The present invention relates to a vehicle including a plurality of assembled batteries having different characteristics.
A battery system described in Patent Document 1 includes a high-capacity battery and a high-power battery which are connected in parallel to a load. The high-capacity battery has an energy capacity larger than that of the high-power battery. The high-power battery allows charge and discharge with a current larger than that in the high-capacity battery.
[Patent Document 1] Japanese Patent Laid-Open No. 2006-079987
Patent Document 1 has disclosed a vehicle including the high-capacity battery and the high-power battery but has not made any disclosure of an arrangement of the high-capacity battery and the high-power battery. The high-capacity battery and the high-power battery may have different characteristics or may be used in different manners. The salability of the vehicle may be reduced unless the high-capacity battery and the high-power battery are mounted on the vehicle in view of the characteristics and the like of the high-capacity battery and the high-power battery.
A vehicle according to the present invention has a motor serving as a driving source for running the vehicle and assembled batteries each capable of supplying an electric power to the motor. The assembled batteries are placed in a luggage space of the vehicle and include a high-power assembled battery and a high-capacity assembled battery which are constituted by secondary batteries, respectively. The high-power assembled battery is capable of charge and discharge with a current relatively larger than that in the high-capacity assembled battery. The high-capacity assembled battery has an energy capacity relatively larger than that of the high-power assembled battery and has a higher dependence of battery characteristic on temperature than that of the high-power assembled battery. The high-capacity assembled battery is placed over the high-power assembled battery in the vehicle.
The placement of the high-capacity assembled battery over the high-power assembled battery can facilitate dissipation of heat produced in the high-capacity assembled battery. Since the high-capacity assembled battery has the higher dependence of battery characteristic on temperature than the high-power assembled battery, the facilitated heat dissipation from the high-capacity assembled battery can ensure the battery characteristics of the high-capacity assembled battery. The battery characteristics include the input/output power of the battery, the capacity of the battery and the like.
In running the vehicle including an engine serving as a driving source for running the vehicle by using an output from the motor with the engine stopped, the high-capacity assembled battery can supply a more electric power to the motor than that in the high-power assembled battery. The preferential use of the high-capacity assembled battery can ensure the running distance of the vehicle with the electric energy to improve the fuel economy.
In the running of the vehicle using the output from the motor with the engine stopped, the frequency of use of the high-capacity assembled battery is higher than the frequency of use of the high-power assembled battery. In running of the vehicle using the output from the motor with the engine stopped, the proportion of the electric power supplied from the high-capacity assembled battery to the motor in the electric power supplied to the motor is higher than the proportion of the electric power supplied from the high-power assembled battery to the motor.
The high-capacity assembled battery can be charged with an electric power supplied from an external power source. In running of the vehicle using the output from the motor with the engine stopped, the high-capacity assembled battery can be discharged until the SOC (State Of Charge) of the high-capacity assembled battery is close to 0%. After the discharge of the high-capacity assembled battery, the high-capacity assembled battery is charged by using the external power source to allow the reuse of the high-capacity assembled battery in running of the vehicle using the output from the motor with the engine stopped.
The high-capacity assembled battery can have a size larger than that of the high-power assembled battery to increase the capacity of the high-capacity assembled battery, thereby extending the running distance of the vehicle when the electric energy is used. In the luggage space, space for placing the assembled battery can be provided easily in an upper portion of the vehicle. Since the high-capacity assembled battery is placed above the high-power assembled battery, the high-capacity assembled battery larger than the high-power assembled battery can be placed readily in the luggage space.
The high-capacity assembled battery is replaced at a frequency higher than that of the high-power assembled battery. Since the high-capacity assembled battery has the higher dependence on temperature than the high-power assembled battery, the high-capacity assembled battery may be deteriorated more easily than the high-power assembled battery in response to temperature changes. In addition, when the high-capacity assembled battery continues to be used at a frequency higher than that of the high-power assembled battery, the high-capacity assembled battery may be deteriorated more easily than the high-power assembled battery. Once the high-capacity assembled battery is deteriorated, the high-capacity assembled battery needs replacement. The high-capacity assembled battery is used to ensure the running distance of the vehicle as described above, and the capacity of the high-capacity assembled battery can be changed to respond to the need of a user. In this case, the high-capacity assembled battery also needs replacement. Thus, the frequency of replacement of the high-capacity assembled battery is higher than that of the high-power assembled battery.
