The present invention relates to a vehicle.
In general, in a two-wheeled vehicle, the ratio of the weight of the vehicle to which the front wheel and the rear wheel are subjected has a great influence on the rider's handling. In a typical two-wheeled vehicle, the weight of the engine and related components is much greater than the weight of other components in the vehicle body. Furthermore, in a scooter-type two-wheeled vehicle, due to the structural limitations of the vehicle, it is necessary to dispose the engine and other related components in the rear of the vehicle. As a result, the rear wheel of the vehicle will have a larger counterweight than that of the front wheel, and then when a rider drives the vehicle, the rider will feel inflexible on the control of the vehicle, and may also cause the rear wheel to have a relatively large inertial force due to the inertia of the object during emergency riding, and thus it is not easy to stop the vehicle relative to the ground.
The invention provides a vehicle. The vehicle includes a main frame, a power unit, a power controlling unit, and a battery receiving module. The power unit, a power controlling unit, and a battery receiving module are disposed on the main frame respectively. The battery receiving module is disposed between the power unit and the power controlling unit in a front-rear direction of the vehicle.
In some embodiments of the present disclosure, the main frame includes a front frame, a lower frame, and a rising frame. The lower frame is connected between the front frame and the rising frame.
In some embodiments of the present disclosure, the lower frame extends away from the rising frame along a first extending direction. The rising frame extends away from the lower frame along a second extending direction. The first extending direction of the lower frame and the second extending direction of the rising frame form an obtuse angle.
In some embodiments of the present disclosure, the lower frame extends along a first extending direction. The front frame extends along a second extending direction. The first extending direction of the lower frame is substantially perpendicular to the second extending direction of the front frame.
In some embodiments of the present disclosure, the power controlling unit is disposed on the lower frame and is located at a side of the rising frame adjacent to the front frame.
In some embodiments of the present disclosure, the lower frame includes a left sub-lower frame and a right sub-lower frame. The left sub-lower frame and the right sub-lower frame of the lower frame substantially extend along the front-rear direction of the vehicle. The power controlling unit is disposed between the left sub-lower frame and the right sub-lower frame of the lower frame.
In some embodiments of the present disclosure, the power controlling unit is lower than a top surface of the lower frame facing toward the battery receiving module in a top-bottom direction of the vehicle.
In some embodiments of the present disclosure, the power controlling unit and the battery receiving module are spaced apart from each other in the front-rear direction of the vehicle.
In some embodiments of the present disclosure, the battery receiving module is located at a side of the rising frame adjacent to the front frame.
In some embodiments of the present disclosure, the battery receiving module includes a battery container and a battery connecting unit. The battery container is mounted on the battery connecting unit and covers a center of gravity of the main frame in a top-bottom direction of the vehicle.
In some embodiments of the present disclosure, the power unit is located at a side of the rising frame away from the lower frame. The lower frame is located between the power unit and the battery receiving module in a top-bottom direction of the vehicle.
In some embodiments of the present disclosure, the vehicle further includes a front wheel and a rear wheel. The front wheel is disposed on the main frame. The rear wheel is disposed on the main frame. The lower frame is located between the front wheel and the rear wheel and is spaced apart from the front wheel and the rear wheel in the front-rear direction of the vehicle.
In some embodiments of the present disclosure, an axle of the front wheel and an axle of the rear wheel define a virtual extension surface. The lower frame and the rising frame are respectively located at opposite sides of the virtual extension surface.
In some embodiments of the present disclosure, the lower frame extends along an extending direction substantially perpendicular to the virtual extension surface.
In some embodiments of the present disclosure, an axle of the front wheel and an axle of the rear wheel define a virtual extension surface. The lower frame and the front frame are respectively located at opposite sides of the virtual extension surface.
In some embodiments of the present disclosure, the vehicle further includes a water tank and a side board. The water tank is disposed on the main frame and is located at a side of the rising frame facing away from the lower frame. The side board is disposed on the main frame, covers the rising frame in a width direction of the vehicle, and has a through hole. The water tank is configured to leave or be detachably disposed on the main frame via the through hole of the side board.
