Vehicular control system with remote processor

Information

  • Patent Grant
  • 11618441
  • Patent Number
    11,618,441
  • Date Filed
    Monday, December 21, 2020
    3 years ago
  • Date Issued
    Tuesday, April 4, 2023
    a year ago
Abstract
A vehicular control system includes a camera, a non-vision sensor and a control having at least one data processor. The camera is disposed at a vehicle and views at least forward of the vehicle. The non-vision sensor is disposed at the vehicle and senses at least forward of the vehicle. The control, responsive at least in part to processing at the control of captured image data and captured sensor data, determines a fault of the camera or of the non-vision sensor. Responsive to determination of the fault of the camera or of the non-vision sensor, the control wirelessly communicates an alert to a remote processor that is located remote from the vehicle and that is not part of the vehicle. Responsive to receipt of the communicated alert, the remote processor at least in part assumes control of the vehicle.
Description
FIELD OF THE INVENTION

The present invention relates generally to a sensor system for a vehicle and, more particularly, to vehicle sensor systems that are linked to a central monitoring system.


BACKGROUND OF THE INVENTION

Communication systems for vehicles may provide for communication between vehicles and/or between a vehicle and a remote server. Examples of such systems are described in U.S. Pat. No. 7,580,795, which is hereby incorporated herein by reference in its entirety.


SUMMARY OF THE INVENTION

The present invention provides a central monitoring system that receives inputs from vehicles (such as autonomous or semi-autonomous vehicles) travelling on a road and inputs indicative of the environment surrounding the vehicle or vehicles and that communicates with a subject or monitored vehicle (automated or semi-automated driven) and other surrounding vehicles in real-time to provide an additional level of fault tolerance to the monitored vehicle travelling on a road. Responsive to the inputs, the central monitoring system determines if the monitored vehicle or vehicles are at or approaching a hazardous condition. When it is determined that the monitored vehicle or vehicles are in or at or approaching a potentially hazardous condition, the central monitoring system actuates an alert of the vehicle to alert the driver or occupant of the hazard and/or actuates or controls a vehicle system (such as a brake system or steering system or collision avoidance system of the vehicle) to avoid or minimize the risk of the hazardous situation. The vehicles communicate with the central monitoring systems via a wireless network or link, such as a 3G/4G network, V2X communication system or high speed network. The system of the present invention also provides fault tolerant and reconfigurable system architecture for an automated vehicle that communicates with the central monitoring system via a high speed redundant communication link to improve the reliability and availability of the system to meet level 3 and level 4 of automated driving with very little or no human intervention.


These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic of a vehicle and central monitoring system in accordance with the present invention;



FIG. 2 is a schematic showing operation of the central monitoring system of the present invention;



FIG. 3 is a fault tolerant system architecture in accordance with the present invention;



FIG. 4 is a diverse redundancy sensor configuration in accordance with the present invention; and



FIG. 5 is a chart showing the sensor coverage areas of the vehicle sensors of the sensor configuration shown in FIG. 4.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

A vehicle sensor system and/or driver assist system and/or alert system operates to communicate vehicle information to a central monitoring system, which receives information pertaining to the environment at or surrounding the equipped vehicle or vehicles that are linked to the central monitoring system (FIG. 1). The vehicle-based components may include one or more sensors, an automated or semi-automated controller, an internal safety monitoring system, one or more fault tolerant actuators (such as actuators of various vehicle systems, such as brake systems, steering systems and/or the like) and one or more alert/warning systems. The central monitoring system may receive an input from the vehicle controller or sensors or the like, and may receive an input from another source (that may provide information from other vehicles at or near the subject or monitored vehicle) and may receive an input pertaining to weather information, traffic information and/or the like, such as from the internet or the like. Responsive to the inputs, the central monitoring system may control or communicate a signal to control the actuators or the alert/warning system of the vehicle, such as when the inputs are indicative of the vehicle being in or approaching a hazardous condition or the like. The monitoring and alert/control system of the present invention may utilize aspects of the systems described in U.S. Publication Nos. US 2012-0218412, published Aug. 30, 2012, US 2012-0062743, published Mar. 15, 2012, and/or US 2013-0222592, published Aug. 29, 2013, which are hereby incorporated herein by reference in their entireties.


As the automotive industry is moving towards automated and semi-automated vehicle technology as well as high speed connectivity, it is important to have an additional real-time safety monitoring system in place so that it a system is provided for an additional external monitoring of the vehicles and is operable to take necessary safety actions in case of system malfunction.


In the illustrated embodiment of FIG. 2, equipped vehicles communicate with the central monitoring system, which monitors the vehicle behavior in real time along with environment information (map database information, traffic information, weather condition information). Responsive to a determination that one of the vehicles being monitored is at or approaching a threat or hazardous condition (such as a traffic jam or accident or hazardous weather conditions or the like), the system controls and commands the safety actuators installed in the threatened vehicle or vehicles so that the driver of the vehicle or vehicles are alerted to the hazard and/or so that the vehicle is controlled and takes safety action (such as via control of a collision avoidance system or the like of the vehicle).


As can be seen with reference to FIG. 2, during operation, all of the vehicles being monitored will transmit the safety critical parameters in real time using a secure high speed network. Such safety critical parameters may include, for example, vehicle longitudinal velocity, lateral velocity, longitudinal acceleration, lateral acceleration, intent to change lane (such as responsive to actuation of a turn signal indicator), system breakdown, location information (such as responsive to a GPS system or the like), lane information (such as responsive to a vision-based system of the vehicle or the like), objects and lane information determined by diverse redundancy sensors and/or the like.


A central server receives the signals from the vehicles. The central server has a monitoring software running in real time and monitoring the all the vehicles, with all connected vehicle data and map data base, traffic information, weather condition information and/or the like. The central server has a powerful computation capability and is operable to process the real time data from all the connected vehicles map data base, traffic information, weather condition information and the like. The central server is operable to monitor all of the connected or linked vehicles.


In the event of the automated/semi-automated vehicle's malfunction, the central monitoring software will have all the information about the environment at which the vehicle is travelling. Thus, the central server may control or command the safety alert/actuators installed in the vehicle or vehicles that may be in danger to alert the driver of that vehicle or vehicles or to control one or more vehicle systems of that vehicle or vehicles to take necessary safety action, such as to take a different route to avoid an accident or dangerous or extreme weather conditions or the like.


The monitored vehicle may comprise an automated or autonomous or semi-automated vehicle equipped with a high speed communication link as well as a safety actuation/alert module, which is controlled by central monitoring software.


The vehicles communicate with the central monitoring systems via a wireless network or link, such as a 3G/4G network or high speed network. The network may include a 3G/4G/High speed modem, which may be linked to the automated or semi-automated controller and the safety actuators and alert device of the vehicle and the actuators, such as for controlling the vehicle brakes, vehicle steering, torque control, warning and alert devices of the vehicle.


The present invention has a significant potential in external safety monitoring system for automated and semi-automated vehicles.


Optionally, the present invention may provide fault tolerant and reconfigurable system architecture for autonomous vehicles. As autonomous vehicle are becoming reality, it is important to come up with fault tolerant reconfigurable system architecture to meet level 3 and level 4 of autonomy with very little or no human intervention.


For example, an autonomous vehicle may be equipped with diverse redundancy sensors to detect the environment in which vehicle is operated (or may be responsive to communications from other transmitters or devices or components or systems, such as devices of vehicle to infrastructure (v2x) communication systems or vehicle to vehicle (v2v) communication systems or the like). Diverse redundancy provides good tolerance to common cause failure and also improves the availability of the system. Diverse redundancy sensors (such as shown in FIG. 4) may include (a) a long range radar and a long range windshield camera with night vision capability (see [1], [2] and [11] in FIG. 4), which detect and classify the long distance object in front of the vehicle, (b) a long range lane change and a blind spot detection left camera and radar (see [4] and [5] in FIG. 4) and right camera and radar (see [7] and [8] in FIG. 4), which detect and classify the long distance object at the sides and back of the vehicle, (c) a v2x (and/or v2v) radio (see [9] in FIG. 4), which provides the real time information of the connected vehicles around the equipped vehicle, which is a diverse redundancy of data extracted via vision or RADAR/LIDAR sensor and/or (d) a GPS enabled e-Horizon module [13], which provides information on speed limit, exit and entry ramp location, curvature information, number of lanes and the like, which is a diverse redundancy of data extracted via vision or radar sensor. As shown in FIG. 5, the coverage area around the vehicle may have front long range area of less than about 140 meters ahead of the vehicle and a front short range area of less than about 30 meters ahead of the vehicle. The side and rear short range areas covered by the sensors may be between around 15-20 meters sideward and/or rearward of the vehicle, while the rear long range area may be between about 70-130 meters rearward of the vehicle.


