Vehicular exterior electrically variable reflectance mirror reflective element assembly

Information

  • Patent Grant
  • 10661716
  • Patent Number
    10,661,716
  • Date Filed
    Monday, July 29, 2019
    4 years ago
  • Date Issued
    Tuesday, May 26, 2020
    3 years ago
Abstract
An electrically variable reflectance mirror reflective element includes front and rear glass substrates with an electrochromic medium disposed therebetween and bounded by a perimeter seal. A perimeter layer is disposed at a second surface of the front substrate proximate a perimeter edge of the front substrate. The perimeter layer conceals the perimeter seal from view by a driver of a vehicle. No part of the rear substrate extends beyond any part of the front substrate. At least a portion of the mirror reflector disposed at at least a portion of the third surface of the rear substrate extends from under the perimeter seal outward towards at least a portion of the perimeter edge of the rear substrate. The mirror reflector includes a stack of thin films that includes at least a first metal thin film and a second metal thin film.
Description
FIELD OF THE INVENTION

The present invention relates to an electro-optic reflective element assembly for an electro-optic mirror assembly, such as an electrochromic interior or exterior rearview mirror assembly for a vehicle, and, more particularly, to an electro-optic rearview mirror assembly which includes an electro-optic reflective element assembly with a reduced bezel.


BACKGROUND OF THE INVENTION

Variable reflectivity mirror assemblies, such as electro-optic mirror assemblies, such as electrochromic mirror assemblies, are known and are widely implemented in vehicles. The reflective element assembly of such a mirror assembly often includes two substrates or glass elements with an electrochromic medium sandwiched therebetween. The back or outer surface of the second substrate (commonly referred to as the fourth surface of the reflective element assembly) may include a silvered coating to provide reflectance of an image. Each substrate is coated with at least one conductive or semi-conductive layer, which conduct electricity to the electrochromic medium from an electrical connector clipped or otherwise fastened or secured at least partially along an edge of the substrate and layer. An example of a known electrochromic reflective element assembly is shown in FIGS. 1 and 2. The reflective element includes an electrochromic (EC) medium layer 1 sandwiched between conductive layers 2 and a seal 7 at a front glass substrate 3 and a rear glass substrate 4 (and may include other conductive or semi-conductive layers). The substrates are offset so that an upper edge of one substrate and its conductive coating extends above the upper edge of the other substrate, while the lower edge of the other substrate and its conductive coating extends below the lower edge of the other substrate. This offset allows for electrical connection of electrical connectors or busbars 5 to the conductive coatings of each substrate, as shown in FIG. 2. The busbars or electrical connectors or clips extend substantially along the entire upper or lower edge of the respective substrate and coating. However, in order to manufacture the mirror element to obtain the desired offset, one or more offset or stepped spacers or pins 6 (shown in phantom in FIG. 2) must be placed along one of the upper and lower edges of the substrates to properly space the substrates from one another and to provide the offset along the edges when the substrates are placed in an assembly fixture.


As shown in FIG. 3, another conventional offset mirror element includes a coating on one of the substrates which provides a tab out portion 7 for connection of an electrical clip thereto. The substrates are offset in a similar manner as shown in the embodiment of FIGS. 1 and 2 to provide clearance at the tab out portion for the electrical connection. Such an embodiment also requires a stepped spacer or pin to provide the appropriate spacing between the substrates and to set the offset between the edges at the desired or appropriate amount.


Typically, it is desirable to minimize the size of the bezel or overlap of the casing/bezel (or even to eliminate the bezel) which extends around the reflective element of the mirror assembly. The bezel is typically required to extend over the front or first surface of the electrochromic cell or reflective element assembly to cover or hide or conceal, for example, the seal around the electrochromic medium of the electrochromic cell (that typically spaces the front substrate from the rear substrate, such as described in U.S. Pat. No. 6,002,511, which is hereby incorporated herein by reference), in order to conceal or hide the seal (and/or the electrical spring conductors, busbar conductors, clips, connectors and/or the like) which may otherwise be visible, particularly when the electrochromic medium is darkened. An exemplary and effective means for hiding the seal and, thus, minimizing the size of the bezel is disclosed in U.S. Pat. No. 5,066,112, which is hereby incorporated herein by reference. Also, and such as described in U.S. Pat. No. 6,449,082, which is hereby incorporated herein by reference, there is typically an offset to allow the clip or connector to connect to the cell or substrate that may influence the size of the overlap or bezel.


