The present invention relates generally to a vehicle control system for a vehicle and, more particularly, to a vehicle control system that synchronizes control units.
Use of time synchronization between modules in a control system is common and known.
A vehicular control system includes a first electronic control unit (ECU) disposed at a vehicle equipped with the vehicular control system. The system includes a second ECU disposed at the equipped vehicle. The first ECU and the second ECU are in digital communication with one another via a communication link. The digital communication via the communication link includes communication of a first frame and communication of a second frame. The first ECU transmits the first frame to the second ECU via the communication link. The first frame includes a first bit pattern having a first sequence of binary digits. The second ECU, responsive to receiving the first frame from the first ECU, transmits the second frame to the first ECU via the communication link. The second frame includes a second bit pattern having a second sequence of binary digits. The first ECU, responsive to receiving the second frame from the second ECU, determines a propagation delay based on a time interval between (i) when the first ECU transmits the first frame to the second ECU and (ii) when the first ECU receives the second frame from the second ECU. The first ECU transmits a time synchronization frame to the second ECU via the communication link. The time synchronization frame is based at least in part on the determined propagation delay.
These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
Many vehicle systems require an accurate clock or time to properly function. Thus, it is often important to accurately synchronize time between different vehicle systems, controllers, sensors, and/or modules. Vehicle time is commonly distributed by a master clock to a slave clock using, for example, the precision time protocol (PTP). Time synchronization using PTP requires two distinct communication frames (i.e., a sync frame and follow-up frame), such as two Ethernet frames, that can be sent cyclically. Precision time protocol also includes PDelay requests and PDelay responses that add additional Ethernet frames. In total, four Ethernet frames are needed to synchronize time at a slave electronic control unit (ECU) from master ECU using PTP. Implementations herein include a vehicular control system that provides time synchronization with a single Ethernet frame that includes a timestamp, thus reducing overhead for synchronization between controls. These implementations may be applied to any topology or to multi-time master ECUs.
In the vehicular control system described herein, a time master ECU sends a timestamp of the current time in a single Ethernet frame along with propagation delay corrections and back off time corrections. A receiver and/or time slave ECU (i.e., a second ECU independent or separate from the time master ECU) receives the single Ethernet frame with the timestamp and correction time attached to or within. The propagation time and back off time may be calculated by the transceiver of the time master ECU transmitting the frame using, for example, an internal hardware timer module.
Referring now to
For example, the Ethernet transceiver of the time master ECU sends specific patterns of bits, such as the binary number “1010101010101111,” that indicates the calculation for propagation delay and starts an internal hardware timer. The Ethernet transceiver of the time slave ECU receives the pattern of bits transmitted by the time master ECU and responds with another specific pattern, such as the binary number “1010101011111111.” The time master ECU transceiver receives back the response from the time slave ECU and stops the internal hardware timer that the time master ECU started when sending the initial specific pattern of bits. The time master ECU divides the results of the timer by 2 as the timer timed both transmission and reception of the patterns. The timer measures the propagation time (Tp) with no Ethernet traffic. This time Tp should be added to every timestamp frame as the correction or time needed for communication from one transceiver to other (i.e., the time for a signal to propagate from one ECU to the other ECU). The transceiver of the time master ECU stores this Tp in a hardware register (
Referring now to
The frame type may be a 16 bit field to indicate time sync frame. Other sized bit fields are also possible (e.g., 8 bits, 32 bits, 64 bits, etc.). The time stamp seconds may be a 32 or 64 bit field for the seconds generated on the time master ECU. The time stamp Nanoseconds may be, for example, a 32 or 64 bit field for the nanoseconds generated on the time master ECU. The correction time seconds may be, for example, an 8 bit or 16 bit field for the correction time in seconds. Correction time may include the sum of propagation time (Tp) and back off time (Tb) and correction time from the previous transmission (Tpc). The correction time nanoseconds may be, for example, a 32 bit field for nanoseconds. The correction time includes the sum of propagation time (Tp) with back off time (Tb) and correction time from the previous transmission (Tpc).
Referring now to
Referring now to
Ingress timestamp and egress timestamp corrections may not be considered in the timestamp fields in the frame format. The time should be corrected to the exact point in time at the time master ECU when the frame is assembled in the Ethernet MAC descriptor and is ready for transmission. In the case when the packets are queued in the descriptor chain, the final time should be used when the frame is transmitted from the Ethernet controller (MAC) to the Ethernet transceiver (TRCV) to achieve exact time synchronization. Similarly, the time slave ECU implements correction in time from the received frame until the processing of the synchronization frame. This correction is added to the synchronized time for increased accuracy.
