This invention relates to a vehicle.
Reflecting on Jesus Christ's reported sojourn at the Sea of Galilee and the valedictory sight of Chancy Gardener in the movie, Being There, who has not wished to walk on water? And, indeed, walking on water has captured the imagination of many people for there have been many proposals for water walkers. These have generally been analogous to cross-country snow skis. They have two floats and the walker places a foot into a compartment in respective floats. The floats are then operated in a manner similar to snow skis in which one float of each pair becomes the thrust float while the other float is the leverage float. Subsequently, the leverage float is brought forward to become the thrust float while the erstwhile thrust float becomes the leverage float. To assist in gaining forward motion, there is normally deployed at each float some form of flap or a structure having an equivalent function. The flap is pivoted to a horizontal position to reduce drag during forward motion of the thrust float and is pivoted to a vertical position to increase drag at the leverage float. By using separate floats where, at any time, there is one thrust float and one leverage float, it is difficult to sustain momentum because the forward motion of the thrust float has effectively to be halted in order for it to function as a leverage float. In addition, the two floats in combination must support the weight of a person and so must displace a volume of water equal to the weight of the person. This means that at each forward thrust of a float from essentially a standing position, a significant quantity of water must be displaced. Consequently, it is difficult to obtain any significant momentum and the Sisyphean demands of such a water walker on its captain probably accounts for the fact that such water walkers are rarely seen beyond the patent annals.
According to one aspect of the invention, there is provided a vehicle for movement relative to a medium, the vehicle comprising a base, and a carriage mounted relative to the base for supporting a human operator, the carriage mounted for forward and rearward movement relative to the base upon being driven by bipedal movement of the operator, a thrust mechanism operable to develop vehicle thrust by transmitting a force to the medium upon bipedally driven rearward movement of the carriage, and a drive mechanism operable to apply a drive to the base upon bipedally driven forward movement of the carriage.
Preferably, the vehicle has two such carriages, mounted side by side relative to the base, for supporting respective feet of the operator.
Preferably the thrust mechanism includes at least one element movable between a deployed position enabling application of force from the carriage to the medium upon the rearward movement of the carriage, and a neutral position, disabling application of force from the carriage to the medium. Particularly for moving through water, the element in the deployed position presents a high drag form to the water and presents in the neutral position a low drag form to the water. For example, the element can be in the form of a blade either pivotable or reciprocable between the deployed and neutral positions. Particularly for moving over a solid medium, the element in the deployed position presents a high friction contact with the medium and presents in the neutral position either a low friction contact with the medium or is removed from contact with the medium.
Preferably the thrust and drive mechanisms are located so that the thrust is developed below the base and the force is applied to the base above the base.
The vehicle preferably includes first control mechanisms for relating timing of application of the drive and development of the thrust. The vehicle can also include second control mechanisms for relating duration of application of the drive and development of the thrust to movement of the carriage. The vehicle can also include third control mechanisms for controlling magnitude of the drive and thrust. The vehicle can also include a fourth control mechanism operable to adapt movement of the element to the relative velocity of the base relative to the medium.
Particularly for a vehicle movable over water, the base can be formed as or integral with a flotation hull. Particularly for a vehicle movable over snow or ice, the base can be formed with a lower surface adapted for sliding. Particularly for a vehicle movable over the ground, the base can be mounted on or formed as a part of a wheeled chassis.
According to another aspect of the invention, the carriages can be mounted to the base to permit upward movement of a carriage during forward movement of the carriage relative to the base, and to permit downward movement of the carriage during rearward movement of the carriage relative to the base. In such an embodiment, some part of the bipedal drive to the carriages is converted to a lifting force to lift the carriages.
According to another aspect of the invention, there is provided an assembly for use in a vehicle for movement relative to a medium, the assembly comprising a base, a carriage mounted on the base for supporting a standing human operator, the carriage mounted for forward and rearward movement relative to the base, a thrust mechanism operable to develop vehicle thrust by transmitting a force to the medium upon rearward movement of the carriage and a force mechanism operable to apply a force to the base upon bipedally driven forward movement of a carriage.
