The present invention relates to systems for determining the emissions of a vehicle engine, and in particular to onboard systems for real-time determination of engine emissions.
It is well known that vehicle exhaust gases are a cause of environmental pollution. The gaseous pollutants are commonly subdivided Into 4 broad categories: Hydrocarbons (NC), Oxides of Nitrogen (N0x), Carbon Monoxide (C0) and Carbon Dioxide (C02). Additionally, the exhaust gases comprise very small particulates (referred to as PM10s) of solid matter which have a significant effect on air quality. In North America and Europe legislation provides limits for the mass of each type of pollutant that is emitted when the vehicle is driven over a standard drive-cycle. The standard drive cycle is intended to be broadly representative of how vehicles are actually used (see for example, the Urban Dynamometer Driving Cycle from US Federal Test Procedure 72).
The emissions testing procedure cannot be expected to characterise a vehicle's emissions under all conceivable driving conditions. The standard drive cycles have been designed to be as representative as possible whilst still being a viable basis for an emissions test. Specific legislation exists in both North America and Europe to prohibit manufacturers from calibrating their engine control systems so that a significant increase in tailpipe emissions occurs when the vehicle is operating at speeds and loads not on the standard drive-cycle. This may be desirable as increased performance can be obtained from the vehicle if emissions are deliberately degraded,
The manufacturers are allowed to degrade a vehicle's emissions in order to protect the engine or emission control equipment fitted to the engine and a specific example of this is high load enrichment on spark-ignition (SI) engines. The speeds and accelerations required by this test are easily achievable by a modern vehicle and at no point does the engine get close to full load. At full load, depending on calibration, the SI engine can be operating at an air-fuel ratio that is richer than the stoichiometric ratio (normally to protect the exhaust valves). When the engine is running rich, catalyst conversion efficiency is dramatically reduced and HC and CO emissions increase considerably. Additionally, there are defined windows for each gear change on the drive-cycle that last about two seconds. In practise a gear change can be performed quicker than this. Gear changes, especially fast ones, normally result in the engine being unable to control accurately the air-fuel ratio during these rapid transients. Inaccurate control of the air-fuel ratio results in poor catalyst conversion and consequently increased emissions of HC, NOx and C0.
Compression-ignition (CI) engines are capable of running at a wide range of air-fuel ratios. In a CI engine, the air-fuel ratio is varied in order to vary the torque output of an engine. SI engines use a throttle to restrict the mass of air inducted into the engine to achieve the same torque reduction effect. The emissions of HC, N0x and C0 are related to the air-fuel ratio and injection timing being used for a CI engine. Richer mixtures tend to result in lower temperature and incomplete combustion, resulting in increased HC and CO emissions.
Injection timing also has an effect on the level of emissions. A CI engine has an optimum injection angle for efficiency, although emissions considerations may force the controller to deviate from the optimum. Injection timing affects the peak temperature achieved during combustion. At high combustion temperatures, atmospheric nitrogen is fixated and N0x emissions arise. Other factors, such as instantaneous catalyst conversion efficiency, the use of exhaust gas recirculation (EGR), time since start and particulate trap state also affect tailpipe emissions on SI and or CI engines. Considering this range of factors, it can be seen that there are many modes of driving which generate more pollutants than the figures predicted by standard drive cycles.
Further to the standards for vehicle emissions over a defined drive cycle, the engine control system on a vehicle must also monitor the performance of emissions control equipment. If a fault is detected in the emissions control equipment that could result in an increase in tailpipe emissions, the engine controller warns the driver by illuminating a “check engine” lamp on the instrument cluster. This lamp is referred to as the “malfunction indicator lamp” and the driver is expected to take the vehicle for service If the lamp becomes illuminated. In order to detect these faults, the engine controller contains a suite of diagnostics (OBD) software that monitors engine performance. The 0BD standard also specifies a protocol that allows proprietary software tools to interrogate the engine controller. This interface allows access to fault codes that are stored inside the engine controller. 0BD must also support the reporting of real-time measurements made by the engine controller, such as engine speed, calculated load, etc.