Referring now to
Thus, the vehicular control system allows for a time master ECU to synchronize time with other ECUs with a single Ethernet frame that includes a timestamp. The single Ethernet frame includes a correction time for achieving synchronization with reduced traffic on time sync frames. In conventional time sync methods using PTP, sync and follow-up messages are configured for 125 ms and PDelay requests and responses for 1 second. In this case, 18 frames per second are needed for time synchronization. This adds additional traffic on the Ethernet bus. However, this additional traffic is greatly reduced by the vehicular control system described herein. For example, as opposed to 18 frames per second, the vehicular control system can be used in such a way that sync requests (of a single Ethernet frame) are sent every 125 ms using only low-level hardware (i.e., within the transceiver). This example results in 8 frames per second which is a reduction of greater than 50 percent. Because the transceiver sends/recognizes the bit patterns (i.e., the binary sequence of ‘1’s and ‘0’s) within the hardware of the transceiver, the system allows for rapid and accurate propagation delay that does not incur the overhead costs and delays of software processing. Because the amount of Ethernet traffic used by the automotive industry is increasing rapidly, the bandwidth on the Ethernet bus is becoming a notable problem between communication partners. Thus, the bandwidth reductions achieved by the vehicular control system are advantageous.
In conventional Ethernet systems, propagation delay is calculated with transmission of multiple Ethernet frames with pdelay request and pdelay response frames. Software is then used to calculate the propagation delay. In contrast, implementations herein include a system that determines propagation delay using Ethernet transceiver hardware (as opposed to software) and a single Ethernet frame (as opposed to multiple Ethernet frames). The system uses bit pattern exchanges from one transceiver to another to measure propagation delay. The Ethernet transceivers can send propagation delays for each transmitted Ethernet frame in the frame itself. Propagation delay between the communication partners is thus calculated in the same Ethernet frame instead of a traditional request/response format.
The ECU, such as the master ECU and/or slave ECU (i.e., a first ECU and/or a second ECU), may be part of a driving assist system of the vehicle. For example, one or both of the ECUs may generate a respective output for one or more driving assist systems of the vehicle, such as for an object detection system of the vehicle, a collision avoidance system of the vehicle, a pedestrian detection system of the vehicle, a headlamp control system of the vehicle, a lane departure warning system of the vehicle, a lane keep assist system of the vehicle, an adaptive cruise control system of the vehicle, and/or an automatic emergency braking system of the vehicle. The output or outputs may at least in part control one or more of the driving assist systems or one or more functions or operations of the vehicle. For example, the master or first or control ECU may be disposed in the vehicle and the slave or second ECU may be part of a camera or sensor or sensing system of the vehicle, and the synchronized outputs of the ECUs may control or provide outputs for one or more of the driving assist systems (e.g., automatic breaking systems, lane keep systems, lane centering systems, adaptive cruise control systems, etc.) of the vehicle.
The vehicle may include any type of sensor or sensors, such as imaging sensors or radar sensors or lidar sensors or ultrasonic sensors or the like. The imaging sensor or camera may capture image data for image processing and may comprise any suitable camera or sensing device, such as, for example, a two dimensional array of a plurality of photosensor elements arranged in at least 640 columns and 480 rows (at least a 640×480 imaging array, such as a megapixel imaging array or the like), with a respective lens focusing images onto respective portions of the array. The photosensor array may comprise a plurality of photosensor elements arranged in a photosensor array having rows and columns. The imaging array may comprise a CMOS imaging array having at least 300,000 photosensor elements or pixels, preferably at least 500,000 photosensor elements or pixels and more preferably at least 1 million photosensor elements or pixels arranged in rows and columns. The imaging array may capture color image data, such as via spectral filtering at the array, such as via an RGB (red, green and blue) filter or via a red/red complement filter or such as via an RCC (red, clear, clear) filter or the like. The logic and control circuit of the imaging sensor may function in any known manner, and the image processing and algorithmic processing may comprise any suitable means for processing the images and/or image data.