According to another aspect of the invention, there is provided a carriage for use in a vehicle drivable relative to a medium, the carriage having a mounting means for mounting the carriage in a vehicle base for reciprocal movement of the carriage in the base in a drive direction and a reverse direction, a drive mechanism deployable to use movement of the carriage in the drive direction to apply a drive to the base and a thrust mechanism deployable to use movement of the carriage in the reverse direction to develop the thrust.
According to another aspect of the invention, there is provided a carriage for use in a vehicle drivable relative to a medium, the carriage having a bearing for mounting the carriage relative to a vehicle base to permit reciprocal movement of the carriage in a drive direction and a reverse direction, the bearing having a free bearing action in relation to the carriage moving relative to the vehicle base in the reverse direction and having a non-free bearing action in relation to the carriage moving relative to the vehicle base in the drive direction.
According to another aspect of the invention, there is provided an assembly for use in a vehicle for movement relative to a medium, the assembly comprising a base, and a pair of carriages reciprocally movable relative to the base in a drive direction and a reverse direction, the carriages each having a surface for supporting a standing human operator and being spaced apart transverse of the drive direction to accommodate respective feet of an operator standing on the carriages and facing in the drive direction.
A vehicle according to one aspect of the invention can be designed as a personal use vehicle. Alternatively, a vehicle according to another aspect of the invention can accommodate a number of operators with stations distributed over the vehicle base to accommodate respective operators. In such a multi-operator vehicle, elements of the drive mechanism and the thrust mechanism can be shared or ganged. To tailor operation to operators of different size, strength and gait, some of the vehicle elements can be made adjustable so that at least some of the dimensions and specifications can be changed to fit the instant operator.
According to another aspect of the invention, a vehicle as described previously has poles in the manner of ski poles mounted on the vehicle base to be gripped by the vehicle operator. The mounting is preferably such that the natural swinging action of a running or walking operator is harnessed and is applied through a transfer mechanism to the thrust mechanism to supplement the development of thrust or is applied through a transfer mechanism to the drive mechanism to supplement the application of the drive to the base.
According to another aspect of the invention, a vehicle described previously has a respective hammer member coupled to the carriage through a respective flexible coupling permitting hammer member oscillation in the drive direction of the vehicle. Preferably, upon operator bipedal movement, the coupling is such that a natural oscillation is set up in the movement of the hammer member relative to the base. The hammer member can be coupled to the thrust and/or drive mechanisms so that part of the kinetic energy in the hammer member oscillation is tapped and is used in developing the thrust and/or drive applied to the base. Preferably, the flexible coupling is such that part of the energy expended in the operator's bipedal movement is used in maintaining the oscillation.
According to another aspect of the invention, for a vehicle previously described for use on water, there is provided a trim mechanism to alter buoyancy of the vehicle whereby essentially all elements of the vehicle apart from the operator are submersed in the water, thereby presenting the desirable spectacle of the operator walking on water.
It be appreciated that for simplicity and clarity of illustration, elements illustrated in the following FIGs. have not necessarily been drawn to scale. For example, the dimensions of some of the elements are exaggerated relative to other elements for clarity. Other advantages, features and characteristics of the present disclosure, as well as methods, operation and functions of related elements of structure, and the combinations of parts and economies of manufacture, will become apparent upon consideration of the following description and claims with reference to the accompanying drawings, all of which form a part of the specification, wherein like reference numerals designate corresponding parts in the various figures, and wherein:
Referring to
In operation, the vehicle operator, whose name is Fortibus, stands facing in the drive direction with left foot supported on the left carriage and right foot supported on the right carriage, and thrusts, say, the right foot backwards to move the right carriage backwards relative to the base 12 until a rearward stride terminates. During the rearward motion of the right carriage, the operator applies force via the thrust mechanism to the water thereby creating thrust which is transmitted back through the right carriage, the operator, and the left carriage, and as described below, is converted to a drive force applied to the base. While the right foot undergoes a rearward stride, the operator's left foot undergoes a forward stride. During the forward movement of the left carriage, the operator applies drive applied to the base 12 by means of the drive mechanism 24. Provided the drive force is greater than all rearward forces applied to the vehicle, the vehicle moves forward relative to the water.
