Vehicular actuator system

Information

  • Patent Grant
  • 8160774
  • Patent Number
    8,160,774
  • Date Filed
    Wednesday, October 15, 2008
    16 years ago
  • Date Issued
    Tuesday, April 17, 2012
    12 years ago
Abstract
An actuator system for determining a relative height differential between a housing of an actuator assembly and a body of the actuator assembly for a vehicle is provided. The vehicle has a suspension wherein the housing is coupled to a first portion of the suspension, and the body is coupled to a second portion of the suspension. The system comprises a sensor coupled to the inside of the housing, and a target coupled to the outside of the body, the sensor and the target cooperating to form a magnetic field that varies in a manner indicative of the distance therebetween.
Description
TECHNICAL FIELD

The present invention generally relates to vehicular suspension systems, and more particularly relates to an actuator system for determining relative height differential in a vehicular suspension.


BACKGROUND OF THE INVENTION

Control systems that automatically regulate ride height have been integrated into the suspensions of many vehicles. These systems rely on height or relative displacement sensors to provide real-time feedback on the distance between selected suspension components of sprung and unsprung vehicle masses. Controllers respond to height variations by adjusting compensating elements in the suspension to provide greater chassis stability. Accuracy in ride height measurement enables a more precise system response and thereby enhances vehicle performance characteristics including ride comfort and handling especially during cornering, acceleration, and braking.


Typical height sensors use mechanical linkages connected between monitoring points in the suspension that convert linear displacement to a rotary motion. A contacting or non-contacting, electro-mechanical sensor converts this angular displacement to an electrical signal indicative of the height differential. However such systems often include mounting arms, sensor links and brackets, and a myriad of associated connecting fasteners and therefore increase part count and complicate assembly and servicing. Further, the exposure of these systems to the undercarriage of a vehicle increases their vulnerability to contamination and road debris that can cause damage or long term performance degradation.


Accordingly, there is a need to provide a vehicular actuator system for determining the relative height differential of an actuator such as a damper assembly or a linear actuator that is protected from road contamination and debris. Further, it is desirable if such a system is simpler to assemble, more convenient to service, and has a reduced part count. Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background.


SUMMARY OF THE INVENTION

In accordance with an embodiment, by way of example only, an actuator system for determining a relative height differential between a housing of an actuator assembly and a body of the actuator assembly for a vehicle is provided. The vehicle has a suspension wherein the housing is coupled to a first portion of the suspension, and the body is coupled to a second portion of the suspension. The system comprises a sensor coupled to the inside of the housing, and a target coupled to the outside of the body, the sensor and the target cooperating to form a magnetic field that varies in a manner indicative of the distance therebetween.





DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present invention may be derived by referring to the detailed description and claims when considered in conjunction with the following figures, wherein like reference numbers refer to similar elements throughout the figures.



FIG. 1 is an isometric view of a vehicular suspension system in accordance with an exemplary embodiment of the present invention;



FIG. 2 is a cross-sectional view of a damper assembly for use on the vehicle suspension system shown in FIG. 1 in accordance with a further embodiment of the present invention;



FIG. 3 is a cross-sectional view of a damper assembly for use on the vehicle suspension system shown in FIG. 1 in accordance with another embodiment of the present invention;



FIG. 4 is a cross-sectional view of a damper assembly for use on the vehicle suspension system shown in FIG. 1 in accordance with yet another embodiment of the present invention; and



FIG. 5 is an isometric view of a vehicular suspension system in accordance with yet another exemplary embodiment of the present invention.





DESCRIPTION OF AN EXEMPLARY EMBODIMENT

The following detailed description is merely illustrative in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description. The invention may be described herein in terms of functional and/or logical block components and various processing steps. It should be appreciated that such block components may be realized by any number of hardware, software, and/or firmware components configured to perform the specified functions. For the purposes of conciseness, conventional techniques and systems related to semiconductor processing, transistor theory, packaging, and power modules are not described in detail herein.


The following description refers to elements or nodes or features being “connected” or “coupled” together. As used herein, unless expressly stated otherwise, “connected” means that one element/node/feature is directly joined to (or directly communicates with) another element, node or other feature in a mechanical, logical, electrical or other appropriate sense. Likewise, unless expressly stated otherwise, “coupled” means that one element/node/feature is directly or indirectly joined to (or directly or indirectly communicates with) another element/node/feature in a mechanical, logical, electrical or other appropriate sense. The term “exemplary” is used in the sense of “example,” rather than “model.” Further, although the figures may depict example arrangements of elements, additional intervening elements, devices, features, or components may be present in a practical embodiment of the invention.