For example, the vision system and/or processing and/or camera and/or circuitry may utilize aspects described in U.S. Pat. Nos. 9,233,641; 9,146,898; 9,174,574; 9,090,234; 9,077,098; 8,818,042; 8,886,401; 9,077,962; 9,068,390; 9,140,789; 9,092,986; 9,205,776; 8,917,169; 8,694,224; 7,005,974; 5,760,962; 5,877,897; 5,796,094; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; 7,859,565; 5,550,677; 5,670,935; 6,636,258; 7,145,519; 7,161,616; 7,230,640; 7,248,283; 7,295,229; 7,301,466; 7,592,928; 7,881,496; 7,720,580; 7,038,577; 6,882,287; 5,929,786 and/or 5,786,772, and/or U.S. Publication Nos. US-2014-0340510; US-2014-0313339; US-2014-0347486; US-2014-0320658; US-2014-0336876; US-2014-0307095; US-2014-0327774; US-2014-0327772; US-2014-0320636; US-2014-0293057; US-2014-0309884; US-2014-0226012; US-2014-0293042; US-2014-0218535; US-2014-0218535; US-2014-0247354; US-2014-0247355; US-2014-0247352; US-2014-0232869; US-2014-0211009; US-2014-0160276; US-2014-0168437; US-2014-0168415; US-2014-0160291; US-2014-0152825; US-2014-0139676; US-2014-0138140; US-2014-0104426; US-2014-0098229; US-2014-0085472; US-2014-0067206; US-2014-0049646; US-2014-0052340; US-2014-0025240; US-2014-0028852; US-2014-005907; US-2013-0314503; US-2013-0298866; US-2013-0222593; US-2013-0300869; US-2013-0278769; US-2013-0258077; US-2013-0258077; US-2013-0242099; US-2013-0215271; US-2013-0141578 and/or US-2013-0002873, which are all hereby incorporated herein by reference in their entireties. The system may communicate with other communication systems via any suitable means, such as by utilizing aspects of the systems described in U.S. Pat. Nos. 10,071,687; 9,900,490; 9,126,525 and/or 9,036,026, which are hereby incorporated herein by reference in their entireties.
Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.
The present application is a continuation of U.S. patent application Ser. No. 17/454,329, filed Nov. 10, 2021, now U.S. Pat. No. 11,968,639, which claims the filing benefits of U.S. provisional application Ser. No. 63/199,154, filed Dec. 10, 2020, and U.S. provisional application Ser. No. 63/198,761, filed Nov. 11, 2020, which are hereby incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4987357 | Masaki | Jan 1991 | A |
4991054 | Walters | Feb 1991 | A |
5001558 | Burley et al. | Mar 1991 | A |
5003288 | Wilhelm | Mar 1991 | A |
5012082 | Watanabe | Apr 1991 | A |
5016977 | Baude et al. | May 1991 | A |
5027001 | Torbert | Jun 1991 | A |
5027200 | Petrossian et al. | Jun 1991 | A |
5044706 | Chen | Sep 1991 | A |
5055668 | French | Oct 1991 | A |
5059877 | Teder | Oct 1991 | A |
5064274 | Alten | Nov 1991 | A |
5072154 | Chen | Dec 1991 | A |
5086253 | Lawler | Feb 1992 | A |
5096287 | Kakinami et al. | Mar 1992 | A |
5097362 | Lynas | Mar 1992 | A |
5121200 | Choi | Jun 1992 | A |
5124549 | Michaels et al. | Jun 1992 | A |
5130709 | Toyama et al. | Jul 1992 | A |
5168378 | Black | Dec 1992 | A |
5170374 | Shimohigashi et al. | Dec 1992 | A |
5172235 | Wilm et al. | Dec 1992 | A |