The drive force applied during one stride, being a forward movement of one carriage and rearward movement of the other carriage, is small, because it is limited by the energy expended by the operator in a single scissors stride. However, through continuous bipedal movement of the left and right leg in the manner of a person walking, running or cross-country skiing, cumulative forwardly directed drive forces on the vehicle exceed cumulative rearwardly directed forces, and the vehicle velocity increases. “Bipedal” is understood, for the purposes of this specification, to mean a scissors-type motion of the operator's legs because, over the long term, the carriages themselves do not move relative to the base.
The thrust developed by the thrust mechanism arising from rearward movement of one carriage is used for two purposes. Part of the thrust is used to drive the other carriage forward to complete a forward stride and restore the carriage to a start position, while the remaining part of the thrust is applied to the base by the drive mechanism.
Referring in greater detail to
Each of the carriages runs on a respective track 30 extending along the base 12 in a drive direction of the vehicle. As shown in the example of
In an alternative embodiment, the undercarriage can resemble a dry skate (not shown) supported on a base of hard-wearing silicone of the sort used in artificial surface skating rinks. In a further alternative, a more complex and constraining supporting arrangement may be used to guide the carriages. In one example, this takes the form of rails formed on the base, each rail having a bearing interaction with an appropriately formed part of one of the carriages. Alternatively, a follower depends from each carriage and is disposed to run in a channel formed in the base. The bearings can be of rotary or other suitable form.
In the embodiment of
As shown in
In an alternative embodiment of the secondary component, the undercarriage has wheels 35 which are a modified form of conventional in-line skate wheels. By the modification, the associated wheel bearings present minimal resistance to backward rolling movement of the carriage 14 along the base 12, but present resistance to turning during forward movement of the carriage along the base. Such a function can be implemented using an adaptation of known coaster brake mechanisms such as that described in U.S. Pat. No. 3,252,551 (Hood) which is incorporated herein by reference. The wheels 35 and the surface of the track 30 have non-slip contacting surfaces. When the wheel bearings tighten, a frictional force is developed and applied by the operator's forwardly moving foot through the carriage to the base. Either one or more of the carriage wheels can be of the turning-resistant type. In addition, the turning resistance can be introduced during only part of the forward movement of the carriage, such as the final part of a forward stride, as opposed to the full forward movement of the stride. Also, the turning resistance can be made adjustable depending on the power that the vehicle operator is to expend in developing thrust and applying the drive to the base. Also, the resistance to turning can be made intermittent, in the manner of an anti-lock braking system, and in which the turning resistance is applied until the wheel locks and the carriage begins to slide at which point the turning resistance is momentarily removed and then reapplied once the wheel starts to turn again. In an alternative embodiment, contact between the forwardly moving carriage and the base, whether as a constantly or intermittently applied force, can be applied between a part of the carriage other than the wheels and a part of the base other than the track. These various modifications can be tuned to obtain a desired timing, duration and magnitude of the drive applied to the base kin dependence on the carriage's forward movement.
In addition to the prior arrangements for applying the drive force to the base during forward movement of the carriages, other arrangements can be used adapted to the form and construction methods of the carriages and the base, and both simple and complex arrangements are contemplated by the invention.