In cells or reflective element assemblies that may provide a small bezel or no bezel, it is often difficult to make electrical contact to the semi-conductive and/or conductive layers of the substrates with a restricted overhang between the substrates. A variety of methods have been used to provide electrical power to the semi-conductive and/or conductive layers of electrochromic cells, such as described in U.S. Pat. Nos. 5,066,112; 6,356,376 and 6,512,264, which are hereby incorporated herein by reference.


Therefore, there is a need in the art for an electrochromic mirror element which overcomes the above disadvantages and shortcomings of the prior art.


SUMMARY OF THE INVENTION

The present invention provides an electro-optic or electrochromic interior or exterior rearview mirror assembly which includes an electro-optic or electrochromic cell or reflective element assembly having a pair of substrates and an electro-optic or electrochromic medium disposed between the substrates. The reflective element assembly may include electrical connectors for providing electrical current to the conductive and/or semi-conductive layers or coatings at the surfaces of the substrates opposing the electro-optic medium. The electrical connectors may connect to the substrates at or behind an overhang region of the front substrate such that the connectors are substantially not viewable through the front substrate. The electrical connectors may be electrically isolated from one another and may connect to one of the substrates and may provide electrical current to the respective substrates. One edge or side of each of the substrates of the reflective element assembly may be in flush alignment, while allowing for electrical connection to one of the substrates along the generally flush edges.


According to an aspect of the present invention, a reflective element assembly for a mirror system of a vehicle includes front and rear substrates with an electro-optic medium sandwiched therebetween, a non-conductive seal disposed around a perimeter of the electro-optic medium and between the front and rear substrates, and first and second electrical connectors. The rear substrate has a smaller dimension across a dimension of the rear substrate than a corresponding dimension across the front substrate such that the front substrate defines a first overhang region at a first edge of the front substrate that extends beyond a corresponding first edge of the rear substrate. The front substrate has a first surface and a second surface opposite the first surface. The second surface faces the electro-optic medium. The front substrate has at least one first conductive layer disposed on the second surface. The rear substrate has a third surface and a fourth surface opposite the third surface. The third surface faces the electro-optic medium. The rear substrate has at least one second conductive layer disposed on the third surface. The second conductive layer includes a tab portion that extends at least to a second edge of the rear substrate. The rear substrate includes a non-conductive raceway proximate the second edge and devoid of the second conductive layer except at the tab portion. The non-conductive seal encompasses at least a portion of the second conductive layer and at least a portion of the raceway. The first electrical connector is in electrical connection with the first conductive layer and the second electrical connector is in electrical connection with the tab portion of the second conductive layer. The first electrical connector connects to the first conductive layer at the first overhang region so as to be behind the front substrate and substantially not viewable through the first surface of the front substrate.


The front substrate may include a hiding or concealing layer at the perimeter portions to substantially hide the connectors and seal from view by the driver of the vehicle.


According to another aspect of the present invention, a reflective element assembly for a mirror system for a vehicle includes front and rear substrates with an electro-optic medium sandwiched therebetween, a non-conductive seal disposed around a perimeter of the electro-optic medium and between the front and rear substrates, and first and second electrical connectors. The rear substrate has a smaller dimension across a dimension of the rear substrate than a corresponding dimension across the front substrate such that the front substrate defines a first overhang region at a first edge of the front substrate that extends beyond a corresponding first edge of the rear substrate. The front substrate has a first surface and a second surface opposite the first surface. The second surface faces the electro-optic medium. The front substrate has at least one first conductive layer disposed on the second surface. The rear substrate has a third surface and a fourth surface opposite the third surface. The third surface faces the electro-optic medium. The third surface of the rear substrate has a non-conductive portion proximate the first edge and devoid of the second conductive layer. The non-conductive seal encompasses at least a portion of the non-conductive portion of the rear substrate. The first electrical connector is in electrical connection with the first conductive layer and the second electrical connector is in electrical connection with the second conductive layer. The first electrical connector extends from the fourth surface of the second substrate and over at least a portion of the first edge of the second substrate and toward the first overhang region of the front substrate. The first electrical connector connects to the first conductive surface at the first overhang region so as to be behind the front substrate and substantially not viewable through the first surface of the front substrate. The non-conductive seal and the non-conductive portion substantially electrically isolate the first electrical connector from the second conductive layer.


According to another aspect of the present invention, an electro-optic or electrochromic mirror element includes a pair of substrates and an electro-optic or electrochromic medium sandwiched therebetween. Each of the pair of substrates includes at least one conductive or semi-conductive layer disposed thereon. The pair of substrates are positioned relative to one another such that the upper and/or lower edges of the substrates are substantially flush or aligned with one another. One of the substrates includes a relief area along the aligned edge to provide clearance for electrical connection to the conductive layer or layers of the other substrate along the aligned edge.


