VEHICULAR ALERT SYSTEM FOR ALERTING DRIVERS OF OTHER VEHICLES RESPONSIVE TO A CHANGE IN DRIVING CONDITIONS

Abstract
A vehicular alert system includes a forward-viewing camera disposed at an in-cabin side of a windshield of a vehicle and viewing through the windshield forward of the equipped vehicle, and a forward-sensing sensor disposed at the equipped vehicle and sensing forward of the equipped vehicle. Image data captured by the forward-viewing camera and sensor data captured by the forward-sensing sensor are processed at an electronic control unit (ECU). The vehicular alert system, responsive to processing at the ECU of image data captured by the forward-viewing camera and to processing at the ECU of sensor data captured by the forward-sensing sensor, determines that the equipped vehicle is approaching a hazard ahead of the equipped vehicle, and visually alerts a trailing vehicle behind the equipped vehicle of the hazard at least by actuating hazard lights of the equipped vehicle.
Description
FIELD OF THE INVENTION

The present invention relates generally to a vehicle vision system for a vehicle and, more particularly, to a vehicle vision system that utilizes one or more cameras at a vehicle.


BACKGROUND OF THE INVENTION

Use of sensors in vehicle sensing systems is common and known. Such sensors are integrated at the vehicle and may sense areas rearward of the vehicle to assist the driver in reversing the vehicle.


SUMMARY OF THE INVENTION

The present invention provides an alert system for a vehicle that receives potential hazard data, and that provides a control that includes a processor for processing the potential hazard data received by the control. The control, responsive to receiving the potential hazard data, determines the vehicle is approaching a hazard and alerts another vehicle of the approaching hazard.


These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a plan view of a vehicle with a vision system that incorporates cameras and/or radar sensors and/or other sensors in accordance with the present invention; and



FIG. 2 is a plan view of the vehicle of FIG. 1 alerting another vehicle in accordance with the present invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

A driver assist system and/or alert system operates to receive potential hazard data. The system may capture image data exterior of the vehicle and may process the captured image data to display images and/or to detect objects at or near the vehicle and in the predicted path of the vehicle to gather potential hazard data. The system includes an image processor or image processing system that is operable to receive image data from one or more cameras and process the image data to determine objects or vehicles present in the field of view of the camera(s) and/or provide an output to a display device for displaying images representative of the captured image data.


Referring now to the drawings and the illustrative embodiments depicted therein, a vehicle 10 includes an imaging system or vision system 12 that includes at least one exterior viewing imaging sensor or camera, such as a rearward viewing imaging sensor or camera 14a (and the system may optionally include multiple exterior viewing imaging sensors or cameras, such as a forward viewing camera 14b at the front (or at the windshield) of the vehicle, and a sideward/rearward viewing camera 14c, 14d at respective sides of the vehicle), which captures images exterior of the vehicle, with the camera having a lens for focusing images at or onto an imaging array or imaging plane or imager of the camera (FIG. 1). Optionally, a forward viewing camera may be disposed at the windshield of the vehicle and view through the windshield and forward of the vehicle, such as for a machine vision system (such as for traffic sign recognition, headlamp control, pedestrian detection, collision avoidance, lane marker detection and/or the like). The vision system 12 includes a control or electronic control unit (ECU) 18 that comprises electronic circuitry and associated software, with the electronic circuitry including an image processor or data processor that is operable to process image data captured by the camera or cameras and may detect objects or the like and/or provide displayed images at a display device 16 for viewing by the driver of the vehicle (although shown in FIG. 1 as being part of or incorporated in or at an interior rearview mirror assembly 20 of the vehicle, the control and/or the display device may be disposed elsewhere at or in the vehicle). The data transfer or signal communication from the camera to the ECU may comprise any suitable data or communication link, such as a vehicle network bus or the like of the equipped vehicle. The system 12 may include at least one antenna 22 for receiving wireless data from external sources (e.g., 3G or 4G or 5G data).


When performing an abrupt or unexpected traffic maneuver in a vehicle (e.g., aggressively braking) due to unexpected traffic or road conditions, it may be advantageous to alert or warn other vehicles about the unexpected traffic or road conditions. For example, a driver may engage his or her hazard lights (such as by pressing a hazard light switch in the vehicle that causes flashing of the brake lights, including the center high-mounted stop lamp (CHMSL), side indicator lights and the like) when braking for heavy traffic in order to alert drivers behind the vehicle of the drastic change in traffic flow.


