive shaft passes through the engine casing provides benefits in terms of cost, packaging, weight, simplicity, and maintenance.
Further features and advantages of the present invention will become apparent from the following detailed description, taken in combination with the appended drawings, in which:
It will be noted that throughout the appended drawings, like features are identified by like reference numerals.
The present invention is being described throughout this description as being used in an all-terrain vehicle, however it is contemplated that the invention could be used in other wheeled vehicles.
As shown in
Still referring to
As is known in the art, the ATV 10 is powered by an internal combustion engine having an engine casing 30, e.g. a 4-cycle single overhead cam engine whose cylinders are configured in a single or double V although, as will be readily appreciated by those of ordinary skill in the art, other types and configurations of engines can be substituted. The cylinders house reciprocating pistons 31 connected to a crankshaft 34, as is also well known in the art. The crankshaft 34 of the engine is coupled to a drivetrain 20 which delivers torque to the rear wheels 14, providing at least two-wheel-drive (2WD), and optionally also delivers torque to the front wheels 14 for four-wheel-drive (4WD) traction.
As shown in
As shown in
In order to enable the driver to select between 2WD and 4WD modes, the transmission 40 includes, in the preferred embodiment, a 2WD-4WD selector capable of selectively engaging or disengaging a front-to-rear drive shaft coupling. This enables a driver to switch between 2WD and 4WD. The transmission 40 can also include a transmission selector to enable a driver to select one of a plurality of drive modes for the vehicle, the drive modes including park, neutral, reverse and drive. In one embodiment, the drive modes further include high-speed drive and low-speed drive. As will be appreciated by those of ordinary skill in the art, the transmission selector can enable selection of other drive modes, e.g. three or more forward drive speeds. The transmission selector is itself connected to a shifter (not shown) that is readily accessible by the driver thereby enabling the driver to actuate the transmission selector while comfortably seated in the driver seat.
As shown in
As further illustrated in
Preferably, as illustrated in
As shown in
As illustrated in
As further illustrated in
The forward end of the intermediary shaft 84 also has splines which selectively mesh with a 2WD-4WD selector coupling, e.g. a splined sleeve 82 which is axially actuated to couple power to the first subshaft 53. The first subshaft 53 preferably passes through a bore in the mounting flange 75. The first subshaft 53 passes through the engine casing 30, passing between the counterweights 35. The first subshaft 53 terminates in the universal joint 53a for connecting to the second subshaft 52a.
As further illustrated in
Persons of ordinary skill in the art will appreciate that variations or modifications may be made to the drivetrain of the all-terrain vehicle disclosed in the specification and drawings without departing from the spirit and scope of the invention. Furthermore, persons of ordinary skill in the art will appreciate that the drivetrain described and illustrated merely represents the best mode of implementing the invention known to the Applicant; however, it should be understood that other mechanisms or configurations, using similar or different components, can be used to implement the present invention. Therefore, the embodiments of the invention described above are only intended to be exemplary. The scope of the invention is limited solely by the claims.
This application claims priority from U.S. provisional application 60/668,100 filed on Apr. 4, 2005, the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60668100 | Apr 2005 | US |