Optionally, and such as shown in FIG. 3, the autonomous vehicle may be equipped with redundant power source to improve the availability of the system. Optionally, the autonomous vehicle may be equipped with a fault tolerant front and rear steering system with dual motor controlled EPS ECU (Electronic Power Steering). When the front steering system is healthy or fully functional, the autonomous controller may use only the front steering system, but in the case of front steering system failure, the autonomous controller detects the failure and, using reconfigurable control structure, starts controlling the rear steering and hence improves the system availability. In applications having a front steering only system, a steering system failure could be handled by the brake system of the vehicle and may to a certain extent improve the availability of the system.


Optionally, the autonomous vehicle may be equipped with redundant computation modules and may be connected to a safety ECU, such as shown in FIG. 3. The redundant safety ECUs monitor the health or operation or functionality of the redundant computation module and control the safety switch to improve the availability of the system.


The system of the present invention monitors the health of computation and safety modules in real-time externally (remote from the vehicle or vehicles), and in the event of a malfunction or failure, actuates or controls the vehicle to minimize the risk of failure. In applications of non-autonomous vehicles, the system may alert the driver of the vehicle or activate the pre-collision preparation system in the vehicle to minimize the damage.


Because of the enhanced computation power to the central processing module (as compared to vehicle-based processors), complex and computational intensive control or monitoring algorithms can be executed in real time to perform the plausibility check and all safety checks of the control output, sensor input and actuator response of the vehicle. Because the central monitoring unit can monitor several vehicles simultaneously, the cost of the vehicle could be kept low because there is no need to install very high computation power hardware in each vehicle.


The vehicle and vehicle sensor system and/or internal monitoring system may utilize one or more cameras or sensors. The camera or sensor may comprise any suitable camera or sensor. Optionally, the camera may comprise a “smart camera” that includes the imaging sensor array and associated circuitry and image processing circuitry and electrical connectors and the like as part of a camera module, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2013/081984 and/or WO 2013/081985, which are hereby incorporated herein by reference in their entireties.


The system may include an image processor operable to process image data captured by the camera or cameras, such as for detecting objects or other vehicles or pedestrians or the like in the field of view of one or more of the cameras. For example, the image processor may comprise an EYEQ2™ or EYEQ3™ image processing chip available from Mobileye Vision Technologies Ltd. of Jerusalem, Israel, and may include object detection software (such as the types described in U.S. Pat. Nos. 7,855,755; 7,720,580 and/or 7,038,577, which are hereby incorporated herein by reference in their entireties), and may analyze image data to detect vehicles and/or other objects. Responsive to such image processing, and when an object or other vehicle is detected, the system may generate an alert to the driver of the vehicle and/or may generate an overlay at the displayed image to highlight or enhance display of the detected object or vehicle, in order to enhance the driver's awareness of the detected object or vehicle or hazardous condition during a driving maneuver of the equipped vehicle.


The vehicle may include any type of sensor or sensors, such as imaging sensors or radar sensors or lidar sensors or ladar sensors or ultrasonic sensors or the like. The imaging sensor or camera may capture image data for image processing and may comprise any suitable camera or sensing device, such as, for example, a two dimensional array of a plurality of photosensor elements arranged in at least 640 columns and 480 rows (at least a 640×480 imaging array, such as a megapixel imaging array or the like), with a respective lens focusing images onto respective portions of the array. The photosensor array may comprise a plurality of photosensor elements arranged in a photosensor array having rows and columns. Preferably, the imaging array has at least 300,000 photosensor elements or pixels, more preferably at least 500,000 photosensor elements or pixels and more preferably at least 1 million photosensor elements or pixels. The imaging array may capture color image data, such as via spectral filtering at the array, such as via an RGB (red, green and blue) filter or via a red/red complement filter or such as via an RCC (red, clear, clear) filter or the like. The logic and control circuit of the imaging sensor may function in any known manner, and the image processing and algorithmic processing may comprise any suitable means for processing the images and/or image data.


