The present invention relates generally to a yaw rate determination system for a vehicle.
Sensing yaw rate is important to land-based vehicles, and specifically, to road-going vehicles. Vehicle systems, such as collision avoidance systems, collision mitigation systems and stability control systems, may require accurate values of yaw rate to correctly determine the projected path of vehicle travel. Yaw rate sensors are susceptible to error, and if the measured yaw rate has significant error, then these kinds of vehicle systems may perform poorly or even fail.
The present invention provides a yaw rate estimation system that is operable to compute or determine an estimated yaw rate using additional vehicle signals and vehicle kinematics to compute the estimated yaw rate (and the system does this without using a forward facing or viewing camera or imager). Because the forward viewing camera is a recipient of the estimated yaw rate, known forward viewing camera yaw rate methods are dependent on this estimation, and thus cannot be used for this estimation. The system of the present invention processes multiple yaw rates derived from different vehicle systems and a yaw rate sensor to determine an estimated yaw rate of the vehicle.
These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
Referring now to the drawings and the illustrative embodiments depicted therein,
As shown in
The yaw rate sensor 22 is operable to sense the left and right yaw rate of the vehicle 10 (in other words, to sense the positive and negative angular rotational velocity of the vehicle about a local vertical axis A of the vehicle). Output of the yaw rate sensor 22 to the control system 18 may comprise a voltage within a range of voltages, or a data message sent over a communications bus or network bus of the vehicle, such as a CAN bus or the like. The yaw rate sensor 22 may include any type of device, such as piezoelectric device, a micromechanical device, a microelectromechanical device, or similar. The longitudinal accelerometer 24 is operable to sense the longitudinal (forward or reverse) acceleration of the vehicle 10 and provide a signal indicative of a magnitude of such acceleration to the control system 18. The longitudinal accelerometer 24 may include any type of device, such as piezoelectric device, a micromechanical device, a microelectromechanical device, or similar. The longitudinal accelerometer 24 may be part of a multi-axis accelerometer.
The system of the present invention provides yaw rate estimation using vehicle signals and statistical analysis techniques. The system provides yaw rate offset correction and noise filtering, and provides robust yaw rate estimation using vehicle signals. The system of the present invention thus improves the resolution of the yaw rate signal and provides fault tolerant yaw rate signals with better quality. Because the signals from individual yaw rate sensors may have poor resolution and offsets, the resolutions and offsets may be out of tolerance for lane keeping features and forward viewing camera applications. The present invention uses multiple yaw rate signals to provide an enhanced estimate of the yaw rate.
The vehicle signals used may include:
The yaw rates may be estimated from the following equations, where YawRate_1 is the yaw rate from the yaw rate sensor and YawRate_2 is the yaw rate derived from the wheel sensors (such as anti-lock braking system (ABS) wheel sensors) and YawRate_3 is the yaw rate derived from the lateral acceleration of the vehicle and YawRate_4 is derived from the steering wheel angle, wheel angle and the rate of change of steering wheel angle.
Computation of radius of curvature R:
The yaw rate data analysis provides a “vehicle state” that is a function of the yaw rate, the SWA, SWA_Rate, the lateral acceleration and wheel velocity.
The system uses signal conditioning, with a sampling frequency of about 100 Hz and a desired cut off frequency of about 0.5 Hz to about 2 Hz or thereabouts. The system uses two filters:
The Long Time Period Filter (60-180) sec.=[0.0167−0.005] Hz
The Short Time IIR filter is around 2.0 Hz.
The system calculates offset estimates using weights and statistics.
As shown in
The system may provide additional outputs, such as, for example, a driving state: stable flag or output, a vehicle stationary engine running output, a vehicle driving straight and level output, a detection of sensor faults, such as a residual error (MSE) based confidence measure.
The system of the present invention may utilize aspects of the systems described in U.S. Pat. No. 8,694,224 and/or U.S. Publication Nos. US-2015-0291215 and/or US-2014-0350834, which are hereby incorporated herein by reference in their entireties.
Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.