According to another aspect of the present invention, an electro-optic or electrochromic mirror assembly for a vehicle comprises an electro-optic or electrochromic reflective element assembly comprising a first substrate having first and second surfaces and a second substrate having third and fourth surfaces. The first and second substrates are arranged so that the second surface opposes the third surface with an electro-optic or electrochromic medium disposed therebetween. The first substrate has at least one at least partially conductive coating or layer on the second surface and the second substrate has at least one at least partially conductive coating or layer on the third surface. The first and second substrates are positioned relative to one another such that at least a portion of a first edge of the first substrate is generally flush or aligned with a corresponding edge of the second substrate. The first edge of the first substrate has a relief area formed therealong, wherein the relief area provides clearance for electrical connection to the corresponding edge of the second substrate.


In one form, the conductive coating of the second substrate includes a tab out portion at the corresponding edge. The relief area of the first substrate provides clearance for electrical connection to the tab out portion of the at least one conductive coating or layer. The first substrate may be the front substrate and the second substrate may be the rear substrate, with the aligned or generally flush edges being along the upper edges of the substrates.


Therefore, the present invention provides an electro-optic or electrochromic cell or mirror reflective element assembly that provides an overhang region at at least one edge of the front substrate for electrical connection to the conductive layer at the rear surface of the substrate, such that the electrical connection is not viewable through the front surface of the front substrate. The present invention thus may provide a reflective element assembly that is suitable for use in a bezelless mirror assembly, where the front surface of the reflective element is substantially entirely viewable by a driver of the vehicle. Optionally, a reflective element assembly of the present invention may provide a flush alignment of an upper and/or lower edge of a pair of substrates, while providing clearance for electrical connection to the upper and/or lower edges of one of the substrates and the respective conductive coating. The present invention thus provides enhanced assembly processes for the mirror element, since the substrates may be aligned with one another within an assembly fixture and do not require stepped pins or spacers positioned along one edge to provide sufficient offset or staggering between the substrates to provide clearance for electrical connection to one of the substrates along the aligned or flush edge thereof.


These and other objects, advantages, purposes, and features of the present invention will become apparent from the study of the following description in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a plan view of a conventional electrochromic mirror element, showing a typical offset orientation of the two substrates;



FIG. 2 is a sectional view of a conventional electrochromic mirror element, showing a conventional spacer for use in manufacturing of the conventional mirror element;



FIG. 3 is a plan view of another conventional electrochromic mirror element similar to FIG. 1, with a tab out portion for electrical connection with a conductive or semi-conductive layer on one of the substrates;



FIG. 4 is a plan view of an electro-optic reflective element assembly of the present invention;



FIG. 5 is a sectional view of the reflective element assembly taken along the line V-V in FIG. 4, showing the clearance provided for electrical connection to each substrate;



FIG. 6 is a sectional view of the reflective element assembly taken along the line VI-VI in FIG. 4, showing the flush alignment of the upper edge of the substrates;



FIG. 7 is a sectional view of a generally flush electro-optic reflective element assembly in accordance with the present invention, with electrically conducting pins providing the electrical connection to the appropriate semi-conductive layer of the substrates of the reflective element assembly;



FIG. 8 is a sectional view of another electro-optic reflective element assembly in accordance with the present invention;



FIG. 9 is a sectional view of another flush electro-optic reflective element assembly in accordance with the present invention, with an extruded wraparound connector for providing electrical contact to the semi-conductive layers of the substrates of the reflective element assembly;



FIG. 10 is a sectional view of another electro-optic reflective element assembly similar to the reflective element assembly of FIG. 9;



FIG. 11 is a plan view of a generally flush electro-optic reflective element assembly for an exterior rearview mirror assembly in accordance with the present invention, with the substrates cut in generally opposite wave patterns to facilitate electrical connection to the respective semi-conductive layers of the substrates;



FIG. 12 is an enlarged plan view of a portion of the reflective element assembly of FIG. 11, with an electrical connector connecting to the exposed portion or wave peaks of an edge of one of the substrates of the reflective element assembly;



FIG. 13 is a plan view of another one sided flush electro-optic reflective element assembly in accordance with the present invention;



FIG. 14 is a plan view of the rear substrate of the reflective element assembly of FIG. 13, with a semi-conductive layer or coating on the third surface of the rear substrate;



FIG. 15 is a plan view of the rear substrate of FIG. 14, with a seal applied or disposed around the perimeter surface or region of the rear substrate;



FIG. 16 is a perspective view of a front substrate and a rear substrate of an electro-optic reflective element assembly in accordance with the present invention;



FIG. 17 is a sectional view of an electro-optic reflective element assembly having the substrates of FIG. 16;



