The present invention relates generally to a control for powering a vehicle, and more particularly, a contactless vehicle power control.
Vehicles are known with throttle controls that are mechanical and electrical. An example of an electrical throttle control is in U.S. Pat. No. 6,581,714, which describes a steering control of a personal transporter, where the steering device uses a potentiometer coupled to the handlebar for generating a steering command upon rotation. U.S. Pat. No. 6,724,165 discloses a vehicle that uses a potentiometer as means of producing control command. In particular, the throttle is coupled to a potentiometer, where the rotation of the throttle from neutral position in one direction demands vehicle acceleration, while the rotation of throttle in second direction demands regenerative breaking.
Depending on the angular span of the actuating device, such as a throttle, a mechanical amplification is often used to map the mechanical domain of the actuation device to the electrical domain of the potentiometer. Due to the nature of the potentiometer, contact erosion is also possible. Throttle controls that rely on contact between an manipulable portion and a potentiometer or other throttle position-sensing device can have poor calibration retention due to sensitivity to environmental conditions, and can wear mechanical connections.
Thus, there remains a need to have a vehicle control where the actuating device is in contactless association with a sensing device, which can enable simple, lasting, and accurate means of vehicle control.
An aspect of the invention involves a vehicle power control having a throttle housing; a throttle rotatable relative to the throttle housing; a throttle position mechanism assembly housed at least partially within the throttle housing and including a magnetic member and a sensor rotatable with respect to each other in the housing, the throttle position mechanism operably coupled to the throttle so that rotation of the throttle translates into linear movement, which translates into rotation of the magnetic member and the sensor relative to each other so that sensor generate a signal based on sensed position of the magnetic member for controlling motive power of a vehicle.
One or more implementations of the aspect of the invention described immediately above include one or more of the following: the throttle position mechanism assembly includes a tether operably coupling the throttle and one of the magnetic member and the sensor so that rotation of the throttle is converted to linear movement in the tether, which is changed back to relative rotation between the magnetic member and the sensor that the sensor detects; the vehicle power control is part of a vehicle including a motor configured for providing motive power to the vehicle; and a controller connected to receive the signal from the sensor and to cause the motor to operate at a power level depending on the position of the throttle; the vehicle further includes handle bars configured for steering the vehicle, wherein the sensor is associated with the handle bars, and the throttle is a twist throttle mounted to the handle bars for operating the throttle and steering the handle bars; a method of using the vehicle power control including rotating the throttle relative to the throttle housing so that rotation of the throttle translates into linear movement in the throttle position mechanism, which translates into rotation of the magnetic member and the sensor relative to each other; and generating a signal with the sensor based on sensed position of the magnetic member caused from rotation of the magnetic member and the sensor relative to each other for controlling motive power of a vehicle; rotating includes rotating the throttle relative to the throttle housing so that rotation of the throttle translates into linear movement in the tether, which changes back to relative rotation between the magnetic member and the sensor; the throttle position mechanism assembly includes a spring that biases the magnetic member with a spring force to maintain constant tension on the tether, providing zero lash sensing of throttle rotation; and/or the spring force rotates the magnetic member to a fail-mode position, shutting down vehicle-enabled function, if the tether fails.
Referring to
As shown in
Preferably, sensor printed circuit board (PCB) 34 includes a throttle position sensor 35 mounted thereon. The sensor PCB 34 is preferably affixed to the PCB retainer 36 by means of the PCB retainer screw 32. As shown in
As shown generally in
Preferably, the forward travel spring 46 is seated against the throttle housing 61 and throttle bias member 44 to rotationally bias the throttle 30 toward the neutral position, when the throttle 30 is on a first side of the neutral position that would cause the motor to propel the vehicle in a forward direction. The preferred forward travel spring is a coil spring mounted coaxially about the handle bar 48, but other spring or biasing members can be used.