As part of the homologation process for a new vehicle, it will be subjected to an emissions test, during which a driver will be required to control the vehicle's speed to a set point as determined by the drive cycle. Exhaust gases from the vehicle are stored in a bag which is subdivided into a number cells, which allows a small gas sample to be collected once a second on the drive cycle, At the end of the test, the gas samples are analysed to determine the mass of HC, N0R, CO and C02 in each sample. The equipment used to perform the gas analysis is bulky (usually one wall of a large room) and this technology is not suitable for on-vehicle processing of emissions.
Alternative measurement techniques are now available: Fast NO and HC sensors have been developed (for example by Cambustion in the UK) and allow instantaneous measurement of pollutant mass. This equipment is expensive and still relies on bottled reference gases, rendering this technology unsuitable for use for on-vehicle emissions testing. FastN0 sensors, suitable for on-vehicle use, are in development for advanced Diesel emissions control systems but this technology is not yet mature. An equivalent HC sensor is not currently available and the cost of retro-fitting these sensors to a vehicle and interfacing them to the emissions control systems will still be high.
A known technique is disclosed by U.S. Pat. No. 6,604,033, in which a system is provided that uses exhaust gas sensors and data provided by an onboard diagnostic system to determine the emissions of a vehicle and whether or not they meet a regulatory threshold. The most significant disadvantage of the system disclosed in U.S. Pat. No. 6,604,033 is that the exhaust gas sensors are expensive and will need to be installed to each vehicle for which the emissions are to be measured.
According to the present invention there is provided an apparatus for measuring the emissions produced by a vehicle, the apparatus comprising: an emissions unit, a vehicle diagnostic system, and one or more vehicle systems, wherein: the vehicle diagnostic system being in direct communication with the one or more vehicle systems and, in use, receiving vehicle data from the one or more vehicle systems; the emissions unit, in use, receiving diagnostic data solely from the vehicle diagnostic system; and the system, in use, determines the emissions produced by a vehicle using the diagnostic data received by the emissions unit.
The advantage of the present invention is that the vehicle emissions can be determined without needing to access any of the vehicle's systems and only requires access to the diagnostic system of the vehicle. This provides an apparatus that enables the vehicle emissions to be determined that is cheaper to install, cheaper to operate and more reliable than the system disclosed in U.S. Pat. No. 8,604,033.
The invention will now be described, by way of example only, with reference to the following Figures in which:
When under calibration, the vehicle emissions are measured using conventional methods across a wide range of engine speeds and loads, environmental conditions, etc, and the data received from the vehicle diagnostic system and directly from the plurality of vehicle systems and sub-systems is also recorded. These data sets can then be correlated so that in use, the vehicle emissions can be determined solely on the basis of the data received from the vehicle diagnostic system.
In use, the emissions unit receives data solely from the vehicle diagnostic system and the vehicle emissions can be determined by the emissions unit in accordance with the data received from the vehicle diagnostic system. The vehicle emissions may be directly calculated based on the data received from the vehicle diagnostic system, one or more inferences of a vehicle state or parameter may be made based on the received data and the vehicle emissions determined based on the inferences and/or one or more data values, or the emissions value(s) may be determined from accessing a look-up table. The emissions unit comprises a processing unit, such as a CPU, that interprets the data received by the emissions unit from the vehicle diagnostic system and determines the vehicle emissions. The emissions unit further comprises data storage means, and preferably both volatile and non-volatile data storage means, for storing data received from the vehicle diagnostic system and determined vehicle emissions values.