Since the high-capacity assembled battery is placed above the high-power assembled battery, an operator easily accesses the high-capacity assembled battery. Thus, the operator can easily replace the high-capacity assembled battery.
The high-power assembled battery can include a plurality of cells connected in series. The high-capacity assembled battery can include a plurality of cells connected in parallel. A square-type cell can be used as the cell of the high-power assembled battery, and a cylinder-type cell can be used as the cell of the high-capacity assembled battery.
Specifically, a battery pack including the high-power assembled battery can include a plurality of square-type cells placed side by side in a predetermined direction and a case accommodating the plurality of square-type cells. A battery pack including the high-capacity assembled battery can include a plurality of cylinder-type cells, a holder supporting the plurality of cylinder-type cells, and a case accommodating the plurality of cylinder-type cells and the holder. The holder can be provided with through holes into which each of the plurality of cylinder-type cells is inserted. An end face of the holder is in contact with the case. The cylinder-type cell extends in a direction orthogonal to a predetermined plane (the plane on which the holder is placed), and the plurality of cylinder-type cells are placed in order within the predetermined plane.
The configuration of the battery pack including the high-power assembled battery and the battery pack including the high-capacity assembled battery described as above can provide greater rigidity for the battery pack including the high-capacity assembled battery than for the battery pack including the high-power assembled battery. Even when an external force is applied to the case of the battery pack including the high-capacity assembled battery, the external force can be received by the holder in contact with the case. Since the high-capacity assembled battery is placed above the high-power assembled battery, the high-capacity assembled battery is at the position where it often receives the external force. The greater rigidity provided for the battery pack including the high-capacity assembled battery than that for the battery pack including the high-power assembled battery can withstand the external force.
A heat exchange medium used in temperature adjustment of the high-power assembled battery can enter into space formed between two of the cells adjacent in the predetermined direction to exchange heat with the high-power assembled battery. A heat exchange medium used in temperature adjustment of the high-capacity assembled battery can move along the predetermined plane to exchange heat with the high-capacity assembled battery.
Such a flow path for the heat exchange medium in the high-power assembled battery has a pressure loss which tends to be higher than that in the high-capacity assembled battery. As the pressure loss is increased, noise is produced more easily. Since the high-capacity assembled battery is placed above the high-power assembled battery, the high-capacity assembled battery can block the noise produced in the high-power assembled battery. This can prevent the noise produced in the high-power assembled battery from being directed toward the outside (especially, the space where passengers ride).
An embodiment of the present invention will hereinafter be described.
A battery system according to the present embodiment is described with reference to
The battery system has a high-power assembled battery 10 and a high-capacity assembled battery 20 which are connected in parallel to each other. The high-power assembled battery 10 is connected to an inverter 31 through system main relays SMR-B1 and SMR-G1. The high-capacity assembled battery 20 is connected to the inverter 31 through system main relays SMR-B2 and SMR-G2. The inverter 31 converts a DC power supplied from each of the assembled batteries 10 and 20 into an AC power.
A motor generator 32 (AC motor) is connected to the inverter 31 and receives the AC power supplied from the inverter 31 to generate a kinetic energy for running the vehicle. The motor generator 32 is connected to wheels 33. An engine 34 is connected to the wheels 33, and a kinetic energy generated by the engine 34 is transferred to the wheels 33.
For decelerating or stopping the vehicle, the motor generator 32 converts a kinetic energy produced in braking the vehicle into an electric energy (AC power). The inverter 31 converts the AC power generated by the motor generator 32 into a DC power and supplies the DC power to the assembled batteries 10 and 20. This allows the assembled batteries 10 and 20 to store the regenerative power.