For example, the vision system and/or processing and/or camera and/or circuitry may utilize aspects described in U.S. Pat. Nos. 7,005,974; 5,760,962; 5,877,897; 5,796,094; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; 7,859,565; 5,550,677; 5,670,935; 6,636,258; 7,145,519; 7,161,616; 7,230,640; 7,248,283; 7,295,229; 7,301,466; 7,592,928; 7,881,496; 7,720,580; 7,038,577; 6,882,287; 5,929,786 and/or 5,786,772, and/or International Publication Nos. WO 2011/028686; WO 2010/099416; WO 2012/061567; WO 2012/068331; WO 2012/075250; WO 2012/103193; WO 2012/0116043; WO 2012/0145313; WO 2012/0145501; WO 2012/145818; WO 2012/145822; WO 2012/158167; WO 2012/075250; WO 2012/0116043; WO 2012/0145501; WO 2012/154919; WO 2013/019707; WO 2013/016409; WO 2013/019795; WO 2013/067083; WO 2013/070539; WO 2013/043661; WO 2013/048994; WO 2013/063014, WO 2013/081984; WO 2013/081985; WO 2013/074604; WO 2013/086249; WO 2013/103548; WO 2013/109869; WO 2013/123161; WO 2013/126715; WO 2013/043661 and/or WO 2013/158592 and/or PCT Application No. PCT/US2014/042229, filed Jun. 13, 2014 and published Dec. 24, 2014 as International Publication No. WO 2014/204794, and/or U.S. patent application Ser. No. 14/446,099, filed Aug. 22, 2014 and published Feb. 26, 2015 as U.S. Publication No. US-2015-0054378; Ser. No. 14/377,940, filed Aug. 11, 2014 and published Jan. 22, 2015 as U.S. Publication No. US-2015-0022665; Ser. No. 14/377,939, filed Aug. 11, 2014 and published Jan. 15, 2015 as U.S. Publication No. US-2015-0015713; Ser. No. 14/456,164, filed Aug. 11, 2014 and published Feb. 12, 2015 as U.S. Publication No. US-2015-0042808; Ser. No. 14/456,163, filed Aug. 11, 2014 and published Feb. 12, 2015 as U.S. Publication No. US-2015-0042807; Ser. No. 14/456,162, filed Aug. 11, 2014 and published Feb. 12, 2015 as U.S. Publication No. US-2015-0042806; Ser. No. 14/373,501, filed Jul. 21, 2014 and published Jan. 29, 2015 as U.S. Publication No. US-2015-0028781; Ser. No. 14/372,524, filed Jul. 16, 2014 and published Jan. 22, 2015 as U.S. Publication No. US-2015-0022664; Ser. No. 14/324,696, filed Jul. 7, 2014 and published Jan. 15, 2015 as U.S. Publication No. US-2015-0015710; Ser. No. 14/369,229, filed Jun. 27, 2014, now U.S. Pat. No. 9,491,342; Ser. No. 14/316,940, filed Jun. 27, 2014 and published Jan. 8, 2015 as U.S. Publication No. US-2015-0009010; Ser. No. 14/316,939, filed Jun. 27, 2014 and published Jan. 1, 2015 as U.S. Publication No. US-2015-0002670; Ser. No. 14/303,696, filed Jun. 13, 2014 and published Dec. 25, 2014 as U.S. Publication No. US-2014-0373345; Ser. No. 14/303,695, filed Jun. 13, 2014 and published on Dec. 25, 2014 as U.S. Publication No. US-2014-0375476; Ser. No. 14/303,694, filed Jun. 13, 2014, now U.S. Pat. No. 9,260,095; Ser. No. 14/303,693, filed Jun. 13, 2014 and published Dec. 18, 2014 as U.S. Publication No. US-2014-0368654; Ser. No. 14/297,663, filed Jun. 6, 2014 published Dec. 11, 2014 as U.S. Publication No. US-2014-0362209; Ser. No. 14/362,636, filed Jun. 4, 2014 and published Nov. 13, 2014 as U.S. Publication No. US-2014-0333729; Ser. No. 14/290,028, filed May 29, 2014 and published Dec. 4, 2014 as U.S. Publication No. US-2014-0354811; Ser. No. 14/290,026, filed May 29, 2014, now U.S. Pat. No. 9,476,398; Ser. No. 14/359,341, filed May 20, 2014 and published Nov. 20, 2014 as U.S. Publication No. US-2014-0340510; Ser. No. 14/359,340, filed May 20, 2014 and published Oct. 23, 2014 as U.S. Publication No. US-2014-0313339; Ser. No. 14/282,029, filed May 20, 02014, now U.S. Pat. No. 9,205,776; Ser. No. 14/282,028, filed May 20, 2014 and published Nov. 27, 2014 as U.S. Publication No. US-2014-0347486; Ser. No. 14/358,232, filed May 15, 2014, now U.S. Pat. No. 9,491,451; Ser. No. 14/272,834, filed May 8, 2014, now U.S. Pat. No. 9,280,202; Ser. No. 14/356,330, filed May 5, 2014 and published Oct. 16, 2014 as U.S. Publication No. US-2014-0307095; Ser. No. 14/269,788, filed May 5, 2014 and published Nov. 6, 2014 as U.S. Publication No. US-2014-0327774; Ser. No. 14/268,169, filed May 2, 2014 and published Nov. 6, 2014 as U.S. Publication No. US-2014-0327772; Ser. No. 14/264,443, filed Apr. 29, 2014 and published Oct. 30, 2014 as U.S. Publication No. US-2014-0320636; Ser. No. 14/354,675, filed Apr. 28, 2014 and published Oct. 2, 2014 as U.S. Publication No. US-2014-0293057; Ser. No. 14/248,602, filed Apr. 9, 2014 and published Oct. 16, 2014 as U.S. Publication No. US-2014-0309884; Ser. No. 14/242,038, filed Apr. 1, 2014 and published Aug. 14, 2014 as U.S. Publication No. US-2014-0226012; Ser. No. 14/229,061, filed Mar. 28, 2014 and published Oct. 2, 2014 as U.S. Publication No. US-2014-0293042; Ser. No. 14/343,937, filed Mar. 10, 2014 and published Aug. 21, 2014 as U.S. Publication No. US-2014-0232872; Ser. No. 14/343,936, filed Mar. 10, 2014 and published Aug. 7, 2014 as U.S. Publication No. US-2014-0218535; Ser. No. 14/195,135, filed Mar. 3, 2014 and published Sep. 4, 2014 as U.S. Publication No. US-2014-0247354; Ser. No. 14/195,136, filed Mar. 3, 2014 and published Sep. 4, 2014 as U.S. Publication No. US-2014-0247355; Ser. No. 14/191,512, filed Feb. 27, 2014 and published Sep. 4, 2014 as U.S. Publication No. US-2014-0247352; Ser. No. 14/183,613, filed Feb. 19, 2014 and published Aug. 21, 2014 as U.S. Publication No. US-2014-0232869; Ser. No. 14/169,329, filed Jan. 31, 2014 and published Aug. 7, 2014 as U.S. Publication No. US-2014-0218529; Ser. No. 14/169,328, filed Jan. 31, 2014, now U.S. Pat. No. 9,092,986; Ser. No. 14/163,325, filed Jan. 24, 2014 and published Jul. 31, 2014 as U.S. Publication No. US-2014-0211009; Ser. No. 14/159,772, filed Jan. 21, 2014, now U.S. Pat. No. 9,068,390; Ser. No. 14/107,624, filed Dec. 16, 2013, now U.S. Pat. No. 9,140,789; Ser. No. 14/102,981, filed Dec. 11, 2013 and published Jun. 12, 2014 as U.S. Publication No. US-2014-0160276; Ser. No. 14/102,980, filed Dec. 11, 2013 and published Jun. 19, 2014 as U.S. Publication No. US-2014-0168437; Ser. No. 14/098,817, filed Dec. 6, 2013 and published Jun. 19, 2014 as U.S. Publication No. US-2014-0168415; Ser. No. 14/097,581, filed Dec. 5, 2013 and published Jun. 12, 2014 as U.S. Publication No. US-2014-0160291; Ser. No. 14/093,981, filed Dec. 2, 2013, now U.S. Pat. No. 8,917,169; Ser. No. 14/093,980, filed Dec. 2, 2013 and published Jun. 5, 2014 as U.S. Publication No. US-2014-0152825; Ser. No. 14/082,573, filed Nov. 18, 2013 and published May 22, 2014 as U.S. Publication No. US-2014-0139676; Ser. No. 14/082,574, filed Nov. 18, 2013 and published May 22, 2014 as U.S. Publication No. US-2014-0138140; Ser. No. 14/082,575, filed Nov. 18, 2013, now U.S. Pat. No. 9,090,234; Ser. No. 14/082,577, filed Nov. 18, 2013, now U.S. Pat. No. 8,818,042; Ser. No. 14/071,086, filed Nov. 4, 2013, now U.S. Pat. No. 8,886,401; Ser. No. 14/076,524, filed Nov. 11, 2013, now U.S. Pat. No. 9,077,962; Ser. No. 14/052,945, filed Oct. 14, 2013 and published Apr. 17, 2014 as U.S. Publication No. US-2014-0104426; Ser. No. 14/046,174, filed Oct. 4, 2013 and published Apr. 10, 2014 as U.S. Publication No. US-2014-0098229; Ser. No. 14/016,790, filed Oct. 3, 2013 and published Mar. 6, 2014 as U.S. Publication No. US-2014-0067206; Ser. No. 14/036,723, filed Sep. 25, 2013, now U.S. Pat. No. 9,446,713; Ser. No. 14/016,790, filed Sep. 3, 2013 and published Mar. 6, 2014 as U.S. Publication No. US-2014-0067206; Ser. No. 14/001,272, filed Aug. 23, 2013, now U.S. Pat. No. 9,233,641; Ser. No. 13/970,868, filed Aug. 20, 2013, now U.S. Pat. No. 9,365,162; Ser. No. 13/964,134, filed Aug. 12, 2013, now U.S. Pat. No. 9,340,227; Ser. No. 13/942,758, filed Jul. 16, 2013 and published Jan. 23, 2014 as U.S. Publication No. US-2014-0025240; Ser. No. 13/942,753, filed Jul. 16, 2013 and published Jan. 30, 2014 as U.S. Publication No. US-2014-0028852; Ser. No. 13/927,680, filed Jun. 26, 2013 and published Jan. 2, 2014 as U.S. Publication No. US-2014-0005907; Ser. No. 13/916,051, filed Jun. 12, 2013, now U.S. Pat. No. 9,077,098; Ser. No. 13/894,870, filed May 15, 2013 and published Nov. 28, 2013 as U.S. Publication No. US-2013-0314503; Ser. No. 13/887,724, filed May 6, 2013 and published Nov. 14, 2013 as U.S. Publication No. US-2013-0298866; Ser. No. 13/852,190, filed Mar. 28, 2013 and published Aug. 29, 2013 as U.S. Publication No. US-2013-0222593; Ser. No. 13/851,378, filed Mar. 27, 2013, now U.S. Pat. No. 9,319,637; Ser. No. 13/848,796, filed Mar. 22, 2012 and published Oct. 24, 2013 as U.S. Publication No. US-2013-0278769; Ser. No. 13/847,815, filed Mar. 20, 2013 and published Oct. 31, 2013 as U.S. Publication No. US-2013-0286193; Ser. No. 13/800,697, filed Mar. 13, 2013 and published Oct. 3, 2013 as U.S. Publication No. US-2013-0258077; Ser. No. 13/785,099, filed Mar. 5, 2013 and published Sep. 19, 2013 as U.S. Publication No. US-2013-0242099; Ser. No. 13/779,881, filed Feb. 28, 2013, now U.S. Pat. No. 8,694,224; Ser. No. 13/774,317, filed Feb. 22, 2013, now U.S. Pat. No. 9,269,263; Ser. No. 13/774,315, filed Feb. 22, 2013 and published Aug. 22, 2013 as U.S. Publication No. US-2013-0215271; Ser. No. 13/681,963, filed Nov. 20, 2012, now U.S. Pat. No. 9,264,673; Ser. No. 13/660,306, filed Oct. 25, 2012, now U.S. Pat. No. 9,146,898; Ser. No. 13/653,577, filed Oct. 17, 2012, now U.S. Pat. No. 9,174,574, and/or Ser. No. 13/534,657, filed Jun. 27, 2012 and published Jan. 3, 2013 as U.S. Publication No. US-2013-0002873, which are all hereby incorporated herein by reference in their entireties. The system may communicate with other communication systems via any suitable means, such as by utilizing aspects of the systems described in International Publication Nos. WO/2010/144900; WO 2013/043661 and/or WO 2013/081985, and/or U.S. patent application Ser. No. 13/202,005, filed Aug. 17, 2011, now U.S. Pat. No. 9,126,525, which are hereby incorporated herein by reference in their entireties.