5177685 | Davis et al. | Jan 1993 | A |
5182502 | Slotkowski et al. | Jan 1993 | A |
5184956 | Langlais et al. | Feb 1993 | A |
5189561 | Hong | Feb 1993 | A |
5193000 | Lipton et al. | Mar 1993 | A |
5204778 | Bechtel | Apr 1993 | A |
5208701 | Maeda | May 1993 | A |
5245422 | Borcherts et al. | Sep 1993 | A |
5276389 | Levers | Jan 1994 | A |
5285060 | Larson et al. | Feb 1994 | A |
5289182 | Brillard et al. | Feb 1994 | A |
5289321 | Secor | Feb 1994 | A |
5305012 | Faris | Apr 1994 | A |
5307136 | Saneyoshi | Apr 1994 | A |
5309137 | Kajiwara | May 1994 | A |
5313072 | Vachss | May 1994 | A |
5325096 | Pakett | Jun 1994 | A |
5325386 | Jewell et al. | Jun 1994 | A |
5329206 | Slotkowski et al. | Jul 1994 | A |
5331312 | Kudoh | Jul 1994 | A |
5336980 | Levers | Aug 1994 | A |
5341437 | Nakayama | Aug 1994 | A |
5351044 | Mathur et al. | Sep 1994 | A |
5355118 | Fukuhara | Oct 1994 | A |
5374852 | Parkes | Dec 1994 | A |
5386285 | Asayama | Jan 1995 | A |
5394333 | Kao | Feb 1995 | A |
5406395 | Wilson et al. | Apr 1995 | A |
5410346 | Saneyoshi et al. | Apr 1995 | A |
5414257 | Stanton | May 1995 | A |
5414461 | Kishi et al. | May 1995 | A |
5416313 | Larson et al. | May 1995 | A |
5416318 | Hegyi | May 1995 | A |
5416478 | Morinaga | May 1995 | A |
5424952 | Asayama | Jun 1995 | A |
5426294 | Kobayashi et al. | Jun 1995 | A |
5430431 | Nelson | Jul 1995 | A |
5434407 | Bauer et al. | Jul 1995 | A |
5440428 | Hegg et al. | Aug 1995 | A |
5444478 | Lelong et al. | Aug 1995 | A |
5451822 | Bechtel et al. | Sep 1995 | A |
5457493 | Leddy et al. | Oct 1995 | A |
5461357 | Yoshioka et al. | Oct 1995 | A |
5461361 | Moore | Oct 1995 | A |
5469298 | Suman et al. | Nov 1995 | A |
5471515 | Fossum et al. | Nov 1995 | A |
5475494 | Nishida et al. | Dec 1995 | A |
5498866 | Bendicks et al. | Mar 1996 | A |
5500766 | Stonecypher | Mar 1996 | A |
5510983 | Lino | Apr 1996 | A |
5515448 | Nishitani | May 1996 | A |
5521633 | Nakajima et al. | May 1996 | A |
5528698 | Kamei et al. | Jun 1996 | A |
5529138 | Shaw et al. | Jun 1996 | A |
5530240 | Larson et al. | Jun 1996 | A |
5530420 | Tsuchiya et al. | Jun 1996 | A |
5535314 | Alves et al. | Jul 1996 | A |
5537003 | Bechtel et al. | Jul 1996 | A |
5539397 | Asanuma et al. | Jul 1996 | A |
5541590 | Nishio | Jul 1996 | A |
5550677 | Schofield et al. | Aug 1996 | A |
5555555 | Sato et al. | Sep 1996 | A |
5568027 | Teder | Oct 1996 | A |
5574443 | Hsieh | Nov 1996 | A |
5581464 | Woll et al. | Dec 1996 | A |
5594222 | Caldwell | Jan 1997 | A |
5614788 | Mullins | Mar 1997 | A |
5619370 | Guinosso | Apr 1997 | A |
5632092 | Blank et al. | May 1997 | A |
5634709 | Iwama | Jun 1997 | A |
5642299 | Hardin et al. | Jun 1997 | A |
5648835 | Uzawa | Jul 1997 | A |
5650944 | Kise | Jul 1997 | A |
5660454 | Mori et al. | Aug 1997 | A |
5661303 | Teder | Aug 1997 | A |
5666028 | Bechtel et al. | Sep 1997 | A |
5670935 | Schofield et al. | Sep 1997 | A |
5677851 | Kingdon et al. | Oct 1997 | A |
