The present specification generally relates to vehicles and vehicle roof structures and, more specifically, to vehicles and vehicle roof structures for concealing one or more vehicle sensors.
Vehicles on the road today use a variety of sensors to detect different aspects of an environment. These sensors may then communicate this detected information about the environment to the driver or cause the vehicle to react in some way (e.g. a rain sensor that causes the windshield wipers to swipe across the windshield.) Such sensors may need to be placed in a variety of locations on the vehicle. In many instances, it may be desirable to place certain sensors near the roof of the vehicle. However, because of the size or awkwardness of some sensors, placing a sensor on the roof of the vehicle may be less visually appealing to consumers. For instance, large sensors, such as autonomous vehicle sensors, are not easily concealable and are often found to be visually unattractive to many consumers.
Accordingly, a need exists for alternative roof structures to conceal vehicle sensors to preserve the visual appeal of the vehicle while not unduly affecting the performance of the sensors.
In one embodiment, a vehicle roof structure for concealing one or more sensors includes a roof panel and a window extending at least up to the roof panel. A headliner extends along an interior portion of the roof panel to the window and is at least partially spaced from the roof panel in a direction of an interior of the vehicle to provide a sensor mounting volume there between, wherein the window extends over at least a portion of the sensor mounting volume. One or more sensors are positioned behind the window within the sensor mounting volume to provide a signal indicative of a characteristic of an environment of the vehicle detected by the one or more sensors through the window.
In another embodiment, a vehicle roof structure for concealing one or more sensors includes a roof panel comprising one or more sensor cavities. A window extends by the one or more sensor cavities. One or more sensors are positioned within the one or more sensor cavities of the roof panel to provide a signal indicative of a characteristic of an environment of the vehicle detected by the one or more sensors through the window.
In yet another embodiment, a vehicle for concealing one or more sensors includes a roof structure. The roof structure includes a roof panel. A window extends at least up to the roof panel. A headliner extends along an interior portion of the roof panel to the window and is at least partially spaced from the roof panel in a direction of an interior of the vehicle to provide a sensor mounting volume therebetween, wherein the window extends along at least a portion of the sensor mounting volume. One or more sensors are positioned behind the window and within the sensor mounting volume to provide a signal indicative of a characteristic of an environment of the vehicle detected by the one or more sensors through the window. One or more processors are communicatively coupled to the one or more sensors to receive from the one or more sensors the signal indicative of the characteristic of the environment and execute logic to cause the vehicle to respond to the signal indicative of the characteristic of the environment received from the one or more sensors.
These and additional features provided by the embodiments described herein will be more fully understood in view of the following detailed description, in conjunction with the drawings.
The embodiments set forth in the drawings are illustrative and exemplary in nature and not intended to limit the subject matter defined by the claims. The following detailed description of the illustrative embodiments can be understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
The embodiments disclosed herein include vehicles and vehicle roof structures for concealing one or more sensors therein. Generally, vehicles according to the present disclosure include a roof panel and a window extending at least up to the roof panel. In some embodiments, a headliner extends along an interior portion of the roof panel to the window and is at least partially spaced from the roof panel in a direction of an interior of the vehicle to provide a sensor mounting volume. One or more sensors are positioned within the sensor mounting volume behind the window to provide a signal indicative of a characteristic of an environment of the vehicle detected by the one or more sensors through the window. One or more processors may be communicatively coupled to the one or more sensors to cause the vehicle to respond to the signal indicative of the characteristic received from the one or more sensors. The various vehicle roof structures for concealing one or more vehicle sensors therein will be described in more detail herein with specific reference to the corresponding figures.
As used herein, the term “vehicle longitudinal direction” refers to the forward-rearward direction of the vehicle (i.e., in the +/− vehicle X-direction as depicted). The term “vehicle lateral direction” refers to the cross-vehicle direction (i.e., in the +/− vehicle Y-direction as depicted), and is transverse to the vehicle longitudinal direction. The term “vehicle vertical direction” refers to the upward-downward direction of the vehicle (i.e., in the +/− vehicle Z-direction as depicted).
Referring now to the drawings,
Referring briefly to
Referring again to
Still referring to
As described above, the lower portion 142 of the windshield 140 is generally the portion of the windshield 140 that a driver of the vehicle 100 would look through while driving. The lower portion 142 of the windshield 140 may therefore be made of traditional windshield 140 materials and have traditional windshield 140 structures. In some embodiments, the lower portion 142 and the transition portion 150 are made from the same materials. In other embodiments, the transition portion 150 is made from different materials than that of the lower portion 142. For example, and not as a limitation, the lower portion 142 may be made of glass and the transition portion 150 may be made of a plastic (e.g., polycarbonate plastic) or a different type of glass.
The roof panel 120 is supported within the roof structure 101 by the front header 180. The roof panel 120 may further be supported by the one or more roof bows 182. Though not shown, the front header 180 and the one or more roof bows 182 extend in the vehicle lateral direction to connect to a portion of a frame of the vehicle 100 (e.g., side rails) to support the roof panel 120. The roof panel 120 may be adhered to the front header 180 and one or more roof bows 182 by mastic 184 or other adhesives. The roof panel 120 may also be welded to the front header 180 in a discrete location. The roof panel 120 may be made of a variety of materials including but not limited to sheet metal, fiberglass, and polycarbonate plastic.