FIG. 18 is an enlarged sectional view of an edge portion of the rear substrate of the electro-optic reflective element assembly of FIG. 17, showing an electrical connector extending from the rear surface of the rear substrate;



FIGS. 19 and 19A are enlarged sectional views of an edge portion of the electro-optic reflective element assembly of FIG. 17, showing an electrical connector for providing electrical connection to the rear surface of the front substrate;



FIG. 20 is another enlarged sectional view of a front substrate having a border perimeter coating in accordance with the present invention;



FIG. 21 is a plan view of the rear surface of another electro-optic reflective element assembly in accordance with the present invention, with the electrical connections provided at the front substrate;



FIG. 22 is a plan view of the rear surface of another electro-optic reflective element assembly similar to FIG. 21, but with the electrical connections provided at opposite corners of the reflective element assembly;



FIG. 23 is an enlarged plan view of one of the corners of the reflective element assembly of FIG. 22;



FIG. 24 is a plan view of another electro-optic reflective element assembly similar to the reflective element assembly of FIG. 21;



FIG. 25A is a plan view of the third surface of a rear substrate for an exterior electro-optic reflective element assembly in accordance with the present invention;



FIG. 25B is a plan view of the second surface of a front substrate for the exterior electro-optic reflective element assembly;



FIG. 26 is a sectional view of another electro-optic reflective element assembly in accordance with the present invention, with the electrical connections provided at the front substrate;



FIG. 27 is a plan view of the electro-optic reflective element assembly of FIG. 26;



FIG. 28 is a sectional view of another electro-optic reflective element assembly in accordance with the present invention;



FIG. 29 is a sectional view of another electro-optic reflective element assembly in accordance with the present invention;



FIG. 30 is a sectional view of another electro-optic reflective element assembly in accordance with the present invention;



FIG. 31 is a sectional view of another electro-optic reflective element assembly in accordance with the present invention;



FIG. 32 is a sectional view of another electro-optic reflective element assembly in accordance with the present invention;



FIG. 33A is a sectional view of another electro-optic reflective element assembly in accordance with the present invention;



FIGS. 33B and 33C are plan views of the reflective element assembly of FIG. 33A;



FIG. 34 is a sectional view of another electro-optic reflective element assembly in accordance with the present invention;



FIG. 35 is a sectional view of another electro-optic reflective element assembly in accordance with the present invention;



FIG. 36 is a sectional view of another electro-optic reflective element assembly in accordance with the present invention;



FIG. 37 is a sectional view of another electro-optic reflective element assembly in accordance with the present invention;



FIG. 38 is a sectional view of another electro-optic reflective element assembly in accordance with the present invention;



FIG. 39 is a plan view of another electro-optic reflective element assembly in accordance with the present invention;



FIG. 40 is a front elevation of a combined ground illumination/turn-signal indicator system in accordance with the present invention;



FIG. 41 is a top plan view of the ground illumination/turn-signal indicator system of FIG. 40, with a security light assembly;



FIG. 42 is a view looking forwardly in the direction of travel of the vehicle of a lighted exterior mirror system in accordance with the present invention;



FIG. 43 is a side elevation and partial sectional view of a lighted interior mirror system in accordance with the present invention;



FIGS. 44 and 45 are side elevation and partial sectional views of alternate embodiments of lighted interior mirror systems in accordance with the present invention;



FIG. 46 is a view looking forwardly in the direction of travel of the vehicle of an exterior mirror system having a turn signal in accordance with the present invention;



FIG. 47 is a top plan view of a portion of the mirror system of FIG. 46;



FIG. 48 is a schematic of an improved exterior mirror lighting configuration of the present invention;



FIG. 49 depicts a cross-sectional view of another electrochromic mirror construction according to the present invention, wherein, in this construction, a secondary weather barrier 1112 has been applied to the joint at which sealing means 1105 joins substrates 1102, 1103;



FIGS. 50A, 50B and 50C depict the orientation of the substrates in different constructions of the electrochromic mirrors and electrochromic devices of the present invention, with FIG. 50A depicting a perpendicular displacement of the first substrate and the second substrate, FIG. 50B depicting a lateral displacement and a perpendicular displacement of the first substrate and the second substrate, and FIG. 50C depicting an arrangement of the first substrate and the second substrate, wherein the dimensions of the length and width of the first substrate are slightly greater than those of the second substrate, wherein, in this arrangement, the peripheral edge of the first substrate extends beyond the peripheral edge of the second substrate;



FIGS. 51A and 51B depict cross-sectional views of electrochromic devices, which illustrate different seal constructions that may be employed in accordance with the present invention; and