As previously indicated, the vehicle includes thrust mechanism 22 by which the operator applies a rearwardly directed force to the water consequent upon rearward movement of the carriage 14 and thereby develops the forward drive to the vehicle. The thrust mechanism includes a central slot 40 extending the full height of the base 12 and located at the channeled track 30 under carriage wheels 42. As shown in
As the carriage is driven forward, the leading crank member 44 is forced to pivot from the neutral position to the deployed position as shown in the
Although in the embodiment shown in
As an alternative thrust mechanism, an arrangement having reciprocable blades is shown in
It will be appreciated that other arrangements are possible to obtain the coordinated deployment and feathering of the blades associated with each of the carriages and to maintain the blades in the desired position for the forward and rearward motions. Blades moving between a generally horizontal, neutral position and a generally vertical, deployed position are just one way of achieving thrust. Other suitable forms of thrust element may be used, such as a deformable cup, the cup becoming deformed to a low drag profile by movement in the drive direction through the water and becoming deformed to a high drag profile by movement in the reverse direction through the water. It will also be appreciated that the various elements of the thrust mechanism can be designed and dimensioned to secure the particularly desired effect from the rearward movement of the carriage and, to this extent, such elements act as control mechanisms to set the timing of the thrust and its duration and magnitude in relation to the carriage's rearward movement.
A modification of the example of
In a variation of this arrangement, each carriage has an upper body part which has integral vertically extending blades and a lower undercarriage which is mounted relative to the hull to enable back and forth movement corresponding to bipedal movement of an operator. The body part is mounted on the undercarriage with a mounting that includes a set of springs. The springs are located and dimensioned so that downward operator foot pressure greater than a threshold moves the body part down against the action of the springs and foot pressure less than the threshold permits the carriage to move upwards under the action of the springs. In normal walking and running, the natural movement is to lift the foot from the ground, move it forward and then place it back on the ground at the end of the forward stride, the grounded foot then acting to provide thrust. In the case of the present embodiment, the bipedal action is a scissors action, which may not create the same difference in pressure applied as between one foot and the other. However, operation is effected by the operator so as deliberately to apply greater pressure to the rearwardly moving carriage than the forwardly moving carriage so as to obtain the vertical carriage movement required during the appropriate phase of the reciprocal back and forth movement.
It is desirable to increase the velocity of the vehicle by repeated reciprocation of the left and right carriages in such a way as to generate thrust and to use the thrust to apply the forwardly directed drive to the base and to the vehicle of which the base is part. Any element of the drive mechanism which applies a rearward force to the hull slows the vehicle and is undesirable. In this respect, while the deployment of the blades and their movement through the water is effective in providing thrust when the overall speed of the vehicle is low, this function may become compromised as the speed of the vehicle increases. At a certain threshold velocity of the vehicle, the actual rearward velocity of the blades matches the relative speed of static water moving past the forwardly moving hull. Consequently, if the blade speed through the water simply tracks the vehicle speed through the water, there is little thrust generated as the carriage moves rearwardly in the water. At hull speeds in excess of the threshold, the deployed blades simply create drag and reduce hull speed. To overcome this problem, the thrust mechanism includes an accelerator mechanism to accelerate the rearwardly moving blades to a velocity higher than the velocity reached by the rearwardly moving carriage. This causes the blades to move in a shortened cycle in a reverse direction through the water at a speed greater than the hull forward speed through the water. The cycle time for reverse movement of the carriage is achieved in one example, by having a flexible mounting between a body part of the carriage and an undercarriage. In operation, in a first part of a stride during operator bipedal movement, the body part but not the undercarriage is moved rearwardly with the initial movement of the body part being used to store energy in a spring mechanism. At a desired point in the cycle, the energy in the spring mechanism is released and applied to drive the undercarriage and its associated blades rearwardly at a speed greater than the speed of the carriage.
Although the examples of vehicle shown in the previous FIGS. are adapted to be operated by a single operator, another embodiment of the invention has a larger hull and stations for several people. In such an embodiment, the carriages can be independently operated with, for example, the carriages at one station located behind the carriages of another station. In multi-station arrangements, the drive mechanisms at the stations provide linkages between the respective carriages and the base and the thrust mechanisms provide linkages between the respective carriages and the water. Alternatively, operating elements at adjacent stations can be shared or ganged.