Referring now to the windshield 140, the lower portion 142 of the windshield 140 is generally depicted as having a substantially linear cross-section. However, it is contemplated that in some embodiments, the lower portion 142 of the windshield 140 may have a curvilinear cross-section. Therefore, in some embodiments, the transition portion 150 of the windshield 140 curves away from cross-sectional orientation of the lower portion 142 to blend with the roof panel 120 of the vehicle 100. In other embodiments, the transition portion 150 of the windshield 140 continues to follow the cross-sectional orientation of the lower portion 142 to substantially blend with the roof panel 120 of the vehicle 100. The amount of curvature experienced by the transition portion 150 of the windshield 140 may be dependent on the curvature of the roof panel 120 as compared with the orientation of the lower portion 142 of the windshield 140. As such the curvature of the transition portion 150 of the windshield 140 may be slight or may be more pronounced. In any case, the windshield 140 of the vehicle 100 may appear to extend beyond traditional vehicle rooflines. This concept will become more apparent in the following discussion.
The lower portion 142 and the transition portion 150 have thicknesses T1, T2 respectively. Though T1, T2 may be substantially equal, it is contemplated that the transition portion 150 may have a smaller thickness than that of the lower portion 142. It is further contemplated that the smaller thickness of the transition portion 150 may allow the material of the transition portion 150 to be more easily formed with a curvature to blend toward the roof panel 120 of the vehicle 100.
A shade band 151 may be incorporated in or applied to at least a portion of the transition portion 150 of the windshield 140. The shade band 151 provides the transition portion 150 with reduced visible light transmission (e.g., 80 percent or less, such as 50 percent or less) as compared to the lower portion 142 of the windshield 140. In some embodiments, the shade band 151 may reduce wavelengths other than visible light in the electromagnetic spectrum. The shade band 151 may be provided in a variety of ways. For example, and without limitation, the shade band 151 may be provided by at least one of window tinting, black ceramic paint, or a combination thereof. In embodiments, wherein black ceramic paint is used to provide the shade band 151, the black ceramic paint may be provided as patterned dots that increase in density toward the roofline 122 of the vehicle 100. In some embodiments, the shade band 151 may not be completely isolated to the transition portion 150 of the windshield 140 but may also extend into the lower portion 142 of the windshield 140.
In some embodiments, the transition portion 150 includes a concealing region 152 and one or more sensor regions 162. The concealing regions 152 may have reduced visible light transmission as compared to the one or more sensor regions 162. In such embodiments, the shade band 151 may only cover the concealing region 152 of the transition portion 150. The one or more sensor regions 162 may provide a window through which the one or more sensors 160 may detect a characteristic of the environment of the vehicle 100 through the transition portion 150 of the windshield 140. As described above, the reduced visible light transmission of the transition portion 150 of the windshield 140, and/or the concealing region 152, may be provided by at least one of window tinting and black ceramic paint applied to or within the transition portion 150 or the windshield 140. It is also contemplated that the material used for the transition portion 150 of the windshield 140 itself may have less visible light transmission as compared to standard windshield glass. The reduced visible light transmission of the transition region of the windshield 140 may reduce visibility from the outside of the vehicle 100 into the roof structure 101 to conceal the internal components of the roof structure 101 from outside viewers, as will be described in more detail below.
Still referring to
The sensor mounting volume 155 may generally be defined as the space formed between the headliner 170, the windshield 140, and the roof panel 120. The sensor mounting volume 155 may provide a space having a height of between about 25 mm to about 100 mm, such as about 50 mm in some embodiments. Therefore, it should be apparent that the windshield 140 extends past the headliner 170 to meet the roof panel 120, such that the sensor mounting volume 155 is formed between the headliner 170, the windshield 140, and the roof panel 120. In traditional vehicles, the headliner 170 may, instead be positioned at the interface between the windshield 140 and the roof panel 120 to cover the transition from the windshield 140 to the roof panel 120 from the interior of the vehicle 100.