Referring now to FIG. 2, the control 18 of the alert system equipped at the vehicle 10 receives information (i.e., potential hazard data) regarding upcoming traffic (e.g., traffic density, traffic speed, etc.) and/or road conditions (e.g., weather information, road construction/closures, etc.). For example, the control of the vehicle receives potential hazard data regarding icy roads, traffics jams, or obstacles in the road. The control may receive this information from, for example, a wireless data connection (e.g., a 3G or 4G or 5G data connection via antenna 22) and/or via object detection via processing of image data captured by one or more cameras 14 at the vehicle 10 and/or via object detection via processing of sensor data captured by another sensor or sensors, such as radar, lidar, or ultrasonic sensors. The control may also receive data from other sources. For example, the control may receive vehicle speed, vehicle acceleration/deceleration, steering wheel angle, GPS data, etc.


The control 18 determines, from the received potential hazard data, hazards that the vehicle 10 may be approaching. For example, the control 18 may determine that the vehicle is approaching stopped traffic or icy roads or other objects or obstacles on the road. In another example, the control, from processing image data, may detect stopped traffic ahead. In some implementations, a threshold amount of deceleration or braking or change in vehicle speed may be an additional input for the control. Abrupt changes in steering (i.e., to avoid an obstacle in the road) may be a further input. In other examples, the control determines that traffic has been stopped from traffic information received via the wireless data connection.


In response to determining the hazard from processing the potential hazard data, the control 18 alerts the driver of the vehicle 10 and/or drivers of nearby vehicles (e.g., vehicle 24) of the hazard. For example, the control 18 may flash brake lights 26 or engage hazard lights 28 (such as the center high-mounted stop lamp (CHMSL) and/or rear and side indicator lights and the like) of the vehicle to alert drivers of other vehicles. This may be especially helpful when traffic behind the vehicle 10 (e.g., vehicle 24) can see the vehicle 10, but cannot see the determined hazard, such as, for instance, when a bend in the road (or the vehicle itself) obscures the hazard from the trailing vehicle 24. In other implementations, the control 18 generates an alert for the driver of the equipped vehicle 10. For example, an audible alert (e.g., using integrated speakers of the vehicle 10) and/or a visual display on an integrated display of the vehicle.


Optionally, the vehicle may receive potential hazard information from other vehicles (e.g., via a vehicle to vehicle communication system). The vehicle may alert the driver and/or other drivers of other vehicles of the hazard. For example, a vehicle stopped by traffic could communicate the traffic stoppage to a second vehicle approaching the traffic stoppage but not yet at the traffic stoppage or within the driver's view of the traffic stoppage. The second vehicle may communicate the traffic stoppage to a third vehicle trailing the second vehicle via wireless communication, brake lights, hazard lights, etc.


Thus, the system of the present invention alerts drivers of the equipped vehicle and/or nearby (e.g., trailing) vehicles to the presence of upcoming hazards. The system may use GPS (or other navigation data), traffic information, or other sensor data (e.g., cameras, radar, vehicle speed, etc.) to determine the presence of upcoming hazards. The system may then audibly or visually alert drivers of the upcoming hazard. For example, the system may automatically engage the hazard lights of the vehicle.


The vehicle may include any type of sensor or sensors, such as imaging sensors or radar sensors or lidar sensors or ultrasonic sensors or the like. The imaging sensor or camera may capture image data for image processing and may comprise any suitable camera or sensing device, such as, for example, a two dimensional array of a plurality of photosensor elements arranged in at least 640 columns and 480 rows (at least a 640×480 imaging array, such as a megapixel imaging array or the like), with a respective lens focusing images onto respective portions of the array. The photosensor array may comprise a plurality of photosensor elements arranged in a photosensor array having rows and columns. Preferably, the imaging array has at least 300,000 photosensor elements or pixels, more preferably at least 500,000 photosensor elements or pixels and more preferably at least 1 million photosensor elements or pixels. The imaging array may capture color image data, such as via spectral filtering at the array, such as via an RGB (red, green and blue) filter or via a red/red complement filter or such as via an RCC (red, clear, clear) filter or the like. The logic and control circuit of the imaging sensor may function in any known manner, and the image processing and algorithmic processing may comprise any suitable means for processing the images and/or image data.