A controller 35 outputs a control signal to each of the inverter 31 and the motor generator 32 to control the driving thereof. The controller 35 also outputs a control signal to each of the system main relays SMR-B1 and B2, and SMR-G1 and G2 to make switching thereof between ON and OFF.
When the system main relays SMR-B1 and SMR-G1 are ON, charge and discharge of the high-power assembled battery 10 are allowed. When the system main relays SMR-B1 and SMR-G1 are OFF, the charge and discharge of the high-power assembled battery 10 are inhibited. When the system main relays SMR-B2 and SMR-G2 are ON, charge and discharge of the high-capacity assembled battery 20 are allowed. When the system main relays SMR-B2 and SMR-G2 are OFF, the charge and discharge of the high-capacity assembled battery 20 are inhibited.
While the assembled batteries 10 and 20 are connected to the inverter 31 in the present embodiment, the present invention is not limited thereto. Specifically, a step-up circuit may be placed on the current path between the assembled batteries 10 and 20 and the inverter 31. This arrangement enables the step-up circuit to increase the voltage output from each of the assembled batteries 10 and 20.
The vehicle according to the present embodiment includes not only the assembled batteries 10 and 20 but also the engine 34 as the power source for running the vehicle. The engine 34 includes one which employs gasoline, a diesel fuel, or a biofuel.
The vehicle according to the present embodiment can be run by using only the output from the high-power assembled battery 10 and the output from the high-capacity assembled battery 20. This running mode is referred to as an EV (Electric Vehicle) mode. For example, the vehicle can be run by discharging the high-capacity assembled battery 20 from near 100% to near 0% SOC (State of Charge). After the SOC of the high-capacity assembled battery 20 reaches near 0%, an external power source can be used to charge the high-capacity assembled battery 20. The external power source refers to a power source placed outside the vehicle and provided as a unit separate from the vehicle. A commercial power source can be used as the external power source, for example. When the commercial power source is used, a charger is required to convert an AC power into a DC power.
When a driver presses an accelerator pedal to increase the output required of the vehicle in the EV running mode, not only the output from the high-capacity assembled battery 20 but also the output from the high-power assembled battery 10 can be used to run the vehicle. The combinational use of the high-capacity assembled battery 20 and the high-power assembled battery 10 can ensure the battery output in accordance with the pressing of the accelerator pedal to improve the drivability.
After the SOC of the high-capacity assembled battery 20 reaches near 0%, the high-power assembled battery 10 and the engine 34 can be used in combination to run the vehicle. This running mode is referred to as an HV (Hybrid Vehicle) running mode. In the HV running mode, the charge and discharge of the high-power assembled battery 10 can be controlled such that the SOC of the high-power assembled battery 10 is changed on the basis of a predefined reference SOC, for example.
Specifically, when the SOC of the high-power assembled battery 10 is higher than the reference SOC, the high-power assembled battery 10 can be discharged to bring the SOC of the high-power assembled battery 10 closer to the reference SOC. Alternatively, when the SOC of the high-power assembled battery 10 is lower than the reference SOC, the high-power assembled battery 10 can be charged to bring the SOC of the high-power assembled battery 10 closer to the reference SOC. In the HV running mode, not only the high-power assembled battery 10 but also the high-capacity assembled battery 20 can be used. Specifically, the capacity of the high-capacity assembled battery 20 is reserved, and the high-capacity assembled battery 20 can be discharged in the HV running mode. In addition, the regenerative power may be stored in the high-capacity assembled battery 20.
As described above, the high-capacity assembled battery 20 can be used mainly in the EV running mode, and the high-power assembled battery 10 can be used mainly in the HV running mode. The main use of the high-capacity assembled battery 20 in the EV running mode means the following two cases. Firstly, it means that the frequency of use of the high-capacity assembled battery 20 is higher than that of the high-power assembled battery 10 in the EV running mode. Secondly, when the high-capacity assembled battery 20 and the high-power assembled battery 10 are used in combination in the EV running mode, the main use of the high-capacity assembled battery 20 means that the proportion of the electric power output therefrom in the total electric power used in running of the vehicle is higher than the proportion of the electric power output from the high-power assembled battery 10. The total electric power refers to an electric power used in a predetermined running time or a running distance, rather than a momentary electric power.