A reverse travel spring limiter 50 preferably houses a reverse travel spring 52 and is moveable in a direction to compress the reverse travel spring 52, but is prevented from moving in a direction to allow reverse travel spring 52 to expand past a limit position. When displaced from this limit position, reverse travel spring 52 biases reverse travel spring limiter 50 against arm 45 to bias the throttle 30 towards the neutral throttle position. Preferably, when the throttle is moved to this position, arm 45 pushes and cams the limiter 50 to compress spring 52. The reverse travel spring limiter 50 and reverse travel spring 52 are preferably disengaged from the throttle 30 when the throttle is rotated to the forward side of its movement range. The reverse travel spring limiter 50 preferably has a ledge 51 that protrudes laterally from its direction of motion to engage retainer ledge 53 of the housing 61 to limit the maximum extension of the reverse travel spring limiter 50. The forward travel spring 46 is preferably configured to exert a softer bias against the throttle than the reverse travel spring 52. In forward side, the throttle 30 is biased only by the forward travel spring 46, but in the reverse side, both forward travel spring 46 and reverse travel spring 52 act against the throttle 30 and against each other. However, reverse travel spring 52 is, sufficiently stiff to overcome forward travel spring 46 and create a stiffer bias toward neutral than the forward travel spring 46 does when throttle 30 is in forward side. Thus, the throttle biasing assembly 55 resiliently biases the throttle towards the neutral position and preferably applies a lesser rotational bias to the throttle 30 toward the neutral position when the throttle is displaced in the forward travel side thereof than when the throttle 30 is displaced from the neutral position in the reverse travel side thereof.
The throttle position sensor 35 is in contactless association with at least one of the throttle 30 and the throttle mounting portion 69, and as discussed above, is preferably mounted to the handle bar 48, and in contactless association with throttle 30. The throttle position sensor 35 is preferably configured for sensing a position of the throttle 30 with respect to the mounting portion 69, and generating a signal based on the sensed position for controlling motive power of the vehicle. The throttle position sensor 35 is preferably configured for sensing an absolute position of the throttle 30 without requiring relative movement of the throttle 30, such as without requiring initial homing movement of the throttle 30. A sensed member, which is preferably a magnetic member 28 that has a magnetic field and is associated with the one of the throttle 30 and the throttle mounting portion 69, other than the one to which the throttle position sensor 35 is mounted. Preferably, the throttle position sensor 35 is configured to sense the magnetic field, across a contactless gap 21, to sense the position of the throttle 30. The throttle position sensor 35 is preferably configured for sensing the orientation of the magnetic field to sense the position of the throttle 30. The sensor 35 is mounted to the throttle mounting portion 69 and is in contactless association with the throttle 30. Alternatively, the sensor can be mounted to throttle 30 and the signal from the throttle position sensor 35 can be transmitted across the contactless gap 21 by wireless communication or other means known in the art.
As shown in the embodiment of
In the embodiment shown in
The throttle position sensor 35 may be calibrated by rotating the threaded magnetic support plug 26, which carries the magnetic member 28, with respect to throttle 30 and/or the sensor, and fixing in position with respect to the throttle 30 by tightening the locking screw 24 when a desired signal is received from the sensor 35 and the throttle 30 is in the neutral or predetermined position.
The vehicle power control 70 controls the motive power of a vehicle. The vehicle preferably includes a motor configured for providing motive power to the vehicle, and a controller connected to receive the signal from the throttle position sensor and configured to cause the motor to operate at a power level depending on the position of the throttle. Preferably, the vehicle further includes the handle bar/sensor/throttle assembly, as described above. More preferably, the vehicle is an electric scooter, such as described in U.S. Pat. No. 6,047,786, the content of which is expressly incorporated herein by reference thereto. The scooter has two wheels, a front steerable wheel and rear drive wheel, however, the present invention can be incorporated in vehicles having multiple wheels, for example, those having three, four, or more wheels.
Referring to
Motor 100 receives a three-phase voltage from motor controller 102. The motor controller 102 has the battery DC voltage as its input and converts the battery voltage to a three-phase output to the motor 100. Alternatively, capacitors can provide DC voltage to the motor controller 102 instead of batteries or in combination with batteries. Preferably, motor controller 102 outputs a modulated signal, such as pulse width modulation, to drive the scooter motor 100. The motor controller 102 preferably includes high-power semiconductor switches which are gated (controlled) to selectively produce the waveform necessary to connect the battery pack 104 to the scooter motor 100. Other embodiments can use different suitable controllers or similar devices as known in the art.