For example, the vision system and/or processing and/or camera and/or circuitry may utilize aspects described in U.S. Pat. Nos. 9,233,641; 9,146,898; 9,174,574; 9,090,234; 9,077,098; 8,818,042; 8,886,401; 9,077,962; 9,068,390; 9,140,789; 9,092,986; 9,205,776; 8,917,169; 8,694,224; 7,005,974; 5,760,962; 5,877,897; 5,796,094; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; 7,859,565; 5,550,677; 5,670,935; 6,636,258; 7,145,519; 7,161,616; 7,230,640; 7,248,283; 7,295,229; 7,301,466; 7,592,928; 7,881,496; 7,720,580; 7,038,577; 6,882,287; 5,929,786 and/or 5,786,772, and/or U.S. Publication Nos. US-2014-0340510; US-2014-0313339; US-2014-0347486; US-2014-0320658; US-2014-0336876; US-2014-0307095; US-2014-0327774; US-2014-0327772; US-2014-0320636; US-2014-0293057; US-2014-0309884; US-2014-0226012; US-2014-0293042; US-2014-0218535; US-2014-0218535; US-2014-0247354; US-2014-0247355; US-2014-0247352; US-2014-0232869; US-2014-0211009; US-2014-0160276; US-2014-0168437; US-2014-0168415; US-2014-0160291; US-2014-0152825; US-2014-0139676; US-2014-0138140; US-2014-0104426; US-2014-0098229; US-2014-0085472; US-2014-0067206; US-2014-0049646; US-2014-0052340; US-2014-0025240; US-2014-0028852; US-2014-005907; US-2013-0314503; US-2013-0298866; US-2013-0222593; US-2013-0300869; US-2013-0278769; US-2013-0258077; US-2013-0258077; US-2013-0242099; US-2013-0215271; US-2013-0141578 and/or US-2013-0002873, which are all hereby incorporated herein by reference in their entireties. The system may communicate with other communication systems via any suitable means, such as by utilizing aspects of the systems described in International Publication Nos. WO 2010/144900; WO 2013/043661 and/or WO 2013/081985, and/or U.S. Pat. No. 9,126,525, which are hereby incorporated herein by reference in their entireties.


The system may utilize sensors, such as radar or lidar sensors or the like. The sensing system may utilize aspects of the systems described in U.S. Pat. Nos. 9,753,121; 9,689,967; 9,599,702; 9,575,160; 9,146,898; 9,036,026; 8,027,029; 8,013,780; 6,825,455; 7,053,357; 7,408,627; 7,405,812; 7,379,163; 7,379,100; 7,375,803; 7,352,454; 7,340,077; 7,321,111; 7,310,431; 7,283,213; 7,212,663; 7,203,356; 7,176,438; 7,157,685; 6,919,549; 6,906,793; 6,876,775; 6,710,770; 6,690,354; 6,678,039; 6,674,895 and/or 6,587,186, and/or International Publication Nos. WO 2018/007995 and/or WO 2011/090484, and/or U.S. Publication Nos. US-2018-0231635; US-2018-0045812; US-2018-0015875; US-2017-0356994; US-2017-0315231; US-2017-0276788; US-2017-0254873; US-2017-0222311 and/or US-2010-0245066, which are hereby incorporated herein by reference in their entireties.


The system may also communicate with other systems, such as via a vehicle-to-vehicle communication system or a vehicle-to-infrastructure communication system or the like. Such car2car or vehicle to vehicle (V2V) and vehicle-to-infrastructure (car2X or V2X or V2I or a 4G or 5G broadband cellular network) technology provides for communication between vehicles and/or infrastructure based on information provided by one or more vehicles and/or information provided by a remote server or the like. Such vehicle communication systems may utilize aspects of the systems described in U.S. Pat. Nos. 6,690,268; 6,693,517 and/or 7,580,795, and/or U.S. Publication Nos. US-2014-0375476; US-2014-0218529; US-2013-0222592; US-2012-0218412; US-2012-0062743; US-2015-0251599; US-2015-0158499; US-2015-0124096; US-2015-0352953; US-2016-0036917 and/or US-2016-0210853, which are hereby incorporated herein by reference in their entireties.