The emissions unit is also connected to a vehicle location unit 40, which may be a GPS receiver or a mobile phone receiver, that determines the position of the vehicle. The position data can be fed to the emissions unit and used to correlate data received from the vehicle diagnostic system, for example validating the speed or distance travelled by the vehicle. The communications interface 30 may be used by the emissions unit to transfer emissions data and/or the parameters used to determine the emissions data. The data can be downloaded to a remoter terminal that analyses the emissions data, driving style of the driver, routes travelled, etc. such that the usage of the vehicle can be monitored and appropriate feedback passed on to the driver. The communications interface may be a mobile telephone interface, for example using GSM, GPRS or 3G technologies to transmit the data. Other suitable communication technologies may be alternatively or additionally used.
The wireless communications network may be a mobile telephone network, for example using GSM, GPRS or 3G technologies to transmit the data. It will be understood that a remote terminal may be connected to the wireless network via one or more fixed networks. The remote terminal Is stationary and located external to the vehicle but the term ‘remote’ need not mean that the terminal is a long distance from the vehicle. For example, the remote terminal may be sited in a garage or workshop and a Bluetooth® or WiFi® network used to provide the wireless communication between the system and the terminal. It will be readily understood that other suitable communication technologies may be alternatively or additionally used.
Vehicle manufacturers go to considerable effort to calibrate the on-board diagnostics software inside the engine controller and thus the control software implemented Inside a controller is a very accurate model of engine performance. Thus the present invention uses data obtained from OBD for the determination of the vehicle emissions. If additional information is required then it will be necessary to add sensors to vehicle components or systems or to extract signals from one or more vehicle systems or the wiring loom of the vehicle. This will lead to an increase in cost and complexity for the system.
The vehicle diagnostic system can report data for a number of different vehicle parameters, such as, for example, vehicle speed, engine speed, throttle angle, engine temperature, etc. Further information regarding the OBD system and its capabilities can be found at http://www.epa.gov/otagiobd.htm. The emissions unit may receive data from, for example, a temperature sensor measuring the temperature of a catalytic converter (for spark ignition engines, see below), powertrain components, ignition systems etc. It will be readily understood that the sophistication and complexity of the model used to determine vehicle emissions will in part be determined by the type and number of parameters that are used as inputs to the model.
Spark Ignition Engines
Determining the emissions from SI engines relies on a set of key parameters being known or estimated. Wherever possible an engine controller will operate an SI engine at a stoichiometric air-fuel ratio (AFR) under closed loop control. The OBD interface reports whether fuelling is currently closed or open loop, but a report of the actual AFR is not guaranteed by the OBD standard. In the event that a particular implementation of the OBD standard does not include a report of the actual AFR then an estimation or inference of the ratio must be made. Tables 1 and 2 below show some of the factors that will be used to determine an open loop AFR:
A modern three-way catalytic converter must have a high temperature in order to convert HC and NO into H20, CO2 and N2 and the conversion efficiency is dependent on a number of factors (see Table 3) below:
Once the conversion efficiency and current AFR are known, the HC, CO and NO emissions can be determined.
Compression Ignition Engines
It is anticipated that CI engines will require direct monitoring of the injection pulse sequences and timing to determine accurately the emissions (this monitoring will typically be carried out in addition to the measurement and monitoring steps described above with reference to spark-ignition engines). Detailed injector pulse data is not available over OBD and will therefore have to be directly measured with accurate pulse timing being required if useful emissions data is to be calculated.
It is common for modern CI engines to use exhaust gas recirculation (EGR) to reduce NOx emissions. It is proposed to estimate the amount of EGR being used, although direct measurement may alternatively be performed. Testing can indicate which approach is to be preferred for different vehicle types. Table 4 indicates some factors that influence the amount of EGR commanded by a typical control strategy:
The models for both spark- and compression-ignition engines will allow an accurate prediction of actual fuel used, independent from any calculations done inside the engine controller. However, vehicle emissions are known to be strongly dependent upon driver performance and thus a number of different driver behaviours can be measured or inferred, such as, for example:
Thus it is possible to determine what the effect of the driving style an individual driver has on the emissions of their vehicle. This enables driver training to be provided as appropriate.