FIG. 52 depicts a perspective view of a multi-radius electrochromic mirror according to the present invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawings and the illustrative embodiments depicted therein, an electro-optic or electrochromic cell or mirror element assembly or reflective element assembly 10 for an interior rearview mirror assembly of a vehicle (not shown) includes first and second glass substrates 12, 14 and an electro-optic or electrochromic medium 16 disposed or sandwiched therebetween (FIGS. 4-6). Electrochromic medium 16 and at least one metallic and/or non-metallic conductive or semi-conductive layers 18, 20 are disposed on the inner surfaces 12a, 14a of substrates 12, 14 and between the electrochromic medium 16 and the respective substrate 12, 14. At least one of the edges or sides 12b, 14b of the substrates 12, 14 are generally aligned with or flush with one another (as seen in FIGS. 4 and 6) at least along a portion of the edges. The reflective element or mirror element of the present invention is equally suitable for interior or exterior rearview mirror assemblies for vehicles or for other mirror assemblies, without affecting the scope of the present invention.


Electrochromic mirror element assembly 10 comprises a first or front substantially transparent substrate 12 and a second or rear substantially transparent substrate 14 (which may be glass substrates or the like). The substrates are generally elongated along a longitudinal axis and define upper and lower edges and generally curved opposite side or end edges. Although shown and described as a reflective element assembly for an interior rearview mirror assembly or system, the reflective element assembly may be formed to be suitable for other mirror assemblies or systems, such as for an exterior rearview mirror assembly of a vehicle or the like.


The first substrate 12 of reflective element assembly 10 includes one or more electrically conductive or semi-conductive layers 18 (shown in FIGS. 5 and 6 and a single layer), such as a tin oxide or indium tin oxide (ITO) or any other transparent electrically semi-conductive layer or coating or the like (such as indium cerium oxide (ICO), indium tungsten oxide (IWO), indium oxide (IO) layers or the like, or a zinc oxide layer or coating, or a zinc oxide coating or the like doped with aluminum or other metallic materials, such as silver or gold or the like, or other oxides doped with a suitable metallic material or the like), deposited on an inward surface 12a of first substrate 12 (i.e., the second surface 12a of the mirror element assembly 10). As shown in FIGS. 5 and 6, coating 18 may extend substantially up to and along a lower edge 12c of substrate 12 and may be electrically connected to a clip or busbar 22 extending along edge 12c to provide electricity to coating or layer 18.


Rear or second substrate 14 includes at least one layer or coating of metallic conductive (such as a layer of silver, aluminum or an alloy of silver or an alloy of aluminum or other metal or metal alloy) or non-metallic semi-conductive material (such as an ITO layer or the like) 20 disposed on a forward or third surface 14a of rear substrate 14 (shown in FIGS. 5 and 6 as three layers). The layers or coatings may be selected to provide sufficient reflectance of the mirror element and may provide a desired transmissivity if the mirror element includes a display at the fourth surface of the rear substrate, as discussed below. Optionally, the layers or coatings may define reflective and conductive layers or stacks of the types described in PCT Application No. PCT/US03/29776, filed Sep. 19, 2003, published Apr. 1, 2004 as International Publication No. WO 2004/026633, which is hereby incorporated herein by reference. Such a stack of layers comprises a metallic layer sandwiched between two semi-conductive layers (both of which preferably are the same material, but either of which can be different from the other). As shown in FIGS. 4 and 5, at least one layer 20a is deposited directly on surface 14a of substrate 14 and includes a tab out portion 21 extending toward and substantially up to edge 14b at a generally central region 14d thereof. An electrical clip 24 is connected to tab out portion 21 to provide electricity to the layer or layers 20 on substrate 14. The outer perimeter portion of rear substrate 14 is masked during the coating process such that the coatings or layers 20 do not cover surface 14a at the outer perimeter portions except at tab out portion 21.