The throttle position sensor 35 is preferably operably configured to translate a rider input from the throttle 30 into an electrical signal to operate in a forward traveling mode, a reverse traveling mode, a regenerative braking mode, or a combination thereof. In the regenerative braking mode the signal is transmitted to a regenerative braking control module 84, including a microprocessor on the scooter controller 118. Preferably, sensor PCB 34 has three wires: a power lead 76, a ground 78, and a signal wire 80. The wires are preferably arranged to exit through the sensor wire slot 42, as shown in
The braking system can be configured to apply a regenerative braking torque to the drive wheel when the sensor 35 signals a regenerative braking command and the process sensors signal a drive wheel velocity that is greater than zero. An embodiment of regenerative braking system is described in U.S. Pat. No. 6,724,165, the content of which is expressly incorporated herein by reference thereto. Preferably, the braking torque increases with an increase in a signal from the sensor 35 as controlled by the rider. In essence, during the regenerative braking mode, the motor preferably acts as a generator supplying current to the battery, which loads down the generator and thereby causes a braking action.
Battery pack 104 preferably includes sufficient batteries connected in series to provide at least 100 VDC, although alternative embodiments can provide lesser voltages. The battery pack 104 preferably includes nickel metal hydride (Ni-MH) batteries, for example, 30 amp-hour, 120 volt Ni-MH batteries, although other battery types, such as lead-acid batteries, NiZn batteries, or lithium ion batteries, can also be used. Regardless of which types of batteries are used, the batteries of the present invention are preferably rechargeable. In one embodiment, a battery charger 106 is used to recharge battery pack 104. Battery charger 106 preferably resides on-board the scooter and is connectable to an AC outlet via a plug 108 or the like. Alternatively, the battery charger 106 can be separate from the scooter and is connected to the scooter only during, for example, high-current charging sessions.
Scooter controller 118 preferably sends signals to the motor controller 102, the battery charger 106 (when provided on-board the scooter), and the charge controller 160. The charge of the battery pack 104 is monitored via a battery monitor 120, which in turn is connected to the scooter controller 118 to provide information which can affect the operation of the scooter controller 118. The energy state of the battery pack 104 is displayed on a battery gauge 122 so that the rider can monitor the condition of the battery pack 104.
Charge controller 160 is capable of controlling power to a nominal 120 volt DC battery pack, which can be, for example, the battery pack 104. An embodiment of charge controller 160 is described in U.S. Pat. No. 5,965,996, the content of which is expressly incorporated herein by reference thereto. While several suitable charging schemes can be used, the charge controller 160 preferably charges a battery pack by first using a constant current until the battery pack reaches about 140 volts, then applying a constant voltage at about 140 volts, and then reapplying a constant current until the battery pack reaches about 156 volts. Each of these voltage set points can be specified and varied under the control of the scooter controller 118. Battery gauge 122 is preferably provided to show the battery and charging status.
Referring to
In the embodiment shown, the battery supply 104 includes 30 amp-hour, 120 volt Ni-MH batteries. In alternative embodiments, the battery supply can include lead acid 16 or 18 amp-hour batteries. The lower amp-hour rating batteries are preferably used when the scooter is designed to commute only a small distance within an urban area, whereas the 26 amp-hour batteries are preferably used when the scooter is designed to travel in suburban as well as rural areas with a longer commuting distance. In another embodiment, nickel zinc (Ni—Zn) batteries or lithium ion batteries can be used instead of the lead-acid type. Alternative embodiments can also include other types of batteries or power storage devices.
In the embodiment shown, a battery charger is preferably included to charge the batteries from an external power source. The battery charger can preferably be plugged into a 120 volt, 60 Hz AC power supply or a 220 volt, 50 Hz AC power supply.
In another embodiment, capacitors are used in combination with batteries, and in a further embodiment, capacitors are used instead of batteries. For example, ultra-capacitors can take a charge and release it at a faster rate, and in some applications, ultra-capacitors can be superior to batteries in delivering load currents to the motor when accelerating. Power management and electronic controls for capacitors can be simpler than for batteries.
In the embodiment of
Additionally, rotation of the handle from the neutral position in the reverse side can include a plurality of subranges. For instance, movement over a first subrange can demand regenerative braking, and movement over a second subrange can demand another type of braking. In one example, the first subrange can include a rotational displacement within about the first 25% or 10% of the range, and the second subrange can include a displacement within the remaining range of motion.