The imaging device and control and image processor and any associated illumination source, if applicable, may comprise any suitable components, and may utilize aspects of the cameras and vision systems described in U.S. Pat. Nos. 5,550,677; 5,877,897; 6,498,620; 5,670,935; 5,796,094; 6,396,397; 6,806,452; 6,690,268; 7,005,974; 7,937,667; 7,123,168; 7,004,606; 6,946,978; 7,038,577; 6,353,392; 6,320,176; 6,313,454 and/or 6,824,281, and/or International Publication Nos. WO 2010/099416; WO 2011/028686 and/or WO 2013/016409, and/or U.S. patent application Ser. No. 12/508,840, filed Jul. 24, 2009, and published Jan. 28, 2010 as U.S. Pat. Publication No. US 2010-0020170, and/or U.S. patent application Ser. No. 13/534,657, filed Jun. 27, 2012 and published Jan. 3, 2013 as U.S. Publication No. US-2013-0002873, which are all hereby incorporated herein by reference in their entireties. The camera or cameras may comprise any suitable cameras or imaging sensors or camera modules, and may utilize aspects of the cameras or sensors described in U.S. Publication No. US-2009-0244361 and/or U.S. Pat. Nos. 8,542,451; 7,965,336 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties. The imaging array sensor may comprise any suitable sensor, and may utilize various imaging sensors or imaging array sensors or cameras or the like, such as a CMOS imaging array sensor, a CCD sensor or other sensors or the like, such as the types described in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,715,093; 5,877,897; 6,922,292; 6,757,109; 6,717,610; 6,590,719; 6,201,642; 6,498,620; 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 6,806,452; 6,396,397; 6,822,563; 6,946,978; 7,339,149; 7,038,577; 7,004,606; 7,720,580 and/or 7,965,336, and/or International Publication Nos. WO/2009/036176 and/or WO/2009/046268, which are all hereby incorporated herein by reference in their entireties.


The camera module and circuit chip or board and imaging sensor may be implemented and operated in connection with various vehicular vision-based systems, and/or may be operable utilizing the principles of such other vehicular systems, such as a vehicle headlamp control system, such as the type disclosed in U.S. Pat. Nos. 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 7,004,606; 7,339,149 and/or 7,526,103, which are all hereby incorporated herein by reference in their entireties, a rain sensor, such as the types disclosed in commonly assigned U.S. Pat. Nos. 6,353,392; 6,313,454; 6,320,176 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties, a vehicle vision system, such as a forwardly, sidewardly or rearwardly directed vehicle vision system utilizing principles disclosed in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,877,897; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978 and/or 7,859,565, which are all hereby incorporated herein by reference in their entireties, a trailer hitching aid or tow check system, such as the type disclosed in U.S. Pat. No. 7,005,974, which is hereby incorporated herein by reference in its entirety, a reverse or sideward imaging system, such as for a lane change assistance system or lane departure warning system or for a blind spot or object detection system, such as imaging or detection systems of the types disclosed in U.S. Pat. Nos. 7,881,496; 7,720,580; 7,038,577; 5,929,786 and/or 5,786,772, which are hereby incorporated herein by reference in their entireties, a video device for internal cabin surveillance and/or video telephone function, such as disclosed in U.S. Pat. Nos. 5,760,962; 5,877,897; 6,690,268 and/or 7,370,983, and/or U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties, a traffic sign recognition system, a system for determining a distance to a leading or trailing vehicle or object, such as a system utilizing the principles disclosed in U.S. Pat. Nos. 6,396,397 and/or 7,123,168, which are hereby incorporated herein by reference in their entireties, and/or the like.


Optionally, the circuit board or chip may include circuitry for the imaging array sensor and or other electronic accessories or features, such as by utilizing compass-on-a-chip or EC driver-on-a-chip technology and aspects such as described in U.S. Pat. Nos. 7,255,451 and/or 7,480,149 and/or U.S. Publication No. US-2006-0061008 and/or U.S. patent application Ser. No. 12/578,732, filed Oct. 14, 2009, now U.S. Pat. No. 9,487,144, which are hereby incorporated herein by reference in their entireties.


Optionally, the vision system may include a display for displaying images captured by one or more of the imaging sensors for viewing by the driver of the vehicle while the driver is normally operating the vehicle. Optionally, for example, the vision system may include a video display device disposed at or in the interior rearview mirror assembly of the vehicle, such as by utilizing aspects of the video mirror display systems described in U.S. Pat. No. 6,690,268 and/or U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, now U.S. Pat. No. 9,264,672, which are hereby incorporated herein by reference in their entireties. The video mirror display may comprise any suitable devices and systems and optionally may utilize aspects of the compass display systems described in U.S. Pat. Nos. 7,370,983; 7,329,013; 7,308,341; 7,289,037; 7,249,860; 7,004,593; 4,546,551; 5,699,044; 4,953,305; 5,576,687; 5,632,092; 5,677,851; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,508; 6,222,460; 6,513,252 and/or 6,642,851, and/or European patent application, published Oct. 11, 2000 under Publication No. EP 0 1043566, and/or U.S. Publication No. US-2006-0061008, which are all hereby incorporated herein by reference in their entireties. Optionally, the video mirror display screen or device may be operable to display images captured by a rearward viewing camera of the vehicle during a reversing maneuver of the vehicle (such as responsive to the vehicle gear actuator being placed in a reverse gear position or the like) to assist the driver in backing up the vehicle, and optionally may be operable to display the compass heading or directional heading character or icon when the vehicle is not undertaking a reversing maneuver, such as when the vehicle is being driven in a forward direction along a road (such as by utilizing aspects of the display system described in International Publication No. WO 2012/051500, which is hereby incorporated herein by reference in its entirety).


Optionally, the vision system (utilizing the forward facing camera and a rearward facing camera and other cameras disposed at the vehicle with exterior fields of view) may be part of or may provide a display of a top-down view or birds-eye view system of the vehicle or a surround view at the vehicle, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2010/099416; WO 2011/028686; WO 2012/075250; WO 2013/019795; WO 2012/075250; WO 2012/145822; WO 2013/081985; WO 2013/086249 and/or WO 2013/109869, and/or U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, now U.S. Pat. No. 9,264,672, which are hereby incorporated herein by reference in their entireties.


Optionally, a video mirror display may be disposed rearward of and behind the reflective element assembly and may comprise a display such as the types disclosed in U.S. Pat. Nos. 5,530,240; 6,329,925; 7,855,755; 7,626,749; 7,581,859; 7,446,650; 7,370,983; 7,338,177; 7,274,501; 7,255,451; 7,195,381; 7,184,190; 5,668,663; 5,724,187 and/or 6,690,268, and/or in U.S. Publication Nos. US-2006-0061008 and/or US-2006-0050018, which are all hereby incorporated herein by reference in their entireties. The display is viewable through the reflective element when the display is activated to display information. The display element may be any type of display element, such as a vacuum fluorescent (VF) display element, a light emitting diode (LED) display element, such as an organic light emitting diode (OLED) or an inorganic light emitting diode, an electroluminescent (EL) display element, a liquid crystal display (LCD) element, a video screen display element or backlit thin film transistor (TFT) display element or the like, and may be operable to display various information (as discrete characters, icons or the like, or in a multi-pixel manner) to the driver of the vehicle, such as passenger side inflatable restraint (PSIR) information, tire pressure status, and/or the like. The mirror assembly and/or display may utilize aspects described in U.S. Pat. Nos. 7,184,190; 7,255,451; 7,446,924 and/or 7,338,177, which are all hereby incorporated herein by reference in their entireties. The thicknesses and materials of the coatings on the substrates of the reflective element may be selected to provide a desired color or tint to the mirror reflective element, such as a blue colored reflector, such as is known in the art and such as described in U.S. Pat. Nos. 5,910,854; 6,420,036 and/or 7,274,501, which are hereby incorporated herein by reference in their entireties.