The present invention provides an electronic relative height differential or relative displacement sensing system for a vehicular suspension actuator that is protected from the performance degrading effects of road debris and contamination. This system also eliminates the need for many of the brackets, mechanical links, and associated fasteners prevalent in many current systems simplifying factory assembly and making servicing more convenient. Inductive height sensing technology is integrated into the inside of an active vehicular actuator such as a linear actuator or an electronically controlled damper assembly, or into a passive actuator such as a damper assembly which, as described herein, may be a shock absorber, a strut, or the like. Such an integration provides convenient servicing accessibility that can often negate the need to remove and/or replace an entire actuator assembly in the event of a malfunctioning sensing element. For example, sensing components may be accessed by removal of an outer housing such as a dust tube or the like that, when in place, provides sensors with protection from road debris and contamination. The sensing system provides information such as the relative height differential of a linear actuator or the relative height or displacement between sprung and unsprung vehicle masses that may be used by a suspension controller in making chassis stabilizing adjustments to controlled suspension members.



FIG. 1 illustrates a suspension system 100 having a height sensing system integrated into a damper assembly 104 in accordance with an exemplary embodiment. Damper assembly 104, which may comprise a shock absorber, a strut, or the like, has a lower mount 128 connected to a lower control arm 140 (unsprung vehicle mass), and an upper mount 144 connected to a frame structural member 108 (sprung vehicle mass). Mounting of damper assembly 104 to structural members may be suitably done in any conventional manner using mounting brackets and fasteners. Upper and/or lower mounts 144 and 128 may include a bushing to facilitate limited lateral motion between sprung and unsprung vehicle masses. During operation, damper assembly 104 provides a damped response to vertical motion between sprung and unsprung vehicle masses that limits and stabilizes such motions in a well known manner. Further, because damper assembly 104 is substantially rigidly connected between vehicle masses, changes in relative height are transferred to its internal components. These components include a height sensor that monitors relative height differential in a manner to be further described below.



FIG. 2 is a cross-sectional view of damper assembly 104 in accordance with a first exemplary embodiment. Damper assembly 104 includes a cylindrical body or damper tube 160, a cylindrical exterior housing or dust tube 188, a piston rod 148, an end member 196, an upper mount assembly 180, and a lower mounting bracket 168. Damper assembly 104 is connected in a conventional manner to lower control arm 140 (FIG. 1) at a first end 200 via mounting bracket 168 having an opening 171 configured to be used in conjunction with a suitable fastener. Damper assembly 104 is conventionally connected at a second end 204 to frame structural member 108 by a self-locking flange nut 150 that fastens to a threaded end 154 of piston rod 148. Damper tube 160 is coupled to mounting bracket 168 (and thus to the unsprung vehicle mass) at a lower end 202, and is coupled to end member 196 at an upper end 206. Piston rod 148 is slidably coupled to and substantially concentric with damper tube 160 and end member 196, and has a piston 162 mounted at a terminal end 158 thereof. An optional jounce bumper 172 comprised of a hard rubber or any suitable elastomeric material, is coupled to a jounce bumper bracket 178 and disposed concentrically about piston rod 148. When jounce bumper 172 is present, end member 196 is a jounce bumper stopper. However, in the case wherein jounce bumper 172 is not present, end member 196 may be a suitable upper end cap. Dust tube 188 is coupled to upper mount assembly 180 (and thus to the sprung vehicle mass), and is substantially concentric with and slidably coupled to damper tube 160.


