The present invention relates to a vehicle comprising a zone architecture.
E/E architectures with networking based on vehicle domains, i.e. separate, mostly star-shaped communication networks and tree-shaped vehicle electrical power system structures for each domain (chassis, drive, vehicle body (interior or exterior)), are the state of the art. The drawback is the complex cabling or the complex wiring harness.
The present invention relates to a new architectural concept for networking components installed in a vehicle. The zones front region, left-hand cabin, right-hand cabin, and rear region are advantageously differentiated, and each zone comprises a defined number of zone controllers.
Advantageously, separate zone controllers are implemented in the cabin and the rear for safety-related consumers.
According to an example embodiment of the present invention, if the consumers for implementing vehicle functions are to be supplied via a QM network, separate zone controllers are installed for this purpose. Safety-related ASIL consumers are thus safely separated from one another via a safety-related vehicle electrical power system and QM consumers are separated from one another via a QM network and complexity is reduced by the zone architectures.
According to an example embodiment of the present invention, a power source configured as a DC/DC converter is disposed in the front zone. However, it is also possible for the power source to be configured as another embodiment that appears useful to the person skilled in the art.
According to an example embodiment of the present invention, an electrical power distributor, which supplies electrical power to the right-hand cabin, left-hand cabin and rear region zones, is advantageously disposed in the front zone. This advantageously makes it possible to ensure a reliable power supply to the zones.
According to an example embodiment of the present invention, the front zone advantageously comprises a separating element, which is configured as a vehicle electrical system switch. According to the present invention, the separating element can disconnect the safety-related vehicle electrical power system from the QM network. This makes it possible to easily implement a reliable vehicle electrical power system.
By introducing a plurality of switches in each zone, the requirements with respect to effective isolation and freedom from interference between consumers for implementing vehicle functions and safety-related ASIL consumers are distributed across a plurality of safety elements. This advantageously ensures a high availability of the connected consumers for implementing vehicle functions because, in the event of a fault, multiple or entire consumer groups are not disconnected at the same time and instead only individual consumers or small groups are disconnected from the safety-related consumers by the individual switches.
Further advantages and expedient embodiments of the present invention can be found in the description of the FIGURE and the FIGURE.
The FIGURE also shows a number of zone controllers.
Consumers 20, 22 for implementing vehicle functions are disposed in the front zone 12 and the rear region zone 18. The consumers for implementing vehicle functions 20, 22 are connected to one another via a QM network 21.
Safety-related ASIL consumers 24, 26 are connected to one another via a safety-related vehicle electrical power system 25.
In the embodiment according to the present invention, a power source 30 is disposed in the front zone. The power source 30 is a DC/DC converter. Any other power source that appears useful to the person skilled in the art is possible too, however.
It is also possible for the power source 30 to be disposed in a different zone and not in the front region zone 12.
The front zone further comprises a separating element. The separating element is configured as a vehicle electrical system switch.
The separating element can disconnect the safety-related vehicle electrical power system from the QM network. The front zone thus forms a so-called safety island.
However, it is also possible for another zone to be configured as a “safety island” and for the separating element to accordingly be disposed in a different zone ECU.
In an alternative embodiment, the vehicle electrical system disconnecting switch can also be implemented as an external component that is not integrated into a zone ECU.
Each zone comprises a plurality of switches which are capable of avoiding feedback effects between the QM network 21 or the consumers for implementing vehicle functions 20, 22 and the safety-related ASIL consumers 24, 26, 28a and 28b. In the event of a fault, multiple consumer groups are not disconnected at the same time. Being able to actuate individual switches, makes it possible to only disconnect individual consumers or small groups from the safety-related consumers.
Number | Date | Country | Kind |
---|---|---|---|
10 2020 215 529.1 | Dec 2020 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2021/084365 | 12/6/2021 | WO |