The present application is a continuation of U.S. patent application Ser. No. 15/051,825, filed Feb. 24, 2016, now U.S. Pat. No. 9,764,744, which claims the filing benefits of U.S. provisional application Ser. No. 62/120,574, filed Feb. 25, 2015, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5550677 | Schofield et al. | Aug 1996 | A |
5670935 | Schofield et al. | Sep 1997 | A |
5677851 | Kingdon et al. | Oct 1997 | A |
5699044 | Van Lente et al. | Dec 1997 | A |
5724316 | Brunts | Mar 1998 | A |
5732379 | Eckert et al. | Mar 1998 | A |
5737226 | Olson et al. | Apr 1998 | A |
5760828 | Cortes | Jun 1998 | A |
5760931 | Saburi et al. | Jun 1998 | A |
5760962 | Schofield et al. | Jun 1998 | A |
5761094 | Olson et al. | Jun 1998 | A |
5765116 | Wilson-Jones et al. | Jun 1998 | A |
5765118 | Fukatani | Jun 1998 | A |
5781437 | Wiemer et al. | Jul 1998 | A |
5796094 | Schofield et al. | Aug 1998 | A |
5877897 | Schofield et al. | Mar 1999 | A |
5878357 | Sivashankar et al. | Mar 1999 | A |
5878370 | Olson | Mar 1999 | A |
5883739 | Ashihara et al. | Mar 1999 | A |
5884212 | Lion | Mar 1999 | A |
5890021 | Onoda | Mar 1999 | A |
5896085 | Mori et al. | Apr 1999 | A |
5899956 | Chan | May 1999 | A |
5915800 | Hiwatashi et al. | Jun 1999 | A |
5923027 | Stam et al. | Jul 1999 | A |
5924212 | Domanski | Jul 1999 | A |
6097024 | Stam et al. | Aug 2000 | A |
6144022 | Tenenbaum et al. | Nov 2000 | A |
6175300 | Kendrick | Jan 2001 | B1 |
6178034 | Allemand et al. | Jan 2001 | B1 |
6198409 | Schofield et al. | Mar 2001 | B1 |
6223114 | Boros et al. | Apr 2001 | B1 |
6266082 | Yonezawa et al. | Jul 2001 | B1 |
6266442 | Laumeyer et al. | Jul 2001 | B1 |
6285393 | Shimoura et al. | Sep 2001 | B1 |
6310611 | Caldwell | Oct 2001 | B1 |
6317057 | Lee | Nov 2001 | B1 |
6320282 | Caldwell | Nov 2001 | B1 |
6333759 | Mazzilli | Dec 2001 | B1 |
6370329 | Teuchert | Apr 2002 | B1 |
6392315 | Jones et al. | May 2002 | B1 |
6424273 | Gutta et al. | Jul 2002 | B1 |
6430303 | Naoi et al. | Aug 2002 | B1 |
6442465 | Breed et al. | Aug 2002 | B2 |
6477464 | McCarthy et al. | Nov 2002 | B2 |
6497503 | Dassanayake et al. | Dec 2002 | B1 |
6553130 | Lemelson et al. | Apr 2003 | B1 |
6574033 | Chui et al. | Jun 2003 | B1 |
6589625 | Kothari et al. | Jul 2003 | B1 |
6594583 | Ogura et al. | Jul 2003 | B2 |
6611610 | Stam et al. | Aug 2003 | B1 |
6636258 | Strumolo | Oct 2003 | B2 |
6672731 | Schnell et al. | Jan 2004 | B2 |
6678614 | McCarthy et al. | Jan 2004 | B2 |
6690268 | Schofield et al. | Feb 2004 | B2 |
6700605 | Toyoda et al. | Mar 2004 | B1 |
6704621 | Stein et al. | Mar 2004 | B1 |
6711474 | Treyz et al. | Mar 2004 | B1 |
6714331 | Lewis et al. | Mar 2004 | B2 |
6735506 | Breed et al. | May 2004 | B2 |
6744353 | Sjönell | Jun 2004 | B2 |
6762867 | Lippert et al. | Jul 2004 | B2 |
6795221 | Urey | Sep 2004 | B1 |