Damper assembly 104 further includes a sensor board 164 and a target 192. Sensor board 164 may assume the form of any device suitable for sensing the relative position of target 192 and generating an output signal indicative of that position. In the exemplary embodiment illustrated in FIG. 2, sensor board 164 assumes the form of a pad-type flexible circuit board that is fixedly mounted to, and preferably conforms with, the inner annular surface of dust tube 188. Although not shown in FIG. 2 for clarity, sensor board 164 is populated with various electronic components, including, for example, an application specific integrated circuit (ASIC) that may be adapted to drive the other components (e.g., magnetic coils) of sensor board 164. A target 192 is comprised of a suitable magnetic pattern disposed on another flexible circuit board, and is magnetically coupled to sensor board 164. Target 192 may comprise a puck-shaped body mounted to damper tube 160 proximate to upper end 206. However, it will be appreciated that target 192 may assume other geometries and dispositions within damper assembly 104 in alternative embodiments. The length of sensor board 164 (as measured along a central axis 170) is sufficient to provide continuous coupling to target 192, and thus depends on the range of vertical travel of damper tube 160. The width or angular coverage of sensor board 164 is also sufficient to maintain coupling to target 192 and compensate for any torsional displacements between damper tube 160 and dust tube 188. A connector 176 is mounted either within a sealed opening in dust tube 188, or at the end of a wiring harness threaded through such an opening, and provides a means of electrical coupling between sensor board 164 and external electronics assemblies. These assemblies, that in one embodiment include a processor 174, are configured to receive signals from sensor board 164 and determine the position of target 192 relative to sensor board 164.


In another embodiment, processor 174 may be disposed within dust tube 188 and may be included as a component of sensor board 164. Processor 174 may be further expanded to include a local controller coupled to, and configured to provide control for, an electronically controlled damper assembly. In this case, connector 176 may provide power for sensor board 164 and provides a communication channel whereby relative height data generated by processor 174 may be transferred to a vehicle suspension controller.


During operation, changes in vertical distance between the sprung/unsprung vehicle masses are transferred to damper tube 160 coupled to the unsprung vehicle mass, and to dust tube 188 coupled to the sprung vehicle mass. As damper tube 160 moves vertically with respect to dust tube 188, target 192 moves with respect to sensor board 164 in a non-contacting manner. In one embodiment, sensor board 164 includes a series of miniature coils for generating and receiving magnetic fields that target 192 interacts with. This interaction changes the phase of these fields in a manner dependant upon the relative position of target 192 with sensor board 164. Sensor board 164 generates phase change signals based upon this interaction that are transferred through connector 176 to a supporting external electronics assembly that may include, for example, processor 174. The electronics assembly then uses these phase change signals to locate the position, and thus relative height of target 192 to sensor board 164. Such sensors are commercially available under the product designation Autopad™ through TT Electronics OPTEK Technology located in Carrollton Tex. Relative height data may be further used by a suspension controller (not shown) coupled to the electronics assembly and configured to adjust controlled suspension elements accordingly. Those of skill in the art will appreciate that other types of inductive sensing systems may be used to determine relative displacements between internal components of a damper assembly and thereby, the relative height of sprung and unsprung vehicle masses. These include but are not limited to systems based upon Hall Effect magnetic coupling provided that coupling of sensor/target components is divided between sprung and unsprung vehicle masses.



FIG. 3 is a cross-sectional view of a damper assembly 240 having a height sensing system in accordance with a further embodiment. Damper assembly 240 is configured with many of the same internal elements as damper assembly 104 (of FIG. 2) including a cylindrical body or damper tube 260, a housing or a dust tube 288, a piston rod 248, an optional jounce bumper bracket 278, an optional jounce bumper 272, an end member 296 (that takes the form of a jounce bumper stopper when jounce bumper 272 is present), an upper mount assembly 280, and a lower mounting bracket 268. Damper assembly 240 is mounted between sprung and unsprung vehicle masses in a manner similar to damper assembly 104 (FIG. 2) using a self-locking flange nut 250 at a second end 304 to connect to the sprung mass, and mounting bracket 268 at a first end 300 to connect to the unsprung mass. Damper tube 260 is attached to mounting bracket 268 at a lower end 305, and to end member 296 at an upper end 306. When damper tube 260 is highly compressed, end member 296 butts against jounce bumper 272 coupled to jounce bumper bracket 278 providing a cushioned limit of travel. A sensor element 312 is mounted to jounce bumper bracket 278 and is configured with an annular or semi-annular shape that surrounds or partially surrounds piston rod 248. A portion of jounce bumper 272 may be removed to accommodate sensor element 312 and prevent it from damage when jounce bumper 272 is compressed.