5699044 | Van Lente et al. | Dec 1997 | A |
5724316 | Brunts | Mar 1998 | A |
5732379 | Eckert et al. | Mar 1998 | A |
5737226 | Olson et al. | Apr 1998 | A |
5760828 | Cortes | Jun 1998 | A |
5760931 | Saburi et al. | Jun 1998 | A |
5761094 | Olson et al. | Jun 1998 | A |
5765116 | Wilson-Jones et al. | Jun 1998 | A |
5765118 | Fukatani | Jun 1998 | A |
5781437 | Wiemer et al. | Jul 1998 | A |
5786772 | Schofield et al. | Jul 1998 | A |
5790403 | Nakayama | Aug 1998 | A |
5790973 | Blaker et al. | Aug 1998 | A |
5793308 | Rosinski et al. | Aug 1998 | A |
5793420 | Schmidt | Aug 1998 | A |
5796094 | Schofield et al. | Aug 1998 | A |
5835255 | Miles | Nov 1998 | A |
5837994 | Stam et al. | Nov 1998 | A |
5844505 | Van Ryzin | Dec 1998 | A |
5844682 | Kiyomoto et al. | Dec 1998 | A |
5845000 | Breed et al. | Dec 1998 | A |
5848802 | Breed et al. | Dec 1998 | A |
5850176 | Kinoshita et al. | Dec 1998 | A |
5850254 | Takano et al. | Dec 1998 | A |
5867591 | Onda | Feb 1999 | A |
5877707 | Kowalick | Mar 1999 | A |
5877897 | Schofield et al. | Mar 1999 | A |
5878357 | Sivashankar et al. | Mar 1999 | A |
5878370 | Olson | Mar 1999 | A |
5883739 | Ashihara et al. | Mar 1999 | A |
5884212 | Lion | Mar 1999 | A |
5890021 | Onoda | Mar 1999 | A |
5896085 | Mori et al. | Apr 1999 | A |
5899956 | Chan | May 1999 | A |
5915800 | Hiwatashi et al. | Jun 1999 | A |
5923027 | Stam et al. | Jul 1999 | A |
5924212 | Domanski | Jul 1999 | A |
5959555 | Furuta | Sep 1999 | A |
5963247 | Banitt | Oct 1999 | A |
5986796 | Miles | Nov 1999 | A |
5990469 | Bechtel et al. | Nov 1999 | A |
5990649 | Nagao et al. | Nov 1999 | A |
6020704 | Buschur | Feb 2000 | A |
6049171 | Stam et al. | Apr 2000 | A |
6066933 | Ponziana | May 2000 | A |
6084519 | Coulling et al. | Jul 2000 | A |
6097024 | Stam et al. | Aug 2000 | A |
6100799 | Fenk | Aug 2000 | A |
6144022 | Tenenbaum et al. | Nov 2000 | A |
6175300 | Kendrick | Jan 2001 | B1 |
6178034 | Allemand et al. | Jan 2001 | B1 |
6201642 | Bos | Mar 2001 | B1 |
6202164 | Gulick | Mar 2001 | B1 |
6223114 | Boros et al. | Apr 2001 | B1 |
6227689 | Miller | May 2001 | B1 |
6266082 | Yonezawa et al. | Jul 2001 | B1 |
6266442 | Laumeyer et al. | Jul 2001 | B1 |
6279058 | Gulick | Aug 2001 | B1 |
6285393 | Shimoura et al. | Sep 2001 | B1 |
6294989 | Schofield et al. | Sep 2001 | B1 |
6297781 | Turnbull et al. | Oct 2001 | B1 |
6310611 | Caldwell | Oct 2001 | B1 |
6317057 | Lee | Nov 2001 | B1 |
6320282 | Caldwell | Nov 2001 | B1 |
6333759 | Mazzilli | Dec 2001 | B1 |
6353392 | Schofield et al. | Mar 2002 | B1 |
6370329 | Teuchert | Apr 2002 | B1 |
6392315 | Jones et al. | May 2002 | B1 |
6396397 | Bos et al. | May 2002 | B1 |
6411204 | Bloomfield et al. | Jun 2002 | B1 |
6424273 | Gutta et al. | Jul 2002 | B1 |
6430303 | Naoi et al. | Aug 2002 | B1 |
6442465 | Breed et al. | Aug 2002 | B2 |
6477464 | McCarthy et al. | Nov 2002 | B2 |
6497503 | Dassanayake et al. | Dec 2002 | B1 |
6498620 | Schofield et al. | Dec 2002 | B2 |
6534884 | Marcus et al. | Mar 2003 | B2 |