Optionally, the vision system may include a display for displaying images captured by one or more of the imaging sensors for viewing by the driver of the vehicle while the driver is normally operating the vehicle. Optionally, for example, the vision system may include a video display device, such as by utilizing aspects of the video display systems described in U.S. Pat. Nos. 5,530,240; 6,329,925; 7,855,755; 7,626,749; 7,581,859; 7,446,650; 7,338,177; 7,274,501; 7,255,451; 7,195,381; 7,184,190; 5,668,663; 5,724,187; 6,690,268; 7,370,983; 7,329,013; 7,308,341; 7,289,037; 7,249,860; 7,004,593; 4,546,551; 5,699,044; 4,953,305; 5,576,687; 5,632,092; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,501; 6,222,460; 6,513,252 and/or 6,642,851, and/or U.S. Publication Nos. US-2014-0022390; US-2012-0162427; US-2006-0050018 and/or US-2006-0061008, which are all hereby incorporated herein by reference in their entireties.


Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.

Claims
  • 1. A vehicular alert system, the vehicular alert system comprising: a forward-viewing camera disposed at an in-cabin side of a windshield of a vehicle equipped with the vehicular alert system, the forward-viewing camera viewing through the windshield forward of the equipped vehicle;wherein the forward-viewing camera comprises an imaging array having at least one million photosensor elements arranged in rows and columns;wherein the forward-viewing camera captures image data as the equipped vehicle travels along a road;a forward-sensing sensor disposed at the equipped vehicle and sensing forward of the equipped vehicle;wherein the forward-sensing sensor captures sensor data as the equipped vehicle travels along the road;an electronic control unit (ECU) disposed at the equipped vehicle, wherein image data captured by the forward-viewing camera and sensor data captured by the forward-sensing sensor are processed at the ECU;wherein the vehicular alert system, responsive to processing at the ECU of image data captured by the forward-viewing camera and to processing at the ECU of sensor data captured by the forward-sensing sensor, determines that the equipped vehicle is approaching a hazard ahead of the equipped vehicle; andwherein the vehicular alert system, responsive to determining that the equipped vehicle is approaching the hazard, visually alerts a trailing vehicle behind the equipped vehicle of the hazard at least by actuating hazard lights of the equipped vehicle.
  • 2. The vehicular alert system of claim 1, wherein the vehicular alert system visually alerts the trailing vehicle by flashing a brake light of the equipped vehicle.
  • 3. The vehicular alert system of claim 1, wherein the vehicular alert system determines that the equipped vehicle is approaching the hazard responsive in part to a driver input from a driver of the equipped vehicle that is indicative of a potential hazard in front of the equipped vehicle.
  • 4. The vehicular alert system of claim 1, wherein the vehicular alert system determines that the equipped vehicle is approaching the hazard based at least in part on information provided to the ECU that pertains to a driving condition.
  • 5. The vehicular alert system of claim 4, wherein the information provided to the ECU comprises traffic information.
  • 6. The vehicular alert system of claim 5, wherein the traffic information comprises traffic speed of traffic on the road ahead of the equipped vehicle.
  • 7. The vehicular alert system of claim 5, wherein the traffic information indicates that traffic on the road ahead of the equipped vehicle has stopped.
  • 8. The vehicular alert system of claim 4, wherein the information provided to the ECU comprises GPS information.
  • 9. The vehicular alert system of claim 4, wherein the information provided to the ECU comprises weather information.
  • 10. The vehicular alert system of claim 4, wherein the information provided to the ECU comprises road condition information pertaining to a condition of the road ahead of the equipped vehicle.
  • 11. The vehicular alert system of claim 1, wherein the forward-sensing sensor comprises one selected from the group consisting of (i) a forward-sensing radar sensor and (ii) a forward-sensing lidar sensor.