In one embodiment, end member 296 may comprise a ferromagnetic metal such as iron or carbon steel that acts as a target inductively or electromagnetically coupled to sensor element 312. Sensor element 312 comprises a permanent magnet for generating a magnetic field, and has sensing coils configured to detect changes in the magnetic field. A suitable permanent magnet comprises a material composition that remains permanently magnetized, and continuously generates a magnetic field such as, for example, neodymium iron cobalt (NdFeCo), or aluminum nickel cobalt (AlNiCo). During operation, the motion of end member 296 relative to sensor 312 alters the magnetic field in a manner indicative of the relative distance between them. In another embodiment, end member 296 may comprise a permanent magnetic material for generating a magnetic field, and sensor 312 is configured to sense changes in the field as end member 296 moves relative to sensor 312. In either case, sensor 312 generates a signal indicative of the sensor-to-target distance. A suitable connector 220 couples sensor element 312 through an opening in dust tube 288, providing a means for transmitting this signal to an external electronics assembly that may include a processor 207 and/or a chassis controller 209.


In another embodiment illustrated in FIG. 4, damper assembly 240 does not include a jounce bumper, and sensor element 312 is fixedly mounted to an inside surface of dust tube 288. In this case, end member 296 may take the form of a suitable end cap that in one embodiment has an annular shape, and is coupled to upper end 306 and slidably coupled to piston rod 248. End member 296 and sensor 312 are each suitably configured for magnetic coupling with each other as previously described, and therefore may be used in conjunction with a damper tube 260 comprising a ferromagnetic or a non-feromagnetic material. For example, if damper tube 260 is fabricated from a non-magnetic stainless steel, end member 296 is configured to provide inductive coupling to sensor element 312. In either of these embodiments, and whether or not a jounce bumper is used, both target (end member 296) and sensor element 312 are encased within dust tube 288 and/or upper mount assembly 280, each providing protection from road debris and contamination. Further, the target and/or sensor element may be conveniently accessed for service without replacing of the entire damper assembly. As with a previous embodiment, digital connector 220 may be used to couple sensor element 312 to an electronics assembly and/or a controller.


During operation, the vertical distance between sprung and unsprung vehicle masses varies depending on road conditions and the speed of the vehicle, causing damper tube 260 to move concentrically along piston rod 248 into and out of dust tube 288. Accordingly, the height differential between end member 296 acting as the target, and sensor element 312 also changes. Sensor element 312 is configured to sense changes in a magnetic field generated by motion of target end member 296 relative to sensor 312, and generate an output signal indicative of the relative position between these elements. The output signal is processed by an electronics assembly that may be disposed within dust tube 288 and that may include processor 207, to determine the relative height differential. These data may further be transferred to chassis controller 209 that responds to relative height variations by adjusting suspension elements accordingly. Sensor element 312 is coupled to the external electronics and/or controller via connector 220. In another embodiment, sensor element 312 includes an integrated processor (not shown) configured to determine relative height data and transfer these data to an external controller. In this case, power for sensor element 312 and data transfer to a controller may flow through connector 220.



FIG. 5 illustrates a vehicular suspension system 350 having a linear actuator assembly 320 with an internally-mounted sensor and target for determining relative actuator displacement in accordance with another embodiment. Linear actuator assembly 320 may be coupled between any two suspension members wherein it is desirable to determine the relative height differential therebetween. As illustrated in FIG. 5, linear actuator assembly 320 comprises an outer housing or dust tube 324 coupled at an upper end 344 to an upper frame structural member 336 of the sprung mass, and a body 328 coupled at a lower end 340 to a roll stabilization bar 332. Linear actuator assembly 320 includes a sensor element coupled to the inside of dust tube 324 and a target coupled to body 328 that is magnetically coupled to the sensor. The various target/sensor element and supporting electronics configurations pertinent to this embodiment have been described in detail in previous embodiments and therefore will only be briefly discussed. In one embodiment, the sensor element generates magnetic signals that are inductively coupled to the target in a manner indicative of the relative displacement of the target to the sensor element. In another embodiment, the sensor detects a magnetic field generated by the target that changes in a manner similarly indicative. In either case, an electronic assembly that may comprise a processor is coupled to the sensor and configured to determine the relative sensor/target displacement. The relative displacement may be further used by the same or a different processor and/or suspension controller to make appropriate responding chassis adjustments.


While at least one example embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the example embodiment or embodiments described herein are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the described embodiment or embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope of the invention and the legal equivalents thereof.