As can be seen in FIGS. 5 and 6, the first and second substrates 12, 14 are positioned in spaced-apart relationship with one another with an electro-optic or electrochromic medium 16 disposed between semi-conductive layer or layers 18 and semi-conductive layer or layers 20. A non-conductive seal 19 is positioned around the perimeter of the electrochromic medium 16 and around the perimeter of the semi-conductive layer 20 except at the tab out portion 21. The electrochromic medium 16 changes color or darkens in response to electricity or voltage applied to or through the semi-conductive layers 18 and 20 at either side of the electrochromic medium. The electrochromic medium 16 disposed between the front and rear substrates 12, 14 may be a solid polymer matrix electrochromic medium, such as is disclosed in U.S. Pat. No. 6,154,306, which is hereby incorporated by reference herein, or other suitable medium, such as a liquid or solid medium or thin film or the like, such as the types disclosed in U.S. patent application Ser. No. 09/793,002, filed Feb. 26, 2001, now U.S. Pat. No. 6,690,268, and/or in U.S. Pat. Nos. 5,668,663 and 5,724,187, the entire disclosures of which are hereby incorporated by reference herein, without affecting the scope of the present invention. The electrochromic mirror element assembly may utilize the principles disclosed in commonly assigned U.S. Pat. Nos. 5,140,455; 5,151,816; 6,178,034; 6,154,306; 6,002,544; 5,567,360; 5,525,264; 5,610,756; 5,406,414; 5,253,109; 5,076,673; 5,073,012; 5,117,346; 5,724,187; 5,668,663; 5,910,854; 5,142,407 or 4,712,879, which are hereby incorporated herein by reference, or as disclosed in the following publications: N. R. Lynam, “Electrochromic Automotive Day/Night Mirrors”, SAE Technical Paper Series 870636 (1987); N. R. Lynam, “Smart Windows for Automobiles”, SAE Technical Paper Series 900419 (1990); N. R. Lynam and A. Agrawal, “Automotive Applications of Chromogenic Materials”, Large Area Chromogenics: Materials and Devices for Transmittance Control, C. M. Lampert and C. G. Granquist, EDS., Optical Engineering Press, Wash. (1990), which are hereby incorporated by reference herein, and in U.S. patent application Ser. No. 09/793,002, filed Feb. 26, 2001, now U.S. Pat. No. 6,690,268, which is hereby incorporated herein by reference. Mirror element assembly 10 may also include a seal (not shown) positioned around the outer portions of the layers 18, 20 and the electrochromic medium 16 to seal the layers and avoid corrosion of the metallic layer or layers.


During operation, a voltage may be applied to mirror element assembly 10 via busbars or clips or electrical connectors 22, 24 positioned around and engaging at least a portion of an outer edge of the semi-conductive layers 18, 20 (FIG. 5). The connectors may be connected to an appropriate power source or circuitry or control or the like, such as to a circuit board or the like at the rear of the electrochromic cell or reflective element assembly. Optionally, the circuitry may be applied to the rear surface of the rear substrate utilizing the principles described in U.S. provisional application, Ser. No. 60/508,086, filed Oct. 2, 2003, which is hereby incorporated herein by reference.


The voltage applied by connectors 22, 24 is bled from semi-conductive layers 18, 20 to the electrochromic medium 16. Preferably, the layers provide for reduced resistance through the layers, which provides for faster, more uniform coloration of the electrochromic medium 16, since the electrons applied via busbars 24 at semi-conductive layer 20a may bleed through the other semi-conductive layers 20 faster due to the enhanced conductivity in the conductive layers 20. Preferably, the layers 20 provide a sheet resistance of less than approximately 10 ohms per square, more preferably less than approximately 5 ohms per square, and most preferably less than approximately 2 ohms per square. Desirably, and particularly for larger area mirrors, the sheet resistance is less than approximately 1 ohm per square, such as in the range of approximately 0.1 to 0.7 ohms per square.


In order to provide enhanced performance of the electrochromic mirror element, each of the layers of the combination or stack of layers may have substantial conductivity and none of the layers significantly retard electron/electrical conductivity from one layer to the other throughout the stack, and, thus, do not impede the flow of electrons into the electrochromic (EC) medium. In this regard, it is desirable that one or more of the metallic layers comprises a metallic material (which is preferably a highly reflective material, such as silver or silver alloys or the like) having a specific resistivity of preferably less than approximately 5×10−5 ohm·cm, more preferably less than approximately 1×10−5 ohm·cm, and most preferably less than approximately 5×10−6 ohm·cm. Preferably, such a highly conductive metallic layer or layers is/are sandwiched between two non-metallic, partially conductive layers, preferably formed of a non-metallic material (such as a semi-conducting oxide, such as indium oxide, tungsten oxide, tin oxide, doped tin oxide or the like) having a specific resistivity of less than approximately 1×10−2 ohm·cm, more preferably less than approximately 1×10−3 ohm·cm, and most preferably less than approximately 5×10−4 ohm·cm, such as disclosed in PCT application No. PCT/US03/29776, filed Sep. 19, 2003, published Apr. 1, 2004 as International Publication No. WO 2004/026633, which is hereby incorporated herein by reference.