6806452 | Bos et al. | Oct 2004 | B2 |
6819231 | Berberich et al. | Nov 2004 | B2 |
6823241 | Shirato et al. | Nov 2004 | B2 |
6824281 | Schofield et al. | Nov 2004 | B2 |
6889161 | Winner et al. | May 2005 | B2 |
6909753 | Meehan et al. | Jun 2005 | B2 |
6975775 | Rykowski et al. | Dec 2005 | B2 |
6989736 | Berberich et al. | Jan 2006 | B2 |
7005974 | McMahon et al. | Feb 2006 | B2 |
7038577 | Pawlicki et al. | May 2006 | B2 |
7062300 | Kim | Jun 2006 | B1 |
7065432 | Moisel et al. | Jun 2006 | B2 |
7079017 | Lang et al. | Jul 2006 | B2 |
7085637 | Breed et al. | Aug 2006 | B2 |
7092548 | Laumeyer et al. | Aug 2006 | B2 |
7111968 | Bauer et al. | Sep 2006 | B2 |
7116246 | Winter et al. | Oct 2006 | B2 |
7145519 | Takahashi et al. | Dec 2006 | B2 |
7149613 | Stam et al. | Dec 2006 | B2 |
7161616 | Okamoto et al. | Jan 2007 | B1 |
7167796 | Taylor et al. | Jan 2007 | B2 |
7195381 | Lynam et al. | Mar 2007 | B2 |
7202776 | Breed | Apr 2007 | B2 |
7227611 | Hull et al. | Jun 2007 | B2 |
7460951 | Altan | Dec 2008 | B2 |
7480149 | DeWard et al. | Jan 2009 | B2 |
7490007 | Taylor et al. | Feb 2009 | B2 |
7581859 | Lynam | Sep 2009 | B2 |
7592928 | Chinomi et al. | Sep 2009 | B2 |
7616781 | Schofield et al. | Nov 2009 | B2 |
7619508 | Lynam et al. | Nov 2009 | B2 |
7639149 | Katoh | Dec 2009 | B2 |
7681960 | Wanke et al. | Mar 2010 | B2 |
7720580 | Higgins-Luthman | May 2010 | B2 |
7881496 | Camilleri et al. | Feb 2011 | B2 |
8027029 | Lu et al. | Sep 2011 | B2 |
8058977 | Lynam | Nov 2011 | B2 |
8340866 | Hanzawa et al. | Dec 2012 | B2 |
8694224 | Chundrlik, Jr. et al. | Apr 2014 | B2 |
9764744 | Bajpai | Sep 2017 | B2 |
20020015153 | Downs | Feb 2002 | A1 |
20020113873 | Williams | Aug 2002 | A1 |
20030137586 | Lewellen | Jul 2003 | A1 |
20030156015 | Winner | Aug 2003 | A1 |
20030222982 | Hamdan et al. | Dec 2003 | A1 |
20040114381 | Salmeen et al. | Jun 2004 | A1 |
20060018511 | Stam et al. | Jan 2006 | A1 |
20060018512 | Stam et al. | Jan 2006 | A1 |
20060091813 | Stam et al. | May 2006 | A1 |
20060103727 | Tseng | May 2006 | A1 |
20060250501 | Wildmann et al. | Nov 2006 | A1 |
20060290479 | Akatsuka et al. | Dec 2006 | A1 |
20070104476 | Yasutomi et al. | May 2007 | A1 |
20080189013 | Iwazaki | Aug 2008 | A1 |
20090113509 | Tseng et al. | Apr 2009 | A1 |
20090177347 | Breuer et al. | Jul 2009 | A1 |
20090244361 | Gebauer et al. | Oct 2009 | A1 |
20100228437 | Hanzawa et al. | Sep 2010 | A1 |
20120245817 | Cooprider et al. | Sep 2012 | A1 |
20130124052 | Hahne | May 2013 | A1 |
20130231825 | Chundrlik, Jr. | Sep 2013 | A1 |
20140350834 | Turk | Nov 2014 | A1 |
20150291215 | Bajpai et al. | Oct 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20180001900 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
62120574 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15051825 | Feb 2016 | US |
Child | 15707026 | US |