  • 12. A vehicular alert system, the vehicular alert system comprising: a forward-viewing camera disposed at an in-cabin side of a windshield of a vehicle equipped with the vehicular alert system, the forward-viewing camera viewing through the windshield forward of the equipped vehicle;wherein the forward-viewing camera comprises an imaging array having at least one million photosensor elements arranged in rows and columns;wherein the forward-viewing camera captures image data as the equipped vehicle travels along a road;an electronic control unit (ECU) disposed at the equipped vehicle, wherein image data captured by the forward-viewing camera is processed at the ECU;wherein the vehicular alert system, responsive to (i) processing at the ECU of image data captured by the forward-viewing camera and (ii) information provided to the ECU pertaining to a driving condition, determines that the equipped vehicle is approaching a hazard ahead of the equipped vehicle; andwherein the vehicular alert system, responsive to determining that the equipped vehicle is approaching the hazard, visually alerts a trailing vehicle behind the equipped vehicle of the hazard by at least one selected from the group consisting of (i) actuating hazard lights of the equipped vehicle and (ii) flashing a brake light of the equipped vehicle.
  • 13. The vehicular alert system of claim 12, wherein the information provided to the ECU comprises traffic information.
  • 14. The vehicular alert system of claim 13, wherein the traffic information comprises traffic speed of traffic on the road ahead of the equipped vehicle.
  • 15. The vehicular alert system of claim 13, wherein the traffic information indicates that traffic on the road ahead of the equipped vehicle has stopped.
  • 16. The vehicular alert system of claim 12, wherein the information provided to the ECU comprises GPS information.
  • 17. The vehicular alert system of claim 12, wherein the information provided to the ECU comprises weather information.
  • 18. The vehicular alert system of claim 12, wherein the information provided to the ECU comprises road condition information pertaining to a condition of the road ahead of the equipped vehicle.
  • 19. A vehicular alert system, the vehicular alert system comprising: a forward-viewing camera disposed at an in-cabin side of a windshield of a vehicle equipped with the vehicular alert system, the forward-viewing camera viewing through the windshield forward of the equipped vehicle;wherein the forward-viewing camera comprises an imaging array having at least one million photosensor elements arranged in rows and columns;wherein the forward-viewing camera captures image data as the equipped vehicle travels along a road;a forward-sensing radar sensor disposed at the equipped vehicle and sensing forward of the equipped vehicle;wherein the forward-sensing radar sensor captures radar data as the equipped vehicle travels along the road;an electronic control unit (ECU) disposed at the equipped vehicle, wherein image data captured by the forward-viewing camera and radar data captured by the forward-sensing radar sensor are processed at the ECU;wherein the vehicular alert system, responsive to (i) processing at the ECU of image data captured by the forward-viewing camera and to processing at the ECU of radar data captured by the forward-sensing radar sensor and (ii) information provided to the ECU pertaining to a driving condition, determines that the equipped vehicle is approaching a hazard ahead of the equipped vehicle; andwherein the vehicular alert system, responsive to determining that the equipped vehicle is approaching the hazard, visually alerts a trailing vehicle behind the equipped vehicle of the hazard by at least one selected from the group consisting of (i) actuating hazard lights of the equipped vehicle and (ii) flashing a brake light of the equipped vehicle.
  • 20. The vehicular alert system of claim 19, wherein the information provided to the ECU includes traffic information.
  • 21. The vehicular alert system of claim 20, wherein the traffic information comprises traffic speed of traffic on the road ahead of the equipped vehicle.
  • 22. The vehicular alert system of claim 20, wherein the traffic information indicates that traffic on the road ahead of the equipped vehicle has stopped.
  • 23. The vehicular alert system of claim 19, wherein the information provided to the ECU comprises GPS information.
  • 24. The vehicular alert system of claim 19, wherein the information provided to the ECU comprises weather information.
  • 25. The vehicular alert system of claim 19, wherein the information provided to the ECU includes comprises road condition information pertaining to a condition of the road ahead of the equipped vehicle.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 15/929,648, filed May 14, 2020, now U.S. Pat. No. 11,267,393, which claims the filing benefits of U.S. provisional application Ser. No. 62/848,683, filed May 16, 2019, which is hereby incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
62848683 May 2019 US
Continuations (1)
Number Date Country
Parent 15929648 May 2020 US
Child 17653489 US