Optionally, the display or displays and any associated user inputs may be associated with various accessories or systems, such as, for example, a tire pressure monitoring system or a passenger air bag status or a garage door opening system or a telematics system or any other accessory or system of the mirror assembly or of the vehicle or of an accessory module or console of the vehicle, such as an accessory module or console of the types described in U.S. Pat. Nos. 7,289,037; 6,877,888; 6,824,281; 6,690,268; 6,672,744; 6,386,742 and/or 6,124,886, and/or U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties.


Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.

Claims
  • 1. A vehicular control system, said vehicular control system comprising: a control having at least one data processor;a camera disposed at a vehicle equipped with said control and operable to capture image data, wherein said camera views at least forward of the equipped vehicle;a non-vision sensor disposed at the equipped vehicle and operable to capture sensor data, wherein said non-vision sensor senses at least forward of the equipped vehicle, and wherein said non-vision sensor comprises at least one selected from the group consisting of (i) a radar sensor and (i) a lidar sensor;wherein image data captured by said camera and sensor data captured by said non-vision sensor are provided to said control;wherein image data captured by said camera and sensor data captured by said non-vision sensor are processed at said control;wherein said control, responsive at least in part to processing at said control of image data captured by said camera and processing at said control of sensor data captured by said non-vision sensor, is operable to determine a fault of said camera;wherein, responsive to determination of a fault of said camera, said control wirelessly communicates an alert to a remote processor that is located remote from the equipped vehicle;wherein said remote processor is not part of the equipped vehicle; andwherein, responsive to receipt of the communicated alert, said remote processor at least in part assumes control of the equipped vehicle.
  • 2. The vehicular control system of claim 1, wherein said camera comprises a forward viewing camera that is one of a plurality of cameras disposed at the equipped vehicle, and wherein said non-vision sensor comprises a forward sensing non-vision sensor that is one of a plurality of non-vision sensors disposed at the equipped vehicle.
  • 3. The vehicular control system of claim 2, wherein said plurality of cameras comprises (i) at least one sideward viewing camera and (ii) at least one rearward viewing camera.
  • 4. The vehicular control system of claim 1, wherein said non-vision sensor comprises a radar sensor.
  • 5. The vehicular control system of claim 4, wherein said radar sensor comprises a forward sensing radar sensor that is one of a plurality of radar sensors disposed at the equipped vehicle.
  • 6. The vehicular control system of claim 1, wherein said non-vision sensor comprises a LIDAR sensor.
  • 7. The vehicular control system of claim 6, wherein said LIDAR sensor comprises a forward sensing LIDAR sensor that is one of a plurality of LIDAR sensors disposed at the equipped vehicle.
  • 8. The vehicular control system of claim 1, wherein image data captured by said camera and provided to said control and sensor data captured by said non-vision sensor and provided to said control are processed at said control to detect objects present external of the equipped vehicle.
  • 9. The vehicular control system of claim 1, wherein the equipped vehicle is equipped with a GPS-enabled e-Horizon.
  • 10. The vehicular control system of claim 9, wherein the GPS-enabled e-Horizon of the equipped vehicle provides to the equipped vehicle environment data related to one selected from the group consisting of (i) a speed limit for a road along which the equipped vehicle is traveling, (ii) an exit ramp location of a road along which the equipped vehicle is traveling, (iii) an entry ramp location of a road along which the equipped vehicle is traveling, (iv) road curvature information of a road along which the equipped vehicle is traveling and (v) traffic lanes of a road along which the equipped vehicle is traveling.
  • 11. The vehicular control system of claim 1, wherein said control wirelessly communicates to said remote processor vehicle data indicative of operation of the equipped vehicle, and wherein said control wirelessly communicates to said remote processor environment data indicative of the environment in which the equipped vehicle is traveling.
  • 12. The vehicular control system of claim 11, wherein, responsive to vehicle data and environment data wirelessly received at said remote processor from the equipped vehicle, said remote processor determines that a potentially hazardous condition exists.
  • 13. The vehicular control system of claim 12, wherein, responsive to determination of the existence of the potentially hazardous condition, said remote processor controls a vehicle system of the equipped vehicle to mitigate the potentially hazardous condition.
  • 14. The vehicular control system of claim 13, wherein mitigating the potentially hazardous condition comprises controlling a braking system of the equipped vehicle.
  • 15. The vehicular control system of claim 13, wherein mitigating the potentially hazardous condition comprises controlling a steering system of the equipped vehicle.
  • 16. The vehicular control system of claim 13, wherein mitigating the potentially hazardous condition comprises controlling a collision avoidance system of the equipped vehicle.
  • 17. The vehicular control system of claim 11, wherein the communicated environment data comprises map data.
  • 18. The vehicular control system of claim 11, wherein the communicated environment data comprises traffic data.
  • 19. The vehicular control system of claim 11, wherein the communicated environment data comprises weather data.
  • 20. The vehicular control system of claim 11, wherein the communicated vehicle data comprises data pertaining to at least one selected from the group consisting of (i) longitudinal velocity of the equipped vehicle, (ii) lateral velocity of the equipped vehicle, (iii) longitudinal acceleration of the equipped vehicle, (iv) lateral acceleration of the equipped vehicle and (v) actuation of a turn signal indicator of the equipped vehicle.
  • 21. The vehicular control system of claim 1, wherein said control, responsive at least in part to processing at said control of image data captured by said camera and processing at said control of sensor data captured by said non-vision sensor, autonomously controls the equipped vehicle.
  • 22. The vehicular control system of claim 1, wherein said remote processor wirelessly receives communications from multiple other vehicles, and wherein said remote processor is not part of any vehicle of the multiple other vehicles.
  • 23. The vehicular control system of claim 22, wherein said remote processor wirelessly receives, from respective ones of the multiple other vehicles, respective vehicle data indicative of operation of the respective ones of the multiple other vehicles and respective environment data indicative of the respective environment in which the respective ones of the multiple other vehicles are operating.
  • 24. The vehicular control system of claim 23, wherein each of the multiple other vehicles includes a vehicle-to-infrastructure communication system that is operable to communicate data to said remote processor.
  • 25. A vehicular control system, said vehicular control system comprising: a control having at least one data processor;a camera disposed at a vehicle equipped with said control and operable to capture image data, wherein said camera views at least forward of the equipped vehicle;a non-vision sensor disposed at the equipped vehicle and operable to capture sensor data, wherein said non-vision sensor senses at least forward of the equipped vehicle, and wherein said non-vision sensor comprises at least one selected from the group consisting of (i) a radar sensor and (i) a lidar sensor;wherein image data captured by said camera and sensor data captured by said non-vision sensor are provided to said control;wherein image data captured by said camera and sensor data captured by said non-vision sensor are processed at said control;wherein said control, responsive at least in part to processing at said control of image data captured by said camera and processing at said control of sensor data captured by said non-vision sensor, is operable to determine a fault of said non-vision sensor;wherein, responsive to determination of a fault of said non-vision sensor, said control wirelessly communicates an alert to a remote processor that is located remote from the equipped vehicle;wherein said remote processor is not part of the equipped vehicle; andwherein, responsive to receipt of the communicated alert, said remote processor at least in part assumes control of the equipped vehicle.
  • 26. The vehicular control system of claim 25, wherein said camera comprises a forward viewing camera that is one of a plurality of cameras disposed at the equipped vehicle, and wherein said non-vision sensor comprises a forward sensing non-vision sensor that is one of a plurality of non-vision sensors disposed at the equipped vehicle.
  • 27. The vehicular control system of claim 26, wherein said plurality of cameras comprises (i) at least one sideward viewing camera and (ii) at least one rearward viewing camera.
  • 28. The vehicular control system of claim 25, wherein said non-vision sensor comprises a radar sensor.
  • 29. The vehicular control system of claim 28, wherein said radar sensor comprises a forward sensing radar sensor that is one of a plurality of radar sensors disposed at the equipped vehicle.
  • 30. The vehicular control system of claim 25, wherein said non-vision sensor comprises a LIDAR sensor.