The rate at which the vehicle emissions are computed needs careful consideration. If it is too slow, transient conditions where high emissions are likely may be missed. As the OBD port provides data-updates fairly slowly (a few samples per second) then there is little value in calculating the emissions value at a significantly greater rate than this. Thus, in the context of the present invention, real-time determination of vehicle emissions may be interpreted to mean that an emissions value is determined at least once a second, and preferably approximately 10 times per second.
It will be readily understood that the present invention may be used with any type of vehicle having an internal combustion engine and also with other internal combustion engines.
This patent document is a continuation under 35 U.S.C. §120 of U.S. patent application Ser. No. 11/285,227 filed on Nov. 22, 2005; now U.S. Pat. No. 8,437,903 which claims the foreign priority benefit under 35 U.S.C. §119/365 of United Kingdom Patent Application No. UK0425964.4 filed on Nov. 26, 2004, and of United Kingdom Patent Application No. UK0510355.1 filed on May 23, 2005, to each of which benefit is claimed and which are fully incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4175427 | Blanke | Nov 1979 | A |
5113804 | Kraus et al. | May 1992 | A |
5431042 | Lambert et al. | Jul 1995 | A |
5583765 | Kleehammer | Dec 1996 | A |
5589629 | Quinn | Dec 1996 | A |
5750886 | Lambert et al. | May 1998 | A |
5941918 | Blosser | Aug 1999 | A |
6053151 | Cook et al. | Apr 2000 | A |
6164063 | Mendler | Dec 2000 | A |
6167333 | Gehlot | Dec 2000 | A |
6230694 | Cook et al. | May 2001 | B1 |
6295492 | Lang et al. | Sep 2001 | B1 |
6308130 | Vojtisek-Lom | Oct 2001 | B1 |
6366207 | Murphy | Apr 2002 | B1 |
6435019 | Vojtisek-Lom | Aug 2002 | B1 |
6438472 | Tano et al. | Aug 2002 | B1 |
6594579 | Lowrey et al. | Jul 2003 | B1 |
6595043 | Jaye | Jul 2003 | B2 |
6604033 | Banet et al. | Aug 2003 | B1 |
6941750 | Boretto et al. | Sep 2005 | B2 |
7069126 | Bernard | Jun 2006 | B2 |
7263433 | Surnilla et al. | Aug 2007 | B2 |
20010025221 | Klein | Sep 2001 | A1 |
20020078692 | Jay et al. | Jun 2002 | A1 |
20020093201 | Soucy | Jul 2002 | A1 |
20030032188 | Bailey et al. | Feb 2003 | A1 |
20030093217 | Petzold et al. | May 2003 | A1 |
20030136177 | Hendren et al. | Jul 2003 | A1 |
20040014564 | Jager et al. | Jan 2004 | A1 |
20040034460 | Folkerts et al. | Feb 2004 | A1 |
20040143378 | Vogelsang | Jul 2004 | A1 |
20060116811 | Willard | Jun 2006 | A1 |
20060155439 | Slawinski et al. | Jul 2006 | A1 |
20130066512 | Willard et al. | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
0671617 | Sep 1995 | EP |
0816820 | Jan 1998 | EP |
1069422 | Jan 2001 | EP |
2209854 | May 1989 | GB |
2327511 | Jan 1999 | GB |
2395565 | May 2004 | GB |
WO9906681 | Feb 1999 | WO |
WO0155690 | Aug 2001 | WO |
WO03058188 | Jul 2003 | WO |
Entry |
---|
European Patent Office Search Report for Application No. GB0425964.4. |
European Patent Office Search Report for Application No. GB0510355.1. |
Number | Date | Country | |
---|---|---|---|
20120173121 A1 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11285227 | Nov 2005 | US |
Child | 13422641 | US |