As shown in
In
A positive electrode terminal 11b and a negative electrode terminal 11c are placed on an upper face of the battery case 11a. The positive electrode terminal 11b is connected electrically to the positive electrode component of the power-generating element, and the negative electrode terminal 11c is connected electrically to the negative electrode component of the power-generating element.
As shown in
The use of the partitioning plate 12 can provide space on an outer face of the cell 11. Specifically, the partitioning plate 12 can have a protruding portion which protrudes toward the cell 11, and the end of the protruding portion can be brought into contact with the cell 11 to provide the space between the partitioning plate 12 and the cell 11. In this space, air (corresponding to a heat exchange medium) used for adjusting the temperature of the cell 11 can be moved.
When the cell 11 generates heat due to charge and discharge or the like, air for cooling can be introduced into the space provided between the partitioning plate 12 and the cell 11. The air for cooling can exchange heat with the cell 11 to suppress a rise in temperature of the cell 11. Alternatively, when the cell 11 is excessively cooled, air for heating can be introduced into the space provided between the partitioning plate 12 and the cell 11. The air for heating can exchange heat with the cell 11 to suppress a drop in temperature of the cell 11. The temperature adjustment of the cell 11 may be performed by using a gas containing a constituent different from the air.
The plurality of cells 11 are connected electrically in series through two bus bar modules 13. The bus bar module 13 has a plurality of bus bars and a holder for holding the plurality of bus bars. The bus bar is made of a conductive material and is connected to the positive electrode terminal 11b of one of two adjacent cells 11 and the negative electrode terminal 11c of the other cell 11. The holder is formed of an insulating material such as resin.
A pair of end plates is placed at both ends of the high-power assembled battery 10 in the direction in which the plurality of cells 11 are arranged. Restraint bands 15 extending in the direction of the arrangement of the plurality of cells 11 are connected to the pair of end plates 14. This can apply a restraint force to the plurality of cells 11. The restraint force refers to a force with which each of the cells 11 is held tightly in the direction of the arrangement of the plurality of cells 11. The restraint force applied to the cells 11 can suppress expansion of the cell 11 or the like.
In the present embodiment, two restraint bands 15 are placed on an upper face of the high-power assembled battery 10 and two restraint bands 15 are placed on a lower face of the high-power assembled battery 10. The number of the restraint bands 15 can be set as appropriate. It is only required that the use of the restraint bands 15 and the end plates 14 can apply the restraint force to the cells 11. Alternatively, the restraint force may not be applied to the cells 11, and the end plates 14 and the restraint bands 15 may be omitted.
While the plurality of cells 11 are arranged in one direction in the present embodiment, the present invention is not limited thereto. For example, a plurality of cells may be used to constitute a single battery module, and a plurality of such battery modules may be arranged in one direction.
As shown in
Specifically, a plurality of battery modules each including a plurality of cells 22 connected in series may be provided and connected in parallel to constitute the battery block 21.
A secondary battery such as a nickel metal hydride battery or a lithium-ion battery can be used as the cell 22. As shown in
As shown in
A positive electrode terminal 22b and a negative electrode terminal 22c are provided at both ends of the cell 22 in a longitudinal direction. The positive electrode terminal 22b and the negative electrode terminal 22c form the battery case 22a. The positive electrode terminal 22b is connected electrically to a positive electrode component of the power-generating element, and the negative electrode terminal 22c is connected electrically to a negative electrode component of the power-generating element. The cell 22 of the present embodiment is a battery called 18650 type having a diameter of 18 mm and a length of 65.0 mm. The cell 22 may be a cell having dimensions different from those of the 18650 type.