  • 31. The vehicular control system of claim 30, wherein said LIDAR sensor comprises a forward sensing LIDAR sensor that is one of a plurality of LIDAR sensors disposed at the equipped vehicle.
  • 32. The vehicular control system of claim 25, wherein image data captured by said camera and provided to said control and sensor data captured by said non-vision sensor and provided to said control are processed at said control to detect objects present external of the equipped vehicle.
  • 33. The vehicular control system of claim 25, wherein the equipped vehicle is equipped with a GPS-enabled e-Horizon.
  • 34. The vehicular control system of claim 33, wherein the GPS-enabled e-Horizon of the equipped vehicle provides to the equipped vehicle environment data related to one selected from the group consisting of (i) a speed limit for a road along which the equipped vehicle is traveling, (ii) an exit ramp location of a road along which the equipped vehicle is traveling, (iii) an entry ramp location of a road along which the equipped vehicle is traveling, (iv) road curvature information of a road along which the equipped vehicle is traveling and (v) traffic lanes of a road along which the equipped vehicle is traveling.
  • 35. The vehicular control system of claim 25, wherein said control wirelessly communicates to said remote processor vehicle data indicative of operation of the equipped vehicle, and wherein said control wirelessly communicates to said remote processor environment data indicative of the environment in which the equipped vehicle is traveling.
  • 36. The vehicular control system of claim 35, wherein, responsive to vehicle data and environment data wirelessly received at said remote processor from the equipped vehicle, said remote processor determines that a potentially hazardous condition exists.
  • 37. The vehicular control system of claim 36, wherein, responsive to determination of the existence of the potentially hazardous condition, said remote processor controls a vehicle system of the equipped vehicle to mitigate the potentially hazardous condition.
  • 38. The vehicular control system of claim 37, wherein mitigating the potentially hazardous condition comprises controlling a braking system of the equipped vehicle.
  • 39. The vehicular control system of claim 37, wherein mitigating the potentially hazardous condition comprises controlling a steering system of the equipped vehicle.
  • 40. The vehicular control system of claim 37, wherein mitigating the potentially hazardous condition comprises controlling a collision avoidance system of the equipped vehicle.
  • 41. The vehicular control system of claim 35, wherein the communicated environment data comprises map data.
  • 42. The vehicular control system of claim 35, wherein the communicated environment data comprises traffic data.
  • 43. The vehicular control system of claim 35, wherein the communicated environment data comprises weather data.
  • 44. The vehicular control system of claim 35, wherein the communicated vehicle data comprises data pertaining to at least one selected from the group consisting of (i) longitudinal velocity of the equipped vehicle, (ii) lateral velocity of the equipped vehicle, (iii) longitudinal acceleration of the equipped vehicle, (iv) lateral acceleration of the equipped vehicle and (v) actuation of a turn signal indicator of the equipped vehicle.
  • 45. The vehicular control system of claim 25, wherein said control, responsive at least in part to processing at said control of image data captured by said camera and processing at said control of sensor data captured by said non-vision sensor, autonomously controls the equipped vehicle.
  • 46. The vehicular control system of claim 25, wherein said remote processor wirelessly receives communications from multiple other vehicles, and wherein said remote processor is not part of any vehicle of the multiple other vehicles.
  • 47. The vehicular control system of claim 46, wherein said remote processor wirelessly receives, from respective ones of the multiple other vehicles, respective vehicle data indicative of operation of the respective ones of the multiple other vehicles and respective environment data indicative of the respective environment in which the respective ones of the multiple other vehicles are operating.
  • 48. The vehicular control system of claim 47, wherein each of the multiple other vehicles includes a vehicle-to-infrastructure communication system that is operable to communicate data to said remote processor.
  • 49. A vehicular control system, said vehicular control system comprising: a control having at least one data processor;a camera disposed at a vehicle equipped with said control and operable to capture image data, wherein said camera views at least forward of the equipped vehicle;a non-vision sensor disposed at the equipped vehicle and operable to capture sensor data, wherein said non-vision sensor senses at least forward of the equipped vehicle, and wherein said non-vision sensor comprises at least one selected from the group consisting of (i) a radar sensor and (i) a lidar sensor;wherein image data captured by said camera and sensor data captured by said non-vision sensor are provided to said control;wherein image data captured by said camera and sensor data captured by said non-vision sensor are processed at said control;wherein image data captured by said camera and provided to said control and sensor data captured by said non-vision sensor and provided to said control are processed at said control to detect objects present external of the equipped vehicle;wherein said control, responsive at least in part to processing at said control of image data captured by said camera and processing at said control of sensor data captured by said non-vision sensor, is operable to determine a fault of said camera;wherein said control, responsive at least in part to processing at said control of image data captured by said camera and processing at said control of sensor data captured by said non-vision sensor, is operable to determine a fault of said non-vision sensor;wherein, responsive to determination of a fault of said camera or a fault of said non-vision sensor, said control wirelessly communicates an alert to a remote processor that is located remote from the equipped vehicle;wherein said remote processor is not part of the equipped vehicle; andwherein, responsive to receipt of the communicated alert, said remote processor at least in part assumes control of the equipped vehicle.
  • 50. The vehicular control system of claim 49, wherein said non-vision sensor comprises a radar sensor.
  • 51. The vehicular control system of claim 49, wherein said non-vision sensor comprises a LIDAR sensor.
  • 52. The vehicular control system of claim 49, wherein said control wirelessly communicates to said remote processor vehicle data indicative of operation of the equipped vehicle, and wherein said control wirelessly communicates to said remote processor environment data indicative of the environment in which the equipped vehicle is traveling.
  • 53. The vehicular control system of claim 52, wherein, responsive to vehicle data and environment data wirelessly received at said remote processor from the equipped vehicle, said remote processor determines that a potentially hazardous condition exists.
  • 54. The vehicular control system of claim 53, wherein, responsive to determination of the existence of the potentially hazardous condition, said remote processor controls a vehicle system of the equipped vehicle to mitigate the potentially hazardous condition.
  • 55. The vehicular control system of claim 54, wherein mitigating the potentially hazardous condition comprises controlling a braking system of the equipped vehicle.
  • 56. The vehicular control system of claim 54, wherein mitigating the potentially hazardous condition comprises controlling a steering system of the equipped vehicle.
  • 57. The vehicular control system of claim 54, wherein mitigating the potentially hazardous condition comprises controlling a collision avoidance system of the equipped vehicle.
  • 58. The vehicular control system of claim 52, wherein the communicated environment data comprises map data.
  • 59. The vehicular control system of claim 52, wherein the communicated environment data comprises traffic data.
  • 60. The vehicular control system of claim 52, wherein the communicated environment data comprises weather data.
  • 61. The vehicular control system of claim 49, wherein said control, responsive at least in part to processing at said control of image data captured by said camera and processing at said control of sensor data captured by said non-vision sensor, autonomously controls the equipped vehicle.
  • 62. The vehicular control system of claim 49, wherein said remote processor wirelessly receives communications from multiple other vehicles, and wherein said remote processor is not part of any vehicle of the multiple other vehicles.
  • 63. The vehicular control system of claim 62, wherein said remote processor wirelessly receives, from respective ones of the multiple other vehicles, respective vehicle data indicative of operation of the respective ones of the multiple other vehicles and respective environment data indicative of the respective environment in which the respective ones of the multiple other vehicles are operating.
  • 64. The vehicular control system of claim 63, wherein each of the multiple other vehicles includes a vehicle-to-infrastructure communication system that is operable to communicate data to said remote processor.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 16/199,487, filed Nov. 26, 2018, now U.S. Pat. No. 10,870,427, which is a continuation of U.S. patent application Ser. No. 15/355,436, filed Nov. 18, 2016, now U.S. Pat. No. 10,137,892, which is a continuation of U.S. patent application Ser. No. 14/561,794, filed Dec. 5, 2014, now U.S. Pat. No. 9,499,139, which claims the filing benefits of U.S. provisional application, Ser. No. 62/047,194, filed Sep. 8, 2014, and Ser. No. 61/912,146, filed Dec. 5, 2013, which are hereby incorporated herein by reference in their entireties.

