The present invention relates generally to a vehicle and in particular to a utility vehicle with space utilization features for storage, component access, and for other reasons.
Vehicles including utility vehicles, all-terrain vehicles, tractors, and others are known. It is known to provide a vehicle with a hitch and to attach sub-assemblies having axles to the hitch in a pivotal manner. Sub-assemblies generally include trailers. The vehicle's hitch powers such sub-assemblies. The hitch is configured to allow sub-assemblies to pivot vertically or horizontally or both about the hitch. It is also known to provide a vehicle with a cargo bed and with platforms covered by roofs or hoods.
Multiple embodiments are disclosed herein which display a utility vehicle with space utilization features. The utility vehicle has a main frame supported by a plurality of ground engaging members, an engine, an operator area, a dashboard, and a cargo platform. The cargo platform is normally exposed and is located forward of the dashboard and at least partially between the front ground engaging members.
In still another embodiment, the vehicle has at least three spaced-apart main couplings and a detachable subsection. The detachable subsection has a subframe including a plurality of frame members cooperating to define an interior storage region. The subsection also has at least two ground engagement members and at least three subsection front couplings. The subsection front couplings are adapted to detachably couple the subsection to the main couplings of the main frame. The subsection front couplings are spaced apart to substantially prevent the modular subsection from pivoting relative to the main frame when the modular subsection is coupled to the main frame.
The above mentioned and other features of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings.
Corresponding reference characters indicate corresponding parts throughout the several views. Unless stated otherwise the drawings are proportional.
The embodiments disclosed below are not intended to be exhaustive or to limit the invention to the precise forms disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may utilize their teachings. While the present disclosure is primarily directed to a utility vehicle, it should be understood that the features disclosed herein may have application to other types of vehicles such as all-terrain vehicles, motorcycles, watercraft, snowmobiles, and golf carts.
Referring to
In one embodiment, one or more of the wheels may be replaced with tracks, such as the Prospector II Tracks available from Polaris Industries, Inc. located at 2100 Highway 55 in Medina, Minn. 55340. In one embodiment, a track is placed around the tires of the wheels middle axle 108 and rear axle 110 on each side of vehicle 100.
Vehicle 100 further includes a frame 104 supported by the plurality of ground engaging members 102. As explained in more detail in U.S. Provisional Application Ser. No. 60/918,502 filed Mar. 16, 2007, titled “VEHICLE”, frame 104 may include a modular subsection 112 which is supported by rear axle 110. Modular subsection 112 may be removed from the remainder of vehicle 100 to convert vehicle 100 from a six-wheeled vehicle to a four-wheeled vehicle. Further, additional modular subsections 112 may be added to vehicle 100 to convert vehicle 100 from a six-wheeled vehicle to an eight-wheeled vehicle or more.
Vehicle 100 includes an operator area 114 which includes seating 116 for one or more passengers. Operator area 114 further includes a plurality of operator controls 120 by which an operator may provide input into the control of vehicle 100. Controls 120 include a steering wheel 122 which is rotated by the operator to change the orientation of one or more of ground engaging members 102, such as the wheels associated with front axle 106, to steer vehicle 100.
Controls 120 also include a first foot pedal 124 actuatable by the operator to control the acceleration and speed of vehicle 100 through the control of an engine described in more detail in U.S. Provisional Application Ser. No. 60/918,502 filed Mar. 16, 2007, titled “VEHICLE”, and a second foot pedal 126 actuatable by the operator to decelerate vehicle 100 through a braking system described in more detail in U.S. Provisional Application Ser. No. 60/918,502 filed Mar. 16, 2007, titled “VEHICLE”. Additional details regarding the operator area, including controls 120, are provided in U.S. Provisional Application Ser. No. 60/918,556 filed Mar. 16, 2007, titled “VEHICLE”.