It will be appreciated that the bipedal action of different people is different. For example, one person may have a much longer stride or may be able to apply a much greater thrust and drive than another person. Or one person may have feet which are smaller or set closer together when standing than another person. In one alternative embodiment of the invention, the arrangements described previously are made adjustable so that at least some of the dimensions and specifications can be changed to fit the operator. For example, different sizes or different numbers of blades can be attached to a carriage. Or the extent of immersion of the blades in the water in a deployed position can be varied. The base and hull can be made narrow for operators having good balance and a focus on speed or can be made relatively wide if speed is less important than stability. Such adjustment schemes can be made adaptive so that, for example, in changing from a walking stride to a running stride, systems are triggered by sensed changes in the operator's interaction with the carriage, with such systems then adapting operating characteristics to the walking to running change.
In another alternative embodiment of the invention, the structural elements described previously are in modular form. In one such embodiment, a relatively bare hull or other base is adapted by, for example, having openings and fixtures tailored to have mounted thereon a personalized carriage set combined with elements of associated thrust and drive mechanisms. In another such embodiment, the thrust and drive mechanisms are already mounted on the hull and the operator installs his or her carriage set, with the carriage set being fastened to the elements of the thrust and drive mechanisms. In a further such embodiment, a boot or similar footwear is attached to each carriage of a carriage set adapted to be mounted on a base.
In normal walking or running, a subsidiary but important part of the body's articulation is arm movement. This can provide added thrust to the walking or running action. The power of arm movements has been used by cross-country skiers through the agency of ski poles. In a modification of the invention, an adjunct mechanism includes an element held by the operator or attached to the operator's arm. The adjunct mechanism is used to harness the swinging movement of the operator's arms which is a natural concomitant to the leg movements of walking and running. The harnessed arm movement is used to apply a supplementary force through the thrust mechanism to increase the cumulative force applied in a rearward direction to the water thereby developing greater thrust, and/or to apply a supplementary force through the drive mechanism to increase the cumulative drive applied in a forward direction to the vehicular part.
While the invention has been described in relation to a vehicle moving relative to water, the invention also lends itself to movement over a solid surface such as the ground or ice or snow. In the arrangement shown in
Both the ice/snow based and the ground based embodiments of the invention are illustrated by examples in which the thrust mechanism trails the associated carriage 14. It will be appreciated that the thrust mechanism can be located underneath the associated carriage as in the example of
In a further alternative embodiment of the invention, the carriage is mounted adjacent a damped, driven hammer oscillator which is itself mounted on the base. The oscillator has a spring system and a hammer member mounted relative to the spring system for reciprocal motion in the drive and reverse direction and in an oscillatory mode. The oscillator has a drive interaction with each carriage in which a force is applied to the hammer member by transferring some of the momentum from the carriage as it is driven back and forth by the operator's bipedal movement. The oscillator has a damping interaction with the thrust and/or drive mechanism in which a force is applied from the hammer member to the thrust and/or drive mechanism by the hammer member as it oscillates back and forth. As a result of this damping interaction, energy in the oscillator is tapped in the course of the operation of the thrust and drive mechanisms but results in a damping of the oscillation. The drive force acts to compensate for the damping whereby substantially to maintain the oscillator's harmonic oscillation. The weight and mounting of the hammer member is tailored to the particular oscillation which it is desired to set up, this being dependent on the capabilities of the vehicle operator. As the operator walks or runs in the bipedal movement previously defined, the coupling of the hammer member with the carriage, drive and thrust systems is such as to set up and maintain a substantially harmonic oscillation in the movement of the hammer member relative to the base. In a further variation of this embodiment particularly applicable to the example of
Referring to
Referring to
It will be appreciated that many other variations are possible within the inventive concepts disclosed herein and it is not intended that the scope of the patent should be limited to the specific embodiments described.