US Referenced Citations (339)
Number Name Date Kind
5386285 Asayama Jan 1995 A
5394333 Kao Feb 1995 A
5406395 Wilson et al. Apr 1995 A
5410346 Saneyoshi et al. Apr 1995 A
5414257 Stanton May 1995 A
5414461 Kishi et al. May 1995 A
5416313 Larson et al. May 1995 A
5416318 Hegyi May 1995 A
5416478 Morinaga May 1995 A
5424952 Asayama Jun 1995 A
5426294 Kobayashi et al. Jun 1995 A
5430431 Nelson Jul 1995 A
5434407 Bauer et al. Jul 1995 A
5440428 Hegg et al. Aug 1995 A
5444478 Lelong et al. Aug 1995 A
5451822 Bechtel et al. Sep 1995 A
5457493 Leddy et al. Oct 1995 A
5461357 Yoshioka et al. Oct 1995 A
5461361 Moore Oct 1995 A
5469298 Suman et al. Nov 1995 A
5471515 Fossum et al. Nov 1995 A
5475494 Nishida et al. Dec 1995 A
5498866 Bendicks et al. Mar 1996 A
5500766 Stonecypher Mar 1996 A
5510983 Lino Apr 1996 A
5515448 Nishitani May 1996 A
5521633 Nakajima et al. May 1996 A
5528698 Kamei et al. Jun 1996 A
5529138 Shaw et al. Jun 1996 A
5530240 Larson et al. Jun 1996 A
5530420 Tsuchiya et al. Jun 1996 A
5535314 Alves et al. Jul 1996 A
5537003 Bechtel et al. Jul 1996 A
5539397 Asanuma et al. Jul 1996 A
5541590 Nishio Jul 1996 A
5555555 Sato et al. Sep 1996 A
5568027 Teder Oct 1996 A
5574443 Hsieh Nov 1996 A
5581464 Woll et al. Dec 1996 A
5594222 Caldwell Jan 1997 A
5610756 Lynam et al. Mar 1997 A
5614788 Mullins Mar 1997 A
5619370 Guinosso Apr 1997 A
5632092 Blank et al. May 1997 A
5634709 Iwama Jun 1997 A
5642299 Hardin et al. Jun 1997 A
5648835 Uzawa Jul 1997 A
5650944 Kise Jul 1997 A
5660454 Mori et al. Aug 1997 A
5661303 Teder Aug 1997 A
5666028 Bechtel et al. Sep 1997 A
5677851 Kingdon et al. Oct 1997 A
5699044 Van Lente et al. Dec 1997 A
5724316 Brunts Mar 1998 A
5732379 Eckert et al. Mar 1998 A
5737226 Olson et al. Apr 1998 A
5760828 Cortes Jun 1998 A
5760931 Saburi et al. Jun 1998 A
5761094 Olson et al. Jun 1998 A
5765116 Wilson-Jones et al. Jun 1998 A
5765118 Fukatani Jun 1998 A
5781437 Wiemer et al. Jul 1998 A
5790403 Nakayama Aug 1998 A
5790973 Blaker et al. Aug 1998 A
5793308 Rosinski et al. Aug 1998 A
5793420 Schmidt Aug 1998 A
5796094 Schofield et al. Aug 1998 A
5835255 Miles Nov 1998 A
5837994 Stam et al. Nov 1998 A
5844505 Van Ryzin Dec 1998 A
5844682 Kiyomoto et al. Dec 1998 A
5845000 Breed et al. Dec 1998 A
5848802 Breed et al. Dec 1998 A
5850176 Kinoshita et al. Dec 1998 A
5850254 Takano et al. Dec 1998 A
5867591 Onda Feb 1999 A
5877707 Kowalick Mar 1999 A
5878357 Sivashankar et al. Mar 1999 A
5878370 Olson Mar 1999 A
5883739 Ashihara et al. Mar 1999 A
5884212 Lion Mar 1999 A
5890021 Onoda Mar 1999 A
5896085 Mori et al. Apr 1999 A
5899956 Chan May 1999 A
5915800 Hiwatashi et al. Jun 1999 A
5923027 Stam et al. Jul 1999 A
5924212 Domanski Jul 1999 A
5959555 Furuta Sep 1999 A
5963247 Banitt Oct 1999 A
5986796 Miles Nov 1999 A
5990469 Bechtel et al. Nov 1999 A
5990649 Nagao et al. Nov 1999 A
6020704 Buschur Feb 2000 A
6049171 Stam et al. Apr 2000 A
6066933 Ponziana May 2000 A
6084519 Coulling et al. Jul 2000 A
6097024 Stam et al. Aug 2000 A
6144022 Tenenbaum et al. Nov 2000 A
6175300 Kendrick Jan 2001 B1
6178034 Allemand et al. Jan 2001 B1
6223114 Boros et al. Apr 2001 B1
6227689 Miller May 2001 B1
6250148 Lynam Jun 2001 B1
6266082 Yonezawa et al. Jul 2001 B1
6266442 Laumeyer et al. Jul 2001 B1
6285393 Shimoura et al. Sep 2001 B1
6297781 Turnbull et al. Oct 2001 B1
6310611 Caldwell Oct 2001 B1
6313454 Bos et al. Nov 2001 B1
6317057 Lee Nov 2001 B1
6320282 Caldwell Nov 2001 B1
6333759 Mazzilli Dec 2001 B1
6341523 Lynam Jan 2002 B2
6370329 Teuchert Apr 2002 B1
6392315 Jones et al. May 2002 B1
6411204 Bloomfield et al. Jun 2002 B1
6424273 Gulla et al. Jul 2002 B1
6430303 Naoi et al. Aug 2002 B1
6442465 Breed et al. Aug 2002 B2
6477464 McCarthy et al. Nov 2002 B2
6497503 Dassanayake et al. Dec 2002 B1
6516664 Lynam Feb 2003 B2
6539306 Turnbull Mar 2003 B2
6547133 Devries, Jr. et al. Apr 2003 B1
6553130 Lemelson et al. Apr 2003 B1
6574033 Chui et al. Jun 2003 B1
6589625 Kothari et al. Jul 2003 B1
6594583 Ogura et al. Jul 2003 B2
6611610 Stam et al. Aug 2003 B1
6636258 Strumolo Oct 2003 B2
6650455 Miles Nov 2003 B2
6672731 Schnell et al. Jan 2004 B2
6674562 Miles Jan 2004 B1
6678614 McCarthy et al. Jan 2004 B2
6680792 Miles Jan 2004 B2
6690268 Schofield et al. Feb 2004 B2
6700605 Toyoda et al. Mar 2004 B1
6704621 Stein et al. Mar 2004 B1
6710908 Miles et al. Mar 2004 B2
6711474 Treyz et al. Mar 2004 B1
6714331 Lewis et al. Mar 2004 B2
6735506 Breed et al. May 2004 B2
6741377 Miles May 2004 B2
6744353 Sjonell Jun 2004 B2
6762867 Lippert et al. Jul 2004 B2
6794119 Miles Sep 2004 B2
6795221 Urey Sep 2004 B1
6819231 Berberich et al. Nov 2004 B2
6822563 Bos et al. Nov 2004 B2
6823241 Shirato et al. Nov 2004 B2
6824281 Schofield et al. Nov 2004 B2
6850156 Bloomfield et al. Feb 2005 B2
6882287 Schofield Apr 2005 B2
6889161 Winner et al. May 2005 B2
6891563 Schofield et al. May 2005 B2
6909753 Meehan et al. Jun 2005 B2
6946978 Schofield Sep 2005 B2
6953253 Schofield et al. Oct 2005 B2
6968736 Lynam Nov 2005 B2
6975775 Rykowski et al. Dec 2005 B2
6989736 Berberich et al. Jan 2006 B2
7004606 Schofield Feb 2006 B2
7005974 McMahon et al. Feb 2006 B2
7038577 Pawlicki et al. May 2006 B2
7062300 Kim Jun 2006 B1
7065432 Moisel et al. Jun 2006 B2
7079017 Lang et al. Jul 2006 B2
7085637 Breed et al. Aug 2006 B2
7092548 Laumeyer et al. Aug 2006 B2
7111968 Bauer et al. Sep 2006 B2
7116246 Winter et al. Oct 2006 B2
7123168 Schofield Oct 2006 B2
7145519 Takahashi et al. Dec 2006 B2
7149613 Stam et al. Dec 2006 B2
7161616 Okamoto et al. Jan 2007 B1
7167796 Taylor et al. Jan 2007 B2
7195381 Lynam et al. Mar 2007 B2
7202776 Breed Apr 2007 B2
7205904 Schofield Apr 2007 B2
7227459 Bos et al. Jun 2007 B2
7227611 Hull et al. Jun 2007 B2
7338177 Lynam Mar 2008 B2
7355524 Schofield Apr 2008 B2
7380948 Schofield et al. Jun 2008 B2