In some embodiments of the present disclosure, the main frame further includes a rear frame. The rear frame is connected to an end of the rising frame opposite to the lower frame and substantially extends away from the rising frame along the front-rear direction of the vehicle. The water tank is located between the rear frame and the rising frame.
In some embodiments of the present disclosure, the vehicle further includes an electronic controlling unit and a side board. The electronic controlling unit is disposed on the main frame and is located at a side of the rising frame facing away from the lower frame. The side board is disposed on the main frame, covers the rising frame in a width direction of the vehicle, and has a through hole. The electronic controlling unit is configured to leave or be detachably disposed on the main frame via the through hole of the side board.
In some embodiments of the present disclosure, a center of gravity of the power controlling unit is spaced apart from a center of gravity of the main frame by a first distance in the front-rear direction. A center of gravity of the power unit is spaced apart from a center of gravity of the main frame by a second distance in the front-rear direction. A product of a weight of the power controlling unit and the first distance is substantially equal to a product of a weight of the power unit and the second distance.
The invention further provides another vehicle. The vehicle includes a main frame, an inner device, and a side board. The main frame includes a front frame, a lower frame, and a rising frame. The front frame, the lower frame, and the rising frame are connected in sequence. The internal device is disposed on the main frame and is located at a side of the rising frame facing away from the lower frame. The side board is disposed on the rising frame, covers the rising frame in a width direction of the vehicle, and has a through hole. The internal device is configured to leave or be detachably disposed on the main frame via the through hole of the side board.
In some embodiments of the present disclosure, the main frame further includes a rear frame. The rear frame is connected to an end of the rising frame opposite to the lower frame and substantially extends away from the rising frame in the front-rear direction of the vehicle. The internal device is disposed between the rear frame and the rising frame.
In some embodiments of the present disclosure, the vehicle further includes a front wheel and a rear wheel. The front wheel is disposed on the main frame. The rear wheel is disposed on the main frame. An axle of the front wheel and an axle of the rear wheel define a virtual extension surface. The lower frame and the inner device are respectively located at opposite sides of the virtual extension surface.
In some embodiments of the present disclosure, the internal device is a water tank.
In some embodiments of the present disclosure, the internal device is an electronic controlling unit.
In the aforementioned configurations, the center of gravity of the main frame is substantially located at a central position of the vehicle in the front-rear direction, such that when the vehicle is driven, the stability of the vehicle in the front-rear direction is able to be improved. As a result, the rider is able to more easily control the vehicle and has better comfort during the riding. Furthermore, the battery receiving module is disposed at the center of gravity of the frame and the position of the power controlling unit, the power unit and/or other components in the vehicle is set according to the center of gravity of the main frame. Therefore, the weight distribution of the vehicle on the front wheel and the rear wheel is able to be adjusted to a substantially similar ratio, so that the rider may feel better maneuverability during the riding, and may reduce the instability caused by the inertia when the car body is urgently braking.
Furthermore, since the power controlling unit and the power unit is disposed at a periphery of the battery connecting unit of the battery receiving module, a length of a relevant wiring is able to be shortened, so as to reduce the loss of the power and/or the electric signal due to the length of the relevant wiring.
It is to be understood that both the foregoing general description and the following detailed description are by examples, and are intended to provide further explanation of the invention as claimed.
The invention can be more fully understood by reading the following detailed description of the embodiment, with reference made to the accompanying drawings as follows:
The following disclosure provides many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters hi the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted hi the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
Reference is made to
Reference is made to
In
In the embodiment, the hand bar 169 of the main frame 16 is connected to an end 1680 (see
As shown in
Furthermore, in
As shown in
As shown in
As shown in
As such configuration, a center of gravity C1 (see
As shown in
In addition, the battery receiving module 10 is located between the power controlling unit 14 and the power unit 12 in the front-rear direction D1 of the vehicle 1. The battery connection unit 100 serves to transmit the electric energy in the battery (e.g. the battery 104) to other components, such as the power controlling unit 14 and/or the electronic controlling unit 20, in the vehicle 1. In some embodiments, the battery receiving module 10 further includes a power conversion module (not shown). The battery receiving module 10 converts the power of the battery into a power source that matches a power required (e.g. an acceptable voltage) by the terminal components, such as the electronic controlling unit 20, a head light, and/or a tail light. In some embodiments, the power conversion module includes a DC/DC conversion module, but the present disclosure is not limited thereto. In some embodiment, the power conversion module is able to adopt different types of conversion modules in response to the design of different AC circuits and/or DC circuits. In some embodiment, the power conversion module is placed in other positions in the vehicle 1 due to demand.