Frame 104 includes a portion 130 extending above operator area 114. Portion 130 is provided to protect the occupants of operator area 114 if vehicle 100 tips or rolls over. In the illustrated embodiment, portion 130 is a roll cage 132. In one embodiment, portion 130 is moveable from a first position protecting operator area 114 to a second position which provides vehicle 100 with a smaller envelope than when portion 130 is in the first position. Additional details about exemplary moveable portions are provided in U.S. Provisional Application Ser. No. 60/918,500 filed Mar. 16, 2007, titled “METHOD AND APPARATUS RELATED TO TRANSPORTABILITY OF A VEHICLE”.
Vehicle 100 further includes a front platform 140 supported by frame 104 and a rear platform 150 supported by frame 104. Both front platform 140 and rear platform 150 are shown having a support surface 142 and 152, respectively. Support surfaces 142 and 152 may be flat, contoured, and/or comprised of several sections. In addition, one or both of front platform 140 and rear platform 150 may include upstanding walls to define a cargo box extending over at least a portion of the respective platform 140 and 150. The platforms are not covered by any vehicular components and are therefore normally exposed.
Further, portions of front platform 140 and rear platform 150, along with portion 130 of frame 104 may include devices for attaching various types of assets to vehicle 100. Exemplary assets including cargo containers, seats, gun mounts, footrests, and other suitable assets. Additional details regarding rear platform 150 are provided in U.S. Provisional Application Ser. No. 60/918,356 filed Mar. 16, 2007, titled “UTILITY VEHICLE HAVING MODULAR COMPONENTS”.
Several areas of vehicle 100 are designed to utilize the available space for storage, providing access to vehicle components, mounting or supporting equipment and other items, and for other functions. As shown in
Front platform 140 includes an upper plate 154 and a pair of sidewalls 156, 158. The preferred embodiment of upper plate 154 is about 60 inches wide (from Driver's side to passenger side), about 22 inches deep (from front to back), and substantially flat, but may be contoured. Plate 154 defines support surface 142 that supports various pieces of equipment, such as storage containers, weapons (guns, artillery pieces, etc.) ammunition, passenger seats, etc. Support surface is about 38.5 inches above the ground, but may be higher or lower.
Support surface 142 is positioned relative to operator area 114 to facilitate carrying cargo and preserving the sight line of the occupants in operator area 114 and the ability of the occupants to use equipment. As shown in
As shown in
According to an alternative embodiment of the present disclosure, through mounting apertures (not shown) are provided in upper plate 154 and sidewalls 156, 158 to receive expansion retainers (not shown) with or without D-clips 166. Additional details of such mounting apertures and expansion retainers are provided in U.S. Pat. No. 7,055,454, to Whiting et al., filed Jul. 13, 2004, titled “Vehicle Expansion Retainers,” the disclosure of which is expressly incorporated by reference herein. Front platform 140 may also be provided with the various mounting devices, mounting patterns, and other mounting features of rear platform 150 described in U.S. Provisional Application Ser. No. 60/918,356 filed Mar. 16, 2007, titled “UTILITY VEHICLE HAVING MODULAR COMPONENTS”, the disclosure of which is expressly incorporated by reference herein. Because the mounting features of front and rear platforms 140, 150 match, equipment that can be mounted on rear platform 150 may also be mounted on front platform 140 and vice versa.
Upper plate 154 and sidewalls 156, 158 are coated with a non-slip material to reduce sliding or shifting of equipment. According to a preferred embodiment, upper plate 154 and sidewalls 156, 158 are sprayed with a polymer, such as polyurethane, polyurethane with urea, and other coating materials used for spray-on truck bed liners.
As shown in
A gas spring (not shown) extends from front platform 140 to another component of vehicle 100, such as frame 104, to support front platform 140 in the raised position. Other devices, such as torsion springs, may be provided between brackets 176 of front platform 140 and brackets 178 of frame 104 to assist in holding front platform 140 in the raised position.