In another embodiment, the throttle 30 is capable of rotating from the resting neutral position about the handle in a first direction only (i.e., non-bidirectional). The first direction can include single or multiple subranges with each subrange of the throttle 30 providing different functionality. In one embodiment, the first direction is limited to a single subrange and rotation of the throttle 30 in the first direction provides forward propulsion power. In another embodiment, first direction includes multiple subranges and rotation of the throttle 30 in the first direction from the resting position over a first subrange to a first rotation position can demand regenerative braking, and further rotation of the handle from the first rotation position over a second subrange to a second rotation position can demand vehicle acceleration. In one example, the first subrange can include a rotational displacement preferably within about the first 5% to 15% of the total range, more preferably within about 10% of the total range, and the second subrange can include a displacement within the remaining range of motion. In another embodiment, a brake control, such as a hand lever or foot pedal, with a first portion of the brake control travel, such as about 10%, activates regenerative braking, and further actuation activates one or more different types of braking, such as friction braking, in addition to or instead of the regenerative braking. In a further embodiment, the first direction includes a single range only and positioning of the throttle 30 in this direction provides forward propulsion power.
Also, the throttle 30 can allow the vehicle to have reverse capability, such as for very low-speed maneuvering (for example, at speeds with feet on the ground), although other vehicles can have varying reverse speeds. Maximum driving torque in reverse is greatly reduced compared to forward driving torque, and the vehicle speed is limited to about 5 mph or to a walking speed. In one embodiment, the rider can preferably enable reverse operation via a switch on the handlebars. In another embodiment, the twist-grip throttle 30 operates the vehicle in reverse when a switch on the handlebars is positioned in reverse mode. In yet another embodiment, controller 118 determines whether the motor is operated for regenerative braking or reverse power. This determination can be made, for example, depending on the present speed of the vehicle (vehicle preferably includes speed sensor connected to the controller 118). Preferably, twisting the handgrip in the counter-clockwise direction when viewed from the right-hand side of the vehicle will control forward throttle, while twisting the handgrip in the opposite direction will control regenerative braking in normal forward operating mode, and reverse torque in reverse mode.
In another embodiment, rider controlled regenerative braking demand is managed by an actuating device that is separate from the vehicle acceleration throttle 30. The separate actuating device can be another hand-brake, a thumb lever, or a foot pedal, among others. In this embodiment, the throttle is used only for forward or reverse power.
With reference to
In the embodiment shown, the vehicle power control 270 is a braking regeneration (“regen”) throttle assembly having the regen features shown and described with respect to
A throttle position mechanism assembly 274, which is coupled to the rotating cam assembly 230 at one end, is carried within throttle housing 261. The upper housing 264 and lower housing 265, the throttle position mechanism assembly 274 and end of the rotating cam assembly 230, and the components within the throttle housing 261 are secured together via a plurality of fasteners (e.g., screws 266, screw 268, nuts 278, and U-bolt 282).
With reference to
A tether or cable 310 operably couples the rotating throttle 230 with the rotating magnet assembly 302 so that rotation of the throttle 230 causes linear movement in the tether 310, which causes rotating movement of the magnet assembly 302 for sensing the position of the magnetic member 228, and, hence, the position of the throttle, via the throttle position sensor 235 in the manner described above with respect to
Compared to the vehicle power control 70 and method described above with respect to
The term “about,” as used herein, should generally be understood to refer to both the corresponding number and a range of numbers. Moreover, all numerical ranges herein should be understood to include each whole integer within the range.
While illustrative embodiments of the invention are disclosed herein, it will be appreciated that numerous modifications and other embodiments can be devised by those skilled in the art. Features of the embodiments described herein, can be combined, separated, interchanged, and/or rearranged to generate other embodiments. Therefore, it will be understood that the appended claims are intended to cover all such modifications and embodiments that come within the spirit and scope of the present invention.
This application is a continuation-in-part of U.S. patent application Ser. No. 12/836,380 filed Jul. 14, 2010, which is a continuation of U.S. patent application Ser. No. 11/762,596 filed Jun. 13, 2007, which is a continuation of PCT/US07/70980 filed Jun. 12, 2007, which claims the benefit of provisional application no. 60/813,364, filed on Jun. 14, 2006, which are all hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11762596 | Jun 2007 | US |
Child | 12836380 | US | |
Parent | PCT/US07/70980 | Jun 2007 | US |
Child | 11762596 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12836380 | Jul 2010 | US |
Child | 13350092 | US |