The size of the square-type cell 11 is larger than the size of the cylinder-type cell 22. The size of each of the cells 11 and 22 refers to the size of the portion thereof having the largest dimension. Specifically, in the configuration of the cell 11 shown in
As shown in
The holder 23 has through holes 23a and each cell 22 is inserted into the through hole 23a. The number of the through holes 23a provided is equal to the number of the cells 22. The plurality of cells 22 are placed such that the positive electrode terminals 22b (or the negative electrode terminals 22c) are located on the same side of the holder 23. The plurality of positive electrode terminals 22b are connected to a single bus bar, and the plurality of negative electrode terminals 22c are connected to a single bus bar. This achieves the electrical parallel connection of the plurality of cells 22.
The cell 22 extends in a direction orthogonal to a plane on which the holder 23 is placed. The plurality of cells 22 are placed in order within the plane on which the holder 23 is placed. The positions to place the plurality of cells 22 can be set as appropriate within the plane on which the holder 23 is placed.
While the single holder 23 is used in the battery block 21 of the present embodiment, a plurality of holders 23 may be used. For example, one of the holders 23 can be used to hold the cells 22 on the side of the positive electrode terminals 22b, and the other holder 23 can be used to hold the cells 22 on the side of the negative electrode terminals 22c.
Next, description is made of the characteristics of the cell 11 used in the high-power assembled battery 10 and the characteristics of the cell 22 used in the high-capacity assembled battery 20. Table 1 shows the comparison between the characteristics of the cells 11 and 22. In Table 1, “high” and “low” represent the relative levels when the two cells 11 and 22 are compared. Specifically, “high” represents a higher level than that of the compared cell, and “low” represents a lower level than that of the compared cell.
The cell 11 has an output density higher than that of the cell 22. The output density of each of the cells 11 and 22 can be represented as an electric power per unit mass of the cell (in W/kg) or an electric power per unit volume of the cell (in W/L). When the cells 11 and 22 have equal masses or volumes, the output (W) of the cell 11 is higher than the output (W) of the cell 22.
The output density in the electrode component (positive electrode component or negative electrode component) of each of the cells 11 and 22 can be represented as a current value per unit area of the electrode component (in mA/cm2). The output density of the electrode component of the cell 11 is higher than that of the cell 22. When the electrode components have equal areas, the value of a current capable of passing through the electrode component of the cell 11 is higher than the value of a current capable of passing through the electrode component of the cell 22.
The cell 22 has an electric power capacity density higher than that of the cell 11. The electric power capacity density of each of the cells 11 and 22 can be represented as a capacity per unit mass of the cell (in Wh/kg) or a capacity per unit volume of the cell (in Wh/L). When the cells 11 and 22 have equal masses or volumes, the electric power capacity (Wh) of the cell 22 is higher than the electric power capacity (Wh) of the cell 11.
The capacity density in the electrode component of each of the cells 11 and 22 can be represented as a capacity per unit mass of the electrode component (in mAh/g) or a capacity per unit volume of the electrode component (in mAh/cc), for example. The capacity density of the electrode component of the cell 22 is higher than that of the cell 11. When the electrode components have equal masses or volumes, the capacity of the electrode component of the cell 22 is higher than the capacity of the electrode component of the cell 11.
In
The negative electrode component forming part of the power-generating element of the cell 11 has a collector plate 113 and an active material layer 114 formed on each face of the collector plate 113. When the cell 11 is a lithium-ion secondary battery, copper can be used as the material of the collector plate 113, for example. The active material layer 114 includes a negative electrode active material, a conductive material, a binder and the like.
A separator 115 is placed between the positive electrode component and the negative electrode component. The separator 115 is in contact with the active material layer 112 of the positive electrode component and the active material layer 114 of the negative electrode component. The positive electrode component, the separator 115, and the negative electrode component are layered in this order to constitute a laminate, and the laminate is wound, thereby making it possible to form the power-generating element.
While the active material layer 112 is formed on each face of the collector plate 111 and the active material layer 114 is formed on each face of the collector plate 113 in the present embodiment, the present invention is not limited thereto. Specifically, a so-called bipolar electrode can be used. The bipolar electrode has a positive electrode active material layer 112 formed on one face of a collector plate and a negative electrode active material layer 114 formed on the other face of the collector plate. A plurality of such bipolar electrodes are layered with separators interposed, so that the power-generating element can be formed.