When in the lowered position, brackets 181 (shown in
Several components of vehicle 100 are positioned within dashboard 162. A master cylinder 184 (shown in
As shown in
According to one embodiment of vehicle 100, the electrical fuses (not shown) of vehicle 100 can be accessed through a panel 210 (shown in
As shown in
Speedometer 216 displays vehicle speed and various distance and operational indicators. Speedometer 216 includes a plurality of modes controlled by speedometer mode switch 217. These modes may include a vehicle odometer reading, multiple trip indicators, a vehicle hour meter, a trip hour meter, and other operational values of the vehicle, such as oil pressure, fuel level, and other operational values. When pressed, mode switch 217 activates a menu displayed on speedometer 216. Each time mode switch 217 is pressed, it switches to a different mode. For example, when pressed the first time, a first trip indicator is displayed. If the operator repeatedly presses mode switch 217, it will scroll through the various modes and display the information associated with the mode. Some modes can be reset. For example, if the operator holds mode switch 217 for a predetermined time, such as three seconds, while displaying the first trip indicator, the first trip indicator resets.
To switch the vehicle brake between the parked and released positions, the operator moves brake lever 218. To switch between high gear, low gear, reverse, and park, the driver moves shift lever 220 up and down to the appropriate position.
Headlights 232 and other light sources on vehicle 100 emit visible light. To turn headlights 232 on and off, the driver operates visible light switch 225 between high beam, low beam, or off. Vehicle 100 is also provided with IR headlights (not shown) and other IR emitting lights that permit an operator wearing night vision goggles to see when it is dark. Normally, when the IR lights are running, the visible lights, such as headlights 232, are turned off to avoid detection. To turn the IR lights on and off, the driver operates IR light switch 226. In some circumstances, it is desirable to operate vehicle 100 without any lights (visible or IR). In these circumstances, the driver operates blackout switch 228 that turns both the visible and IR lights off. Additional details of a light system having both visible and IR lights is provided in U.S. Pat. No. 7,125,134 to Hedlund et al., filed Oct. 15, 2003, titled “Switch Enabled Infrared Lighting System With Non-IR Light Elimination,” the disclosure of which is expressly incorporated by reference herein.
The drive characteristics of vehicle 100 can be altered with wheel drive switch 222 and ADC switch 223. The driver uses wheel drive switch 222 to toggle between two-wheel drive, two wheel drive with a locked differential, and all wheel drive. The driver uses ADC switch 223 to turn the all drive control on and off. Additional details of the various transmission modes of vehicle 100 are provided in U.S. Provisional Patent Application Ser. No. 60/918,502 filed Mar. 16, 2007, titled “VEHICLE”.
As shown in
Because air intakes 234, 236 are positioned in dashboard 162, they are positioned above the engine and CVT 238. This permits the engine and CVT 238 to operate without the intrusion of water if the engine and/or CVT 238 are submersed in water, for example, when crossing a ditch, creek, river, pond, or other body of water. According to the preferred embodiment of the present disclosure, air intakes 234, 236 are positioned about 42 inches above the ground. Additionally, because air intakes 234, 236 are preferably positioned in dashboard 162, they are partially positioned rearward of a footrest portion 250 of floorboard 246, above and rearward of front platform 140, forward of steering wheel 122, and forward of the engine and CVT 238. Additional relative relationships of air intakes 234, 236 are inherent based on the figures.
As shown in
According to the preferred embodiment of the present disclosure, rectifier 174 is positioned on the cool side of radiator 170 as shown in
In addition to front and rear platforms 140, 150, vehicle 100 includes other areas for storage of cargo. One such area includes spaces below seating 116. As shown in
Another alternative embodiment under-seat storage arrangement is shown in
Another alternative embodiment under-seat storage arrangement is shown in
In addition to under-seat storage, vehicle 100 also includes above seat storage. As shown in
Fuel storage is also provided under seating 116 as shown in
Additional storage is provided in a base frame 310 of modular sub-section 112. As shown in
While this invention has been described as having an exemplary design, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.