6539306 | Turnbull | Mar 2003 | B2 |
6547133 | Devries, Jr. et al. | Apr 2003 | B1 |
6553130 | Lemelson et al. | Apr 2003 | B1 |
6574033 | Chui et al. | Jun 2003 | B1 |
6589625 | Kothari et al. | Jul 2003 | B1 |
6594583 | Ogura et al. | Jul 2003 | B2 |
6611610 | Stam et al. | Aug 2003 | B1 |
6636258 | Strumolo | Oct 2003 | B2 |
6650455 | Miles | Nov 2003 | B2 |
6672731 | Schnell et al. | Jan 2004 | B2 |
6674562 | Miles | Jan 2004 | B1 |
6680792 | Miles | Jan 2004 | B2 |
6690268 | Schofield et al. | Feb 2004 | B2 |
6700605 | Toyoda et al. | Mar 2004 | B1 |
6704621 | Stein et al. | Mar 2004 | B1 |
6710908 | Miles et al. | Mar 2004 | B2 |
6711474 | Treyz et al. | Mar 2004 | B1 |
6714331 | Lewis et al. | Mar 2004 | B2 |
6717610 | Bos et al. | Apr 2004 | B1 |
6735506 | Breed et al. | May 2004 | B2 |
6741377 | Miles | May 2004 | B2 |
6744353 | Sjonell | Jun 2004 | B2 |
6762867 | Lippert et al. | Jul 2004 | B2 |
6794119 | Miles | Sep 2004 | B2 |
6795221 | Urey | Sep 2004 | B1 |
6806452 | Bos et al. | Oct 2004 | B2 |
6819231 | Berberich et al. | Nov 2004 | B2 |
6823241 | Shirato et al. | Nov 2004 | B2 |
6824281 | Schofield et al. | Nov 2004 | B2 |
6850156 | Bloomfield et al. | Feb 2005 | B2 |
6889161 | Winner et al. | May 2005 | B2 |
6909753 | Meehan et al. | Jun 2005 | B2 |
6946978 | Schofield | Sep 2005 | B2 |
6975775 | Rykowski et al. | Dec 2005 | B2 |
6989736 | Berberich et al. | Jan 2006 | B2 |
7004606 | Schofield | Feb 2006 | B2 |
7038577 | Pawlicki et al. | May 2006 | B2 |
7062300 | Kim | Jun 2006 | B1 |
7065432 | Moisel et al. | Jun 2006 | B2 |
7079017 | Lang et al. | Jul 2006 | B2 |
7085637 | Breed et al. | Aug 2006 | B2 |
7092548 | Laumeyer et al. | Aug 2006 | B2 |
7111968 | Bauer et al. | Sep 2006 | B2 |
7116246 | Winter et al. | Oct 2006 | B2 |
7123168 | Schofield | Oct 2006 | B2 |
7136753 | Samukawa et al. | Nov 2006 | B2 |
7145519 | Takahashi et al. | Dec 2006 | B2 |
7149613 | Stam et al. | Dec 2006 | B2 |
7161616 | Okamoto et al. | Jan 2007 | B1 |
7195381 | Lynam et al. | Mar 2007 | B2 |
7202776 | Breed | Apr 2007 | B2 |
7227611 | Hull et al. | Jun 2007 | B2 |
7365769 | Mager | Apr 2008 | B1 |
7460951 | Altan | Dec 2008 | B2 |
7490007 | Taylor et al. | Feb 2009 | B2 |
7526103 | Schofield et al. | Apr 2009 | B2 |
7592928 | Chinomi et al. | Sep 2009 | B2 |
7639149 | Katoh | Dec 2009 | B2 |
7681960 | Wanke et al. | Mar 2010 | B2 |
7720580 | Higgins-Luthman | May 2010 | B2 |
7724962 | Zhu et al. | May 2010 | B2 |
7855755 | Weller et al. | Dec 2010 | B2 |
7881496 | Camilleri et al. | Feb 2011 | B2 |
7952490 | Fechner et al. | May 2011 | B2 |
8013780 | Lynam | Sep 2011 | B2 |
8027029 | Lu et al. | Sep 2011 | B2 |
8849495 | Chundrik, Jr. et al. | Sep 2014 | B2 |
9227568 | Hubbell et al. | Jan 2016 | B1 |
9387813 | Moeller et al. | Jul 2016 | B1 |
9481301 | Schaffner | Nov 2016 | B2 |
9912841 | Schaffner | Mar 2018 | B2 |
10171709 | Schaffner | Jan 2019 | B2 |
10560610 | Schaffner | Feb 2020 | B2 |
10958830 | Koravadi | Mar 2021 | B2 |