Claims
  • 1. An actuator system for determining a relative height differential between a housing of an actuator assembly and a body of the actuator assembly for a vehicle, the vehicle having a suspension, the housing coupled to a first portion of the suspension, and the body coupled to a second portion of the suspension, the system comprising: a sensor coupled to the inside of the housing; anda target coupled to the outside of the body, the sensor and the target cooperating to form a magnetic field that varies in a manner indicative of the distance therebetween, wherein the sensor generates a signal indicative of the position of the target with respect to the sensor, and further comprising an electronics assembly coupled to the sensor, and configured to receive the signal and determine the relative height differential therefrom.
  • 2. A system according to claim 1, wherein the sensor generates the magnetic field, and the target and sensor interact with the magnetic field in a manner indicative of the distance between the sensor and the target.
  • 3. A system according to claim 1, wherein the target generates the magnetic field, and the sensor and the target interact with the magnetic field in a manner indicative of the distance between the sensor and the target.
  • 4. A system according to claim 1, wherein the suspension further comprises a sprung mass and an unsprung mass, and wherein the housing is coupled to one of the sprung mass or the unsprung mass, and the body is coupled to the other of the sprung mass or the unsprung mass.
  • 5. A system according to claim 1, wherein the actuator assembly is a linear actuator assembly.
  • 6. A system according to claim 1, wherein the actuator assembly is a damper assembly.
  • 7. A system according to claim 1, wherein the housing comprises an inner surface, and the sensor is fixedly mounted to the inner surface of the housing.
  • 8. A system according to claim 1, wherein the electronics assembly is disposed within the housing.
  • 9. A system according to claim 1, wherein the electronics assembly comprises a processor.
  • 10. A system according to claim 1, wherein the vehicle further comprises a suspension controller, and the housing further comprises an opening, and further comprising a connector coupled through the opening for electrically coupling the sensor to the controller.
  • 11. A damper system for determining a relative height differential between a sprung mass of a vehicle and an unsprung mass of the vehicle, the vehicle having a damper assembly with a housing coupled to the sprung mass and a damper tube coupled to the unsprung mass, the system comprising: a sensor coupled to the inside of the housing; anda target coupled to the outside of the damper tube, the sensor and the target cooperating to form a magnetic field that varies in a manner indicative of the distance therebetween, wherein the damper assembly further comprises a jounce bumper coupled to the inside of the housing, the jounce bumper having a recess, and the sensor is disposed within the recess in the jounce bumper.
  • 12. A system according to claim 11, wherein the sensor generates the magnetic field, and the target and sensor interact with the magnetic field in a manner indicative of the distance between the sensor and the target.
  • 13. A system according to claim 11, wherein the target generates the magnetic field, and the sensor and the target interact with the magnetic field in a manner indicative of the distance between the sensor and the target.
  • 14. A system according to claim 11, wherein the housing comprises an inner surface, and the sensor is fixedly mounted to the inner surface of the housing in a substantially conformal manner.
  • 15. A system according to claim 11, wherein the sensor generates a signal indicative of the position of the target with respect to the sensor, and further comprising an electronics assembly coupled to the sensor, and configured to receive the signal and determine the relative height differential therefrom.