The present application claims the benefit of U.S. Provisional Application Ser. No. 60/918,444, filed Mar. 16, 2007 titled “VEHICLE WITH SPACE UTILIZATION”, the disclosure of which is expressly incorporated by reference herein. The disclosures of U.S. Provisional Application Ser. No. 60/918,502 filed Mar. 16, 2007, titled “VEHICLE”, U.S. Provisional Application Ser. No. 60/918,556, filed Mar. 16, 2007, titled “VEHICLE”, U.S. Provisional Application Ser. No. 60/918,356 filed Mar. 16, 2007, titled “UTILITY VEHICLE HAVING MODULAR COMPONENTS”, and U.S. Provisional Application Ser. No. 60/918,500, filed Mar. 16, 2007, titled “METHOD AND APPARATUS RELATED TO TRANSPORTABILITY OF A VEHICLE”, are expressly incorporated by reference herein.
Portions of this application may be subject to the terms of contract number H92222-06-C-0039 with the United States Special Operations Command (SOCOM).
Number | Name | Date | Kind |
---|---|---|---|
2672103 | Hohmes | Mar 1954 | A |
3858902 | Howells et al. | Jan 1975 | A |
4027892 | Parks | Jun 1977 | A |
4098414 | Abiera | Jul 1978 | A |
4561323 | Stromberg | Dec 1985 | A |
4821825 | Somerton-Rayner | Apr 1989 | A |
4934737 | Nakatsuka | Jun 1990 | A |
5036939 | Johnson et al. | Aug 1991 | A |
5251713 | Enokimoto | Oct 1993 | A |
5863277 | Melbourne | Jan 1999 | A |
5950750 | Dong et al. | Sep 1999 | A |
6092877 | Rasidescu et al. | Jul 2000 | A |
6149540 | Johnson et al. | Nov 2000 | A |
6199894 | Anderson | Mar 2001 | B1 |
6467787 | Marsh | Oct 2002 | B1 |
6622968 | St. Clair et al. | Sep 2003 | B1 |
6695566 | Navio | Feb 2004 | B2 |
6725962 | Fukuda | Apr 2004 | B1 |
6752235 | Bell et al. | Jun 2004 | B1 |
6786526 | Blalock | Sep 2004 | B1 |
6799779 | Shibayama | Oct 2004 | B2 |
6799781 | Rasidescu et al. | Oct 2004 | B2 |
6916142 | Hansen et al. | Jul 2005 | B2 |
6923507 | Billberg et al. | Aug 2005 | B1 |
6978857 | Korenjak | Dec 2005 | B2 |
7055454 | Whiting et al. | Jun 2006 | B1 |
7124853 | Kole, Jr. | Oct 2006 | B1 |
7125134 | Hedlund et al. | Oct 2006 | B1 |
7237789 | Herman | Jul 2007 | B1 |
7239032 | Wilson et al. | Jul 2007 | B1 |
7431024 | Buchwitz et al. | Oct 2008 | B2 |
20020147072 | Goodell et al. | Oct 2002 | A1 |
20020178968 | Christensen | Dec 2002 | A1 |
20030001409 | Semple et al. | Jan 2003 | A1 |
20040079561 | Ozawa et al. | Apr 2004 | A1 |
20040108159 | Rondeau et al. | Jun 2004 | A1 |
20040195797 | Nash et al. | Oct 2004 | A1 |
20050173177 | Smith et al. | Aug 2005 | A1 |
20050173180 | Hypes et al. | Aug 2005 | A1 |
20050248116 | Fanson | Nov 2005 | A1 |
20080023240 | Sunsdahl et al. | Jan 2008 | A1 |
20080023249 | Sunsdahl et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
317 335 | Nov 1956 | CH |
116 605 | Feb 1900 | DE |
17 55 101 | Apr 1971 | DE |
30 33 707 | Apr 1982 | DE |
0238077 | Sep 1987 | EP |
0 709 247 | May 1996 | EP |
0794096 | Sep 1997 | EP |
1 215 107 | Jun 2002 | EP |
1557345 | Jul 2005 | EP |
1 564 123 | Aug 2005 | EP |
11 334447 | Dec 1999 | JP |
2000 177434 | Jun 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20090121518 A1 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
60918444 | Mar 2007 | US |