Because of the added space provided by the sensor mounting volume 155, one or more sensors 160 may be mounted within the sensor mounting volume 155 and directed toward the transition portion 150 of the windshield 140, for example, to detect a characteristic of the environment of the vehicle 100 through the transition portion 150 of the windshield 140. In embodiments, where the transition portion 150 has one or more sensor regions 162 and a concealing region 152, the one or more sensors 160 may be located behind the one or more sensor regions 162 of the transition portion 150. Referring again to
Referring again to
Referring again to
Referring specifically to
Referring now to both
Referring now to just
As discussed above, the one or more sensors 160 are configured to produce a signal indicative of a characteristic of an environment of the vehicle 100 detected by the one or more sensors 160 through the windshield 140. The signal produced by the one or more sensors 160 may be communicatively coupled to different vehicle components to cause the vehicle 100 to respond to the signal. For example, referring now to
Accordingly, the communication path 107 may be formed from any medium that is capable of transmitting a signal such as, for example, conductive wires, conductive traces, optical waveguides, or the like. In some embodiments, the communication path 107 may facilitate the transmission of wireless signals, such as WiFi, Bluetooth, and the like. Moreover, the communication path 107 may be formed from a combination of mediums capable of transmitting signals. In one embodiment, the communication path 107 comprises a combination of conductive traces, conductive wires, connectors, and buses that cooperate to permit the transmission of electrical data signals to components such as processors, memories, sensors, input devices, output devices, and communication devices. Accordingly, the communication path 107 may comprise a vehicle bus, such as for example a LIN bus, a CAN bus, a VAN bus, and the like. Additionally, it is noted that the term “signal” means a waveform (e.g., electrical, optical, magnetic, mechanical or electromagnetic), such as DC, AC, sinusoidal-wave, triangular-wave, square-wave, vibration, and the like, capable of traveling through a medium.
Embodiments of the present disclosure include logic that includes machine-readable instructions and/or an algorithm written in any programming language of any generation (e.g., 1GL, 2GL, 3GL, 4GL, and/or 5GL) such as, e.g., machine language that may be directly executed by the one or more processors 106, assembly language, object-oriented programming (OOP), scripting languages, microcode, etc., that may be compiled or assembled into machine readable instructions and stored on a machine readable medium. Similarly, the logic and/or algorithm may be written in a hardware description language (HDL), such as logic implemented via either a field-programmable gate array (FPGA) configuration or an application-specific integrated circuit (ASIC), and their equivalents. Accordingly, the logic may be implemented in any conventional computer programming language, as pre-programmed hardware elements, and/or as a combination of hardware and software components.
As described above, the one or more sensors 160 are communicatively coupled to the one or more processors 106 over the communication path 107. As described above, the one or more sensors 160 are operable to sense one or more characteristics of an environment of the vehicle 100. In general, the one or more sensors 160 may sense characteristics of the environment including, but not limited to, rain, navigational information, oncoming obstacles, potentially hazardous obstacles, and other vehicles. Based on information detected by the one or more sensors 160, the one or more processors 106 may execute machine readable instructions to cause the vehicle 100 to respond to the characteristic detected by the one or more sensors 160.
As described herein, in some embodiments, vehicle-to-vehicle communication may be used in addition to or in place of the other sensors described herein. In such embodiments, the vehicle 100 includes network interface hardware 167 for communicatively coupling one or more processors 106 to other vehicles 200 such that data may be received from and sent to other vehicles 200 configured with vehicle-to-vehicle communication. For instance, the vehicle 100 and the other vehicle 200 may communicate with one another to send and receive information relevant to speed, road conditions, oncoming obstacles, etc. The network interface hardware 167 can be communicatively coupled to the communication path 107 and can be any device capable of transmitting and/or receiving data via a network. Accordingly, the network interface hardware 167 can include a communication transceiver for sending and/or receiving any wired or wireless communication. For example, the network interface hardware 167 may include an antenna, a modem, LAN port, Wi-Fi card, WiMax card, mobile communications hardware, near-field communication hardware, satellite communication hardware and/or any wired or wireless hardware for communicating with other networks and/or devices. In one embodiment, the network interface hardware 167 includes hardware configured to operate in accordance with the Bluetooth wireless communication protocol. In another embodiment, network interface hardware 167 may include a Bluetooth send/receive module for sending and receiving Bluetooth communications to/from a mobile device. Some embodiments may not be configured for vehicle-to-vehicle communication and may therefore not include the network interface hardware 167.
It should now be apparent the vehicles and vehicle roof structures according to embodiments disclosed herein allow for one or more sensors to be concealed within the roof structure of the vehicle. By concealing the one or more sensors within the roof structure, the sensors may remain largely hidden from view. Thus, sensors may be placed along higher points of the vehicle which may improve sensor function will preserving the visual appeal of the vehicle.
It is noted that the terms “substantially” and “about” may be utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. These terms are also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.
While particular embodiments have been illustrated and described herein, it should be understood that various other changes and modifications may be made without departing from the spirit and scope of the claimed subject matter. Moreover, although various aspects of the claimed subject matter have been described herein, such aspects need not be utilized in combination. It is therefore intended that the appended claims cover all such changes and modifications that are within the scope of the claimed subject matter.
Number | Name | Date | Kind |
---|---|---|---|
6307198 | Asakura et al. | Oct 2001 | B1 |
7236249 | Michenfelder et al. | Jun 2007 | B1 |
7258454 | Noguchi et al. | Aug 2007 | B2 |
8687196 | Demma | Apr 2014 | B2 |
9126469 | Weicker | Sep 2015 | B2 |
9244165 | Lynam | Jan 2016 | B1 |
20070216768 | Smith | Sep 2007 | A1 |
20080265629 | Fry | Oct 2008 | A1 |
20100098917 | Lyon | Apr 2010 | A1 |
20170182952 | Carlson | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
1462244 | Sep 2004 | EP |
Number | Date | Country | |
---|---|---|---|
20170369003 A1 | Dec 2017 | US |