In the illustrated embodiment of FIGS. 4-6, semi-conductive layers 18, 20a are deposited on the inward surfaces 12a, 14a of the respective substrates 12, 14. The semi-conductive layer 18, 20a may be deposited on the glass or substrate 12, 14 via any suitable process. The particular thickness of the conductive layers may vary depending on the particular application of mirror element 10. Optionally, the semi-conductive layer 20a on rear substrate 14 need not be transparent and may comprise a chromium layer or the like. However, the semi-conductive layer 20a may comprise a generally transparent semi-conductive layer of coating, such as a tin oxide layer, an indium tin oxide (ITO) layer or the like, without affecting the scope of the present invention.


The transparent semi-conductive non-metallic layers on rear substrate 14 preferably comprise non-metallic transparent electrically conductive or semi-conductive materials, such as tin oxide, indium oxide, indium cerium oxide, indium tungsten oxide, nickel oxide, tungsten oxide, indium tin oxide, half-wave indium tin oxide, full wave indium tin oxide, doped tin oxides, such as antimony-doped tin oxide and fluorine-doped tin oxide, doped zinc oxides, such as antimony-doped zinc oxide and aluminum-doped zinc oxide and/or the like.


The metallic layer or layers on rear substrate 14 comprise a thin film or layer of metal, such as silver, aluminum, or alloys thereof, or the like, with a selected thickness to provide sufficient reflectivity and/or transmissivity, depending on the application of the mirror element and whether the mirror element includes a display, such as a display-on-demand or display-on-need type of display or the like, as discussed below. Preferably, the selected metallic material comprises silver, but may otherwise comprise a material selected from aluminum, silver alloys, aluminum alloys (such as 6061 or 1100 aluminum alloys or the like), manganese, chromium or rhodium, or any other metallic material which is sufficiently reflective and/or transmissive at a selected thickness, without affecting the scope of the present invention.


In a preferred embodiment, the semi-conductive layers 18, 20a comprise indium tin oxide (ITO) and are deposited onto the surfaces 12a, 14a of the respective substrate 12, 14 via a hot deposition process, which may involve, for example, sputter deposition onto a heated substrate, with the heated substrate often being heated to a temperature of greater than about 200° C., sometimes greater than 300° C., as is known in the art. The combination of the semi-conductive layers 18, 20a on the substrates 12, 14 defines a conductive substrate which may be used for various embodiments of a mirror element in accordance with the present invention.


The other semi-conductive layers and metallic layers of the layers 20 on rear substrate 14 (or other layers on front substrate 12) may be deposited onto semi-conductive layer 20a via a cold deposition process, such as sputter coating or the like, onto an unheated substrate. Preferably, each of the layers 20 is deposited on second substrate 14 by a sputter deposition process. More particularly, the substrate 14 (including the semi-conductive layer 20a already deposited thereon) may be positioned in one or more sputter deposition chambers with either planar or rotary magnetron targets, and with deposition of the layers being achieved by either reactive deposition of an oxide coating by sputtering from a metal target (or from a conductive, pressed oxide target) in an oxygen-rich atmosphere, or by DC sputtering from an oxide target, such as an indium oxide (IO), indium tungsten oxide (IWO), indium tin oxide (ITO) or indium cerium oxide (ICO) target or the like, such as described in PCT application No. PCT/US03/29776, filed Sep. 19, 2003, published Apr. 1, 2004 as International Publication No. WO 2004/026633, which is hereby incorporated herein by reference. However, other processes for applying or depositing layers of conductive material or layers and metallic material or layers may be implemented, without affecting the scope of the present invention.


The rear substrate 14 is masked substantially around the outer region of surface 14a during the deposition process, such that the semi-conductive and/or conductive layer or layers 20 is/are not deposited in the masked outer region. However, substrate 14 is not masked over the entire outer edge or region of substrate 14, in order to allow deposition of the layer or layers at a particular un-masked area, such that a tab-out portion or area 21 is formed in the layer or layers 20. The tab out area 21 facilitates electrical connection of connector 24 with the conductive layers 20.


As shown in FIG. 4, the upper edge 12b of first or front substrate 12 is formed to have a flattened area or relief area 12d along a generally central region thereof. The relief area 12d may be formed by cutting the glass substrate along the edge 12b. The relief area 12d allows the upper edge 12b along the outer or side regions 12e to generally align with the outer or side regions 14e of upper edge 14b of rear substrate 14, while providing clearance at the center region 14d of rear substrate 14 for the electrical connector or clip 24 to clip onto rear substrate 14 and coatings or layers 20. The relief area 12d also forms a pocket that helps to contain the silicone material 23 (such as Shin-Etsu 3421 or the like) which protects the tab out portion 21. As can be seen in FIG. 4, front substrate 12 is slightly larger than rear substrate 14, such that when the outer or side regions 12e, 14e of upper edges 12b, 14b are aligned, the lower edge 12c of front substrate 12 extends downward below the lower edge 14c of rear substrate 14, to provide for connection of the busbar 22 along lower edge 12c of front substrate 12.