11554727 | Vaid et al. | Jan 2023 | B2 |
11968639 | Patil | Apr 2024 | B2 |
20020015153 | Downs | Feb 2002 | A1 |
20020113873 | Williams | Aug 2002 | A1 |
20030081935 | Kirmuss | May 2003 | A1 |
20030125854 | Kawasaki et al. | Jul 2003 | A1 |
20030137586 | Lewellen | Jul 2003 | A1 |
20030222982 | Hamdan et al. | Dec 2003 | A1 |
20040114381 | Salmeen et al. | Jun 2004 | A1 |
20050225636 | Maemura et al. | Oct 2005 | A1 |
20050285938 | Suzuki et al. | Dec 2005 | A1 |
20060018511 | Stam et al. | Jan 2006 | A1 |
20060018512 | Stam et al. | Jan 2006 | A1 |
20060091813 | Stam et al. | May 2006 | A1 |
20060103727 | Tseng | May 2006 | A1 |
20060164221 | Jensen | Jul 2006 | A1 |
20060250501 | Widmann et al. | Nov 2006 | A1 |
20060257140 | Seger et al. | Nov 2006 | A1 |
20060290479 | Akatsuka et al. | Dec 2006 | A1 |
20070104476 | Yasutomi et al. | May 2007 | A1 |
20070206945 | DeLorme et al. | Sep 2007 | A1 |
20080189036 | Elgersma | Aug 2008 | A1 |
20090002491 | Haler | Jan 2009 | A1 |
20090093938 | Isaji et al. | Apr 2009 | A1 |
20090113509 | Tseng et al. | Apr 2009 | A1 |
20090177347 | Breuer et al. | Jul 2009 | A1 |
20090243824 | Peterson et al. | Oct 2009 | A1 |
20090244361 | Gebauer et al. | Oct 2009 | A1 |
20090245223 | Godfrey | Oct 2009 | A1 |
20090265069 | Desbrunes | Oct 2009 | A1 |
20090278933 | Maeda et al. | Nov 2009 | A1 |
20100020170 | Higgins-Luthman et al. | Jan 2010 | A1 |
20100228437 | Hanzawa et al. | Sep 2010 | A1 |
20100231771 | Yaghmai | Sep 2010 | A1 |
20110069170 | Emoto et al. | Mar 2011 | A1 |
20110193961 | Peterson | Aug 2011 | A1 |
20120044066 | Mauderer et al. | Feb 2012 | A1 |
20120062743 | Lynam et al. | Mar 2012 | A1 |
20120075465 | Wengrovitz et al. | Mar 2012 | A1 |
20120162436 | Cordell et al. | Jun 2012 | A1 |
20120188355 | Omi et al. | Jul 2012 | A1 |
20120218412 | Dellantoni et al. | Aug 2012 | A1 |
20120262340 | Hassan et al. | Oct 2012 | A1 |
20120320207 | Toyofuku | Dec 2012 | A1 |
20130038681 | Osipov et al. | Feb 2013 | A1 |
20130124052 | Hahne | May 2013 | A1 |
20130129150 | Saito | May 2013 | A1 |
20130131918 | Hahne | May 2013 | A1 |
20140067206 | Pflug | Mar 2014 | A1 |
20140071234 | Millett | Mar 2014 | A1 |
20140156157 | Johnson et al. | Jun 2014 | A1 |
20140222280 | Salomonsson et al. | Aug 2014 | A1 |
20140313339 | Diessner | Oct 2014 | A1 |
20140328357 | Fredriksson et al. | Nov 2014 | A1 |
20140379233 | Chundrlik, Jr. et al. | Dec 2014 | A1 |
20150134864 | Foster | May 2015 | A1 |
20160264071 | Ujiie et al. | Sep 2016 | A1 |
20190356404 | Kaku et al. | Nov 2019 | A1 |
Number | Date | Country |
---|---|---|
1812317 | Aug 2006 | CN |
110914884 | Mar 2020 | CN |
2011074529 | Jun 2011 | WO |
WO-2018057322 | Mar 2018 | WO |
2018211761 | Nov 2018 | WO |
Number | Date | Country | |
---|---|---|---|
20240276412 A1 | Aug 2024 | US |
Number | Date | Country | |
---|---|---|---|
63199154 | Dec 2020 | US | |
63198761 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17454329 | Nov 2021 | US |
Child | 18641678 | US |