7388182 Schofield et al. Jun 2008 B2
7402786 Schofield et al. Jul 2008 B2
7425076 Schofield et al. Sep 2008 B2
7446650 Scholfield et al. Nov 2008 B2
7460951 Altan Dec 2008 B2
7480149 DeWard et al. Jan 2009 B2
7490007 Taylor et al. Feb 2009 B2
7492281 Lynam et al. Feb 2009 B2
7526103 Schofield et al. Apr 2009 B2
7561181 Schofield et al. Jul 2009 B2
7580795 McCarthy et al. Aug 2009 B2
7581859 Lynam Sep 2009 B2
7592928 Chinomi et al. Sep 2009 B2
7616781 Schofield et al. Nov 2009 B2
7619508 Lynam et al. Nov 2009 B2
7639149 Katoh Dec 2009 B2
7681960 Wanke et al. Mar 2010 B2
7720580 Higgins-Luthman May 2010 B2
7777611 Desai Aug 2010 B2
7855755 Weller et al. Dec 2010 B2
7881496 Camilleri et al. Feb 2011 B2
7914187 Higgins-Luthman et al. Mar 2011 B2
7965336 Bingle et al. Jun 2011 B2
7979172 Breed Jul 2011 B2
8013780 Lynam Sep 2011 B2
8027029 Lu et al. Sep 2011 B2
8058977 Lynam Nov 2011 B2
8248223 Periwal Aug 2012 B2
8340866 Hanzawa et al. Dec 2012 B2
8457827 Ferguson et al. Jun 2013 B1
8466806 Schofield Jun 2013 B2
8521352 Ferguson et al. Aug 2013 B1
8532862 Neff Sep 2013 B2
8694224 Chundrlik, Jr. et al. Apr 2014 B2
8849495 Chundrik, Jr. et al. Sep 2014 B2
9007197 Breed Apr 2015 B2
9008369 Schofield et al. Apr 2015 B2
9195914 Fairfield et al. Nov 2015 B2
9264673 Chundrlik, Jr. et al. Feb 2016 B2
9318023 Moshchuk et al. Apr 2016 B2
9499139 Koravadi Nov 2016 B2
9612123 Levinson et al. Apr 2017 B1
9916703 Levinson et al. Mar 2018 B2
9958864 Kentley-Klay et al. May 2018 B2
10137892 Koravadi Nov 2018 B2
10144397 Lim Dec 2018 B2
10466061 Newman Nov 2019 B2
10870427 Koravadi Dec 2020 B2
20020015153 Downs Feb 2002 A1
20020044065 Quist et al. Apr 2002 A1
20020105423 Rast Aug 2002 A1
20020113873 Williams Aug 2002 A1
20020121132 Breed et al. Sep 2002 A1
20020159270 Lynam et al. Oct 2002 A1
20030137586 Lewellen Jul 2003 A1
20030158635 Pillar et al. Aug 2003 A1
20030209893 Breed et al. Nov 2003 A1
20030222982 Hamdan et al. Dec 2003 A1
20040114381 Salmeen et al. Jun 2004 A1
20040181338 Dobler et al. Sep 2004 A1
20060018511 Stam et al. Jan 2006 A1
20060018512 Stam et al. Jan 2006 A1
20060025897 Shostak et al. Feb 2006 A1
20060091813 Stam et al. May 2006 A1
20060103727 Tseng May 2006 A1
20060164230 DeWind et al. Jul 2006 A1
20060250501 Wildmann et al. Nov 2006 A1
20060290479 Akatsuka et al. Dec 2006 A1
20070021915 Breed et al. Jan 2007 A1
20070027583 Tamir et al. Feb 2007 A1
20070075919 Breed Apr 2007 A1
20070104476 Yasutomi et al. May 2007 A1
20070109111 Breed et al. May 2007 A1
20070152804 Breed et al. Jul 2007 A1
20070205881 Breed Sep 2007 A1
20080040004 Breed Feb 2008 A1
20080150786 Breed Jun 2008 A1
20080161986 Breed Jul 2008 A1
20080161987 Breed Jul 2008 A1
20080180529 Taylor et al. Jul 2008 A1
20090113509 Tseng et al. Apr 2009 A1
20090177347 Breuer et al. Jul 2009 A1
20090243824 Peterson et al. Oct 2009 A1
20090244361 Gebauer et al. Oct 2009 A1
20090295181 Lawlor et al. Dec 2009 A1
20100020170 Higgins-Luthman et al. Jan 2010 A1
20100045797 Schofield et al. Feb 2010 A1
20100052945 Breed Mar 2010 A1
20100063663 Tolstedt et al. Mar 2010 A1
20100063680 Tolstedt et al. Mar 2010 A1
20100082195 Lee et al. Apr 2010 A1
20100097469 Blank et al. Apr 2010 A1
20100228437 Hanzawa et al. Sep 2010 A1
20100283626 Breed Nov 2010 A1
20110015818 Breuer et al. Jan 2011 A1
20110160964 Obradovich Jun 2011 A1
20110213628 Peak et al. Sep 2011 A1
20110320066 Schofield Dec 2011 A1
20120041632 Garcia Bordes Feb 2012 A1
20120062743 Lynam et al. Mar 2012 A1
20120083959 Dolgov et al. Apr 2012 A1
20120083960 Zhu et al. Apr 2012 A1
20120123806 Schumann, Jr. et al. May 2012 A1
20120218412 Dellantoni et al. Aug 2012 A1
20120262340 Hassan et al. Oct 2012 A1
20120296567 Breed Nov 2012 A1
20120323474 Breed Dec 2012 A1
20130030657 Chatterjee et al. Jan 2013 A1
20130035827 Breed Feb 2013 A1
20130035901 Breed Feb 2013 A1
20130052614 Mollicone et al. Feb 2013 A1
20130054103 Herink Feb 2013 A1
20130116859 Ihlenburg et al. May 2013 A1
20130124052 Hahne May 2013 A1
20130131907 Green et al. May 2013 A1
20130131918 Hahne May 2013 A1
20130144490 Lord et al. Jun 2013 A1
20130201316 Binder et al. Aug 2013 A1
20130211976 Breed Aug 2013 A1
20130218396 Moshchuk et al. Aug 2013 A1
20130222592 Gieseke Aug 2013 A1
20130226408 Fung et al. Aug 2013 A1
20130231825 Chundrlik, Jr. et al. Sep 2013 A1
20130342333 Hutchings Dec 2013 A1
20140067206 Pflug Mar 2014 A1
20140104051 Breed Apr 2014 A1
20140218529 Mahmoud et al. Aug 2014 A1
20140249691 Hafner et al. Sep 2014 A1
20140257659 Dariush Sep 2014 A1
20140309806 Ricci Oct 2014 A1
20140309884 Wolf Oct 2014 A1
20140309885 Ricci Oct 2014 A1
20140375476 Johnson et al. Dec 2014 A1
20150158499 Koravadi Jun 2015 A1
20160068103 McNew et al. Mar 2016 A1
20160086391 Ricci Mar 2016 A1
20160339959 Lee Nov 2016 A1
20160362050 Lee et al. Dec 2016 A1
20170101056 Park Apr 2017 A1
20170305418 Bae Oct 2017 A1
20180082589 Park et al. Mar 2018 A1
20180326990 Kusaka et al. Nov 2018 A1
20190111937 Halesha Apr 2019 A1
20190147744 Grimm et al. May 2019 A1
20190162151 Tedesco et al. May 2019 A1
20190299981 Yoon et al. Oct 2019 A1
20190329768 Shalev-Shwartz et al. Oct 2019 A1
20200047750 Likhachev et al. Feb 2020 A1
20200089244 Zhang et al. Mar 2020 A1
20200094411 Tan et al. Mar 2020 A1
20200094826 Abe et al. Mar 2020 A1
20200159216 Le et al. May 2020 A1
20200209959 Oniwa et al. Jul 2020 A1
20210182573 Sabeti Jun 2021 A1
20210358304 Gupta Nov 2021 A1
Foreign Referenced Citations (1)
Number Date Country
2739989 Apr 2010 CA
Related Publications (1)
Number Date Country
20210107473 A1 Apr 2021 US
Provisional Applications (2)
Number Date Country
62047194 Sep 2014 US
61912146 Dec 2013 US
Continuations (3)
Number Date Country
Parent 16199487 Nov 2018 US
Child 17247690 US
Parent 15355436 Nov 2016 US
Child 16199487 US
Parent 14561794 Dec 2014 US
Child 15355436 US