In
The negative electrode component forming part of the power-generating element of the cell 22 has a collector plate 223 and an active material layer 224 formed on each face of the collector plate 223. When the cell 22 is a lithium-ion secondary battery, copper can be used as the material of the collector plate 223, for example. The active material layer 224 includes a negative electrode active material, a conductive material, a binder and the like. A separator 225 is placed between the positive electrode component and the negative electrode component. The separator 225 is in contact with the active material layer 222 of the positive electrode component and the active material layer 224 of the negative electrode component.
As shown in
The volume per unit capacity (in cc/mAh) of the active material layer 112 is larger than that of the active material layer 222, and the volume per unit capacity of the active material layer 114 is larger than that of the active material layer 224. Since the thicknesses D21 and D22 of the active material layers 222 and 224 are larger than the thicknesses D11 and D12 of the active material layers 112 and 114, the capacity density of the cell 22 is higher than the capacity density of the cell 11.
Next, description is made of the dependence of the battery on temperature. As shown in Table 1, the cell 22 has a higher dependence of input and output on temperature than that of the cell 11. Specifically, the input and output of the cell 22 are changed more easily than the input and output of the cell 11 in response to a temperature change.
As shown in
As shown in
Next, description is made of the placement of the high-power assembled battery 10 and the high-capacity assembled battery 20 when they are mounted on the vehicle with reference to
The high-power assembled battery 10 and the high-capacity assembled battery 20 are placed in a luggage space LS, and the high-capacity assembled battery 20 is located above the high-power assembled battery 10. The luggage space LS is space for placing luggage, and part of the luggage space LS is used as the space for placing the assembled batteries 10 and 20.
A riding space RS is provided in front of the luggage space LS in the vehicle 100. The riding space RS is space where passengers ride, and is defined by the placement of seats. The vehicle 100 may be a vehicle in which the riding space RS is separated from the luggage space LS by a partitioning member, or a vehicle in which the riding space RS communicates with the luggage space LS.
In mounting the high-power assembled battery 10 and the high-capacity assembled battery 20 on the vehicle 100, the batteries 10 and 20 are mounted as battery packs 10A and 20A, respectively, on the vehicle 100 as shown in
The battery packs 10A and 20A are fixed to the vehicle body. For example, the battery pack 10A can be housed in a recess portion formed in a floor panel of the vehicle 100. The recess portion can be used as space for accommodating a spare tire. The battery pack 20A placed over the battery pack 10A can be fixed to the vehicle body such as the floor panel or a cross member.
While a bottom face of the pack case 24 is in contact with the upper face of the pack case 16 in the present embodiment, the present invention is not limited thereto. Specifically, the battery packs 10A and 20A may be placed as shown in
As described in
Since the high-capacity assembled battery 20 can readily dissipate heat, the deterioration of the high-capacity assembled battery 20 can be suppressed. As described in
When the EV running mode has a higher priority than the HV running mode in running the vehicle 100, the frequency of use of the high-capacity assembled battery 20 is higher than that of the high-power assembled battery 10. When the EV running mode has a higher priority than the HV running mode, the vehicle 100 is run in the EV running mode immediately after the starting, and the EV running mode can be switched to the HV running mode when the running in the EV running mode cannot be performed any more, by way of example. At the high frequency of use of the high-capacity assembled battery 20, the high-capacity assembled battery 20 easily produces heat due to charge and discharge. Since the high-capacity assembled battery 20 is in the environment where it dissipates more heat than the high-power assembled battery 10 as described above, a temperature rise of the high-capacity assembled battery 20 can be suppressed.
The high-capacity assembled battery 20 can be charged with the electric power supplied from the external power source, and during the charge, the high-capacity assembled battery 20 produces more heat than the high-power assembled battery 10. The high-capacity assembled battery 20 is in the environment where it dissipates more heat than the high-power assembled battery 10, so that a temperature rise of the high-capacity assembled battery 20 can be suppressed.