In the embodiment, the battery connecting unit 100 of the battery receiving module 10 covers the center of gravity C1 of the main frame 16. Specifically, the size, structure, and weight of each part in the frame 16 are designed, such that the center of gravity C1 of the frame 16 falls in the third accommodating space 108, that is, in the battery connecting unit 100 of the battery receiving module 10. When the battery, such as a battery 104 shown in
As shown in
The power controlling unit 14 is located between the hand bar 169 and the power unit 12 in the front-rear direction D1 and is electrically connected to the power unit 12. The power controlling unit 14 receives the power output from the battery receiving module 10, and outputs the power received by the battery receiving module 10 to the power unit 12 based on the instruction issued by the hand bar 169, so as to drive the power unit 12. Then, the power unit 12 drives the rear wheel 19 to drives the vehicle 1 to travel.
As shown in
A center of gravity of the power controlling unit 14 is spaced apart from the center of gravity C1 of the main frame 16 by a first distance, and a center of gravity of the power unit 12 is spaced apart from the center of gravity C1 of the main frame 16 by a second distance in the front-rear direction D1. A first product of a weight of the power controlling unit 14 and the first distance is substantially equal to a second product of a weight of the power unit 12 and the second distance. In the embodiment, in order to improve the stability of the vehicle 1 in the front-rear direction D1, the present embodiment places the battery receiving module 10 on the center of gravity C1 of the main frame 16 and configures the power controlling unit 14 and the power unit 12 according to the center of gravity C1 of the main frame 16. For example, when the battery receiving module 10 is disposed at the center of gravity C1 of the main frame 16, the configuration of the power controlling unit 14 and the power unit 12 of the vehicle 1 satisfies the following equation (1):
m1×d1=m2×d2 (1);
In which m1 is the weight of the power controlling unit 14, d1 is the distance between the center of gravity of the power controlling unit 14 and the center of gravity C1 of the main frame 16 (also referred to as the first distance), m2 is the weight of the power unit 12, and d2 is the distance between the center of gravity of the power unit 12 and the center of gravity C1 of the main frame 16 (also referred to as the second distance). In the embodiment, since the power controlling unit 14 has the ability to handle a high voltage/high current power supply, it is provided with a high voltage/high current resistant element and a heat dissipating element, such as heat sink, water cooling module, and/or air cooling module. Therefore, the weight of the power control unit 14 is close to the weight of the power unit 12, and thus said first product of the weight of the power controlling unit 14 and the first distance d1 is not far apart from said second product of the weight of the power unit 12 and the second distance d2 on the order of magnitude.
In some embodiments, the positions of the power control unit 14 and the power unit 12 in the vehicle 1 are configured in accordance with actual usage requirements. If a weight of another component in the vehicle 1 is similar to that of the power controlling unit 14, the power unit 12, or the battery 104, the positions of the power controlling unit 14 and the power unit 12 in the vehicle 1 may also consider the influence of said component. Furthermore, other elements in the vehicle 1 may also be configured according to the above equation. As a result, the center of gravity C1 of the frame 16, the center of gravity C2 of the battery 104, and the center of gravity of the rider are all substantially located at the center of the vehicle 1 in the front-rear direction D1. Hence, a center of gravity of the entire vehicle 1 and the center of gravity of the rider are both substantially located in the middle of the vehicle 1 in the front-rear direction D1, and the weight can be evenly distributed to the front wheel 18 and the rear wheel 19, thereby improving the stability of the vehicle 1 while driving.