  • 16. A system according to claim 15, wherein the electronics assembly is disposed within the housing.
  • 17. A system according to claim 15, wherein the electronics assembly comprises a processor integrated with the sensor.
  • 18. A damper system for determining a relative height differential between a sprung mass of a vehicle and an unsprung mass of the vehicle, the system including a damper assembly having a housing coupled to the sprung mass, and a damper tube coupled to the unsprung mass, the system comprising: a sensor coupled to the inside of the housing for generating a magnetic field;a target coupled to the outside of the damper tube for interacting with the magnetic field in a manner indicative of the position of the target relative to the sensor; anda processor coupled to the sensor for determining the relative height differential.
US Referenced Citations (83)
Number Name Date Kind
2594755 Felt Apr 1952 A
4297609 Hirao et al. Oct 1981 A
4458234 Brisard Jul 1984 A
4600215 Kuroki et al. Jul 1986 A
4757315 Lichtenberg et al. Jul 1988 A
4817922 Hovance Apr 1989 A
4822063 Yopp et al. Apr 1989 A
4827416 Kawagoe et al. May 1989 A
4836578 Soltis Jun 1989 A
5009450 Herberg et al. Apr 1991 A
5056913 Tanaka et al. Oct 1991 A
5103396 Hiwatashi et al. Apr 1992 A
5127667 Okuda et al. Jul 1992 A
5218308 Bosebeck et al. Jun 1993 A
5251729 Nehl et al. Oct 1993 A
5267466 Morris Dec 1993 A
5347186 Konotchick Sep 1994 A
5373445 Yopp Dec 1994 A
5390949 Naganathan et al. Feb 1995 A
5450322 Tanaka et al. Sep 1995 A
5461564 Collins et al. Oct 1995 A
5638927 Cheatham et al. Jun 1997 A
5944763 Iwasaki Aug 1999 A
5990441 Zaenglein et al. Nov 1999 A
6069581 Bell et al. May 2000 A
6111375 Zenobi Aug 2000 A
6209691 Fehring et al. Apr 2001 B1
6234654 Okuchi et al. May 2001 B1
6328144 Hayakawa et al. Dec 2001 B1
6427812 Crawley et al. Aug 2002 B2
6502837 Hamilton et al. Jan 2003 B1
6614239 Borghi Sep 2003 B2
6694856 Chen et al. Feb 2004 B1
6771007 Tanielian Aug 2004 B2
6866127 Nehl et al. Mar 2005 B2
6938311 Tanielian Sep 2005 B2
7057330 Buhler et al. Jun 2006 B2
7123351 Schaefer Oct 2006 B1
7221437 Schaefer May 2007 B1
7250697 Beaulieu Jul 2007 B2
7261171 De La Torre et al. Aug 2007 B2
7380800 Klees Jun 2008 B2
7420462 Nordmeyer Sep 2008 B2
7521841 Clingman et al. Apr 2009 B2
7654370 Cubalchini, Jr. Feb 2010 B2
7733239 Nordmeyer Jun 2010 B2
7737608 Ruggeri et al. Jun 2010 B2
7770701 Davis Aug 2010 B1
7777396 Rastegar et al. Aug 2010 B2
7839058 Churchill et al. Nov 2010 B1
7849983 St. Clair et al. Dec 2010 B2
7948613 Fourcault et al. May 2011 B2
20020032508 Uchino et al. Mar 2002 A1
20030034697 Goldner et al. Feb 2003 A1
20050077692 Ogawa Apr 2005 A1
20050090956 Ogawa Apr 2005 A1
20050270221 Fedotov et al. Dec 2005 A1
20060176158 Fleming Aug 2006 A1
20060186586 Soles et al. Aug 2006 A1
20060188120 Fisher Aug 2006 A1
20060271678 Jessup et al. Nov 2006 A1
20070032913 Ghoneim et al. Feb 2007 A1
20070129865 Kim Jun 2007 A1
20070205881 Breed Sep 2007 A1
20070251776 Braun Nov 2007 A1
20080116849 Johnston May 2008 A1
20080252174 Mohammadi et al. Oct 2008 A1
20080277939 Richardson et al. Nov 2008 A1
20080284258 Spratte et al. Nov 2008 A1
20090021720 Hecker Jan 2009 A1
20090045698 Genis et al. Feb 2009 A1
20090278927 Ishiyama et al. Nov 2009 A1
20100045143 Martin Feb 2010 A1
20100052475 Lee Mar 2010 A1
20100084947 Yoon et al. Apr 2010 A1
20100123568 Namuduri et al. May 2010 A1
20100125389 Talty et al. May 2010 A1
20100219641 Namuduri et al. Sep 2010 A1
20100219720 Namuduri et al. Sep 2010 A1
20100219721 Namuduri et al. Sep 2010 A1
20100219798 Namuduri et al. Sep 2010 A1
20100225527 Talty et al. Sep 2010 A1
20100244629 Nagashima et al. Sep 2010 A1
Foreign Referenced Citations (10)
Number Date Country
39 09 190 Aug 1990 DE
41 12 276 Nov 1992 DE
295 18 322 Jan 1996 DE
103 58 764 Jul 2005 DE
10 2004 010 229 Sep 2005 DE
10 2005 008 403 Sep 2006 DE
2594755 Aug 1987 FR
2 098 007 Nov 1982 GB
60101425 Jun 1985 JP
4359901 Nov 2009 JP
Related Publications (1)
Number Date Country
20100094503 A1 Apr 2010 US