For ensuring the running distance in the EV running mode, the high-capacity assembled battery 20 tends to have a size larger than that of the high-power assembled battery 10. When the number of the cells 22 is increased, the capacity of the high-capacity assembled battery 20 can be increased to extend the running distance in the EV running mode. The increased number of the cells 22 tends to increase the size of the high-capacity assembled battery 20. In the luggage space LS, the space located in upper portion of the vehicle 100 can be widened more easily than the space located in a lower portion of the vehicle 100. The placement of the high-capacity assembled battery 20 above the high-power assembled battery 10 as in the present embodiment can easily ensure the space for placing the high-capacity assembled battery 20.
For example, the high-power assembled battery 10 can be placed in the space also used for accommodating the spare tire, and the high-capacity assembled battery 20 can be placed above the high-power assembled battery 10. In this case, the space for placing the high-capacity assembled battery 20 is wider than the space for placing the high-power assembled battery 10. The capacity (in other words, the size) of the high-capacity assembled battery 20 can be changed to respond to the need of a user. The placement of the high-capacity assembled battery 20 above the high-power assembled battery 10 can cope with the change in size of the high-capacity assembled battery 20 associated with the changed capacity.
In view of only the placement of the assembled batteries 10 and 20 in the luggage space LS, it is contemplated that the high-capacity assembled battery 20 may be placed below the high-power assembled battery 10. In this case, the high-capacity assembled battery 20 is difficult to place along a flat surface, and the high-capacity assembled battery 20 may have a complicated outer shape. In the present embodiment, the placement of the high-capacity assembled battery 20 above the high-power assembled battery 10 makes it easy to place the high-capacity assembled battery 20 along a flat surface, which can avoid such a complicated outer shape in the high-capacity assembled battery 20.
Since the high-capacity assembled battery 20 is placed above the high-power assembled battery 10, an operator accesses the high-capacity assembled battery 20 more easily than the high-power assembled battery 10. If the high-capacity assembled battery 20 is placed below the high-power assembled battery 10, the operator needs to perform tasks such as removal of the high-power assembled battery 10 in order to access the high-capacity assembled battery 20.
The high-capacity assembled battery 20 may be more susceptible to the temperature than the high-power assembled battery 10 and suffer deterioration more easily. Especially when the EV running mode has a higher priority than the HV running mode, the high-capacity assembled battery 20 may be used at a frequency higher than that of the high-power assembled battery 10 and suffer deterioration more easily. When the high-capacity assembled battery 20 is deteriorated, at least part of the high-capacity assembled battery 20 needs replacement. In changing the capacity of the high-capacity assembled battery 20 in response to the need of a user, the high-capacity assembled battery 20 also needs replacement. Thus, the frequency of replacement of the high-capacity assembled battery 20 is higher than that of the high-power assembled battery 10. The placement of the high-capacity assembled battery 20 at the position easily accessed by the operator as in the present embodiment facilitates the replacement of the high-capacity assembled battery 20.
In adjusting the temperature of the high-capacity assembled battery 20, the air for temperature adjustment can be moved along the outer circumferences of the cylinder-type cells 22 as shown in
The air used for temperature adjustment of the high-capacity assembled battery 20 moves more smoothly than the air used for temperature adjustment of the high-power assembled battery 10. Specifically, the outer face of the cylinder-type cell 22 is formed of a curved face as shown in
The flow path shown in
When an air inlet port is provided for each of the pack cases 16 and 24 in the configuration shown in
The battery pack 20A tends to be more rigid than the battery pack 10A. Specifically, as shown in
Since the space for accommodating luggage or the like is present above the battery pack 20A, the battery pack 20A often receives the external force when the luggage or the like is put. Since the battery pack 20A is more rigid than the battery pack 10A as described above, the battery pack 20A can easily receive the external force.
This application is a national phase application of International Application No. PCT/JP2011/004835, filed Aug. 30, 2011, the content of which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/004835 | 8/30/2011 | WO | 00 | 2/25/2014 |