On the contrary, in order to improve the stability of the vehicle 1 during the driving in the top-bottom direction D2, the battery receiving module 10 is disposed at the center of gravity C1 of the main frame 16, and most of other components are disposed on a side of the main frame 16 close to the reference plane S. As such configuration, since the center of gravity of the vehicle 1 approaches the reference plane S in the top-bottom direction D2, any action of the rider is able to have a lower potential/kinetic conversion during the riding, compared to common commercial vehicles. As a result, the rider is able to more easily control the vehicle and has better comfort during the riding.
Furthermore, in the embodiment, the water tank 17 and the electronic controlling unit 20 is located in the second accommodating space 107 formed by the rear frame 166. The water tank 17 (and the electronic controlling unit 20) and the lower frame 164 are respectively located at opposite sides of the virtual extension surface V (see
Reference is made
Reference is made to
Reference is made to
Furthermore, as shown in
Reference is made to
As shown in
As shown in
In the embodiment, the water tank 17 and the electronic controlling unit 20 are detachable components, respectively and are also referred to as internal devices. Since the water tank 17 and the electronic controlling unit 20 are exposed from the first side board 13 and the second side board 15 through the through hole 160 and through hole 150 respectively, the entire vehicle 1 does not need to be dismantled to maintain or to repair the water tank 17 (e.g. adding cooling water to the water tank 17) and/or the electronic controlling unit 20 (and/or the primary battery module), so as to improve the convenience of maintenance and repair of the vehicle 1.
According to the foregoing recitations of the embodiments of the disclosure, it can be seen that the center of gravity of the main frame is substantially located at a central position of the vehicle in the front-rear direction, such that when the vehicle is driven, the stability of the vehicle in the front-rear direction is able to be improved. As a result, the rider is able to more easily control the vehicle and has better comfort during the riding. Furthermore, the battery receiving module is disposed at the center of gravity of the frame and the position of the power controlling unit, the power unit and/or other components in the vehicle is set according to the center of gravity of the main frame. Therefore, the weight distribution of the vehicle on the front wheel and the rear wheel is able to be adjusted to a substantially similar ratio, so that the rider may feel better maneuverability during the riding, and may reduce the instability caused by the inertia when the car body is urgently braking.
Furthermore, since the power controlling unit and the power unit is disposed at a periphery of the battery connecting unit of the battery receiving module, a length of a relevant wiring is able to be shortened, so as to reduce the loss of the power and/or the electric signal due to the length of the relevant wiring.
Although the present invention has been described in considerable detail with reference to certain embodiments thereof, other embodiments are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the embodiments contained herein.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims.
This application claims priority to U.S. Provisional Application Ser. No. 62/510,194, filed May 23, 2017, which is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
20130256046 | Kyoden | Oct 2013 | A1 |
20150075888 | Duncan | Mar 2015 | A1 |
20150280467 | Matsuda | Oct 2015 | A1 |
20160304151 | Di Benedetto | Oct 2016 | A1 |
20180118298 | David | May 2018 | A1 |
20180304713 | Kaskowicz | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
1847080 | Oct 2006 | CN |
103140414 | Jun 2013 | CN |
M247431 | Oct 2004 | TW |
200426072 | Dec 2004 | TW |
200526458 | Aug 2005 | TW |
200630255 | Sep 2006 | TW |
201311507 | Mar 2013 | TW |
I507311 | Nov 2015 | TW |
201628905 | Aug 2016 | TW |
202045385 | Dec 2020 | TW |
Entry |
---|
Office Action received for co-pending Chinese Patent Application No. CN201810501860.1; Applicant: Gogoro Inc., dated Sep. 26, 2019, 9 pages. |
Office Action Received for Taiwan Patent Application No. TW107117614; Applicant: Gogoro Inc., dated May 20, 2019, 13 pages. |
TW Office Action received for co-pending TW Patent Application No. 107117614; Applicant: Gogoro Inc., dated Apr. 13, 2020, 16 pages. |
Taiwanese Office Action issued for TW Application No. 109123249, Applicant: Gogoro Inc., dated Feb. 2, 2021, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20180339584 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
62510194 | May 2017 | US |