Because the relief area 12d along upper edge 12b of front substrate 12 provides clearance for electrical connection to the other substrate 14, while also allowing for substantially flush alignment of the upper edges 12b, 14b of the substrates 12, 14, the present invention provides for enhanced assembly processes for assembling the mirror element and obviates the need for a stepped or offset spacer or pin. During assembly of the mirror element assembly 10, the substrates 12, 14 may be placed in a fixture with the outer regions 12e, 14e of the upper edges 12b, 14b of both substrates abutting a wall of the fixture. The wall of the fixture thus aligns the upper edges of the substrates, and a stepped pin or the like is not necessary to provide the appropriate offset or clearance for the electrical connections to each substrate. This eases the assembly process, since stepped pins do not have to be carefully placed at the appropriate places along the edges of the substrates to achieve the desired offset or clearance. Uniform pins may be placed between the substrates to provide the appropriate spacing or separation gap between the substrates during assembly.


Although shown and described as being generally aligned along the upper edges, the lower edges may alternately be aligned in a similar manner, without affecting the scope of the present invention. It is further envisioned that a similar relief area may be formed at both the upper edge of one substrate and the lower edge of the other substrate, such that both the upper and lower edges may be generally flush or aligned with one another, while providing clearance for electrical connection to both substrates and their respective conductive or semi-conductive layer or layers.


Optionally, the first (outermost) surface 12f of front substrate 12 may be coated with an anti-wetting property, such as via a hydrophilic coating (or stack of coatings), such as is disclosed in U.S. Pat. Nos. 6,193,378; 5,854,708; 6,071,606 and 6,013,372, the entire disclosures of which are hereby incorporated by reference herein. Also, the first (outermost) surface 12f of front substrate 12 may be optionally coated with an anti-wetting property, such as via a hydrophobic coating (or stack of coatings), such as is disclosed in U.S. Pat. No. 5,724,187, the entire disclosure of which is hereby incorporated by reference herein. Such a hydrophobic property on the first/outermost surface of the electrochromic mirror reflective elements (and on the first/outermost surface of a non-electrochromic mirror, non-electro-optical, conventional reflective elements) can be achieved by a variety of means such as by use of organic and inorganic coatings utilizing a silicone moiety (for example, a urethane incorporating silicone moieties) or by utilizing diamond-like carbon coatings. For example, long-term stable water-repellent and oil-repellent ultra-hydrophobic coatings, such as described in PCT International Publication Nos. WO 0192179 and WO 0162682, the entire disclosures of which are hereby incorporated by reference herein, can be disposed on the first (outermost) surface 12f of front substrate 12. Such ultra-hydrophobic layers comprise a nano structured surface covered with a hydrophobic agent which is supplied by an underlying replenishment layer (such as is described in Classen et al., “Towards a True “Non-Clean” Property: Highly Durable Ultra-Hydrophobic Coating for Optical Applications”, ECC 2002 “Smart Coatings” Proceedings, 2002, 181-190, the entire disclosure of which is hereby incorporated by reference herein).


Referring now to FIG. 7, an electro-optic or electrochromic cell or reflective element assembly 110 for a rearview mirror assembly of a vehicle includes a first or front substrate 112 and a second or rear substrate 114 (which typically are made of glass, but may comprise a polymeric material or the like), with an electrochromic medium 116 disposed or sandwiched therebetween. The front substrate 112 includes a non-metallic, transparent semi-conductive layer 118 (such as indium tin oxide (ITO), doped tin oxide or the like, such as described in U.S. Pat. No. 6,002,511, which is hereby incorporated herein by reference) disposed on the rear or second surface 112a, while the second or rear substrate 114 includes one or more metallic and/or non-metallic conductive or semi-conductive layers 120 (such as silver, silver alloy or other metal or metal alloy or the like) disposed on the front or inwardly facing or third surface 114a of rear substrate 114. The electrochromic medium 116 is sandwiched between the semi-conductive or conductive layers 118, 120, and is contained therein via a seal 119 positioned around the perimeter of the electrochromic medium 116. The conductive or semi-conductive layers 118, 120, electrochromic medium 116 and seal 119 may be substantially similar to the layers, electrochromic medium and seal of mirror assembly 10, discussed above, such that a detailed description of these items need not be repeated herein.


As can be seen with reference to FIG. 7, reflective element assembly 110 may comprise a generally flush cell or reflective element assembly, with at least some of the perimeter edges 112b, 114b of the substrates 112, 114 being generally flush or aligned with one another. Electrical current may be applied to each of the semi-conductive or conductive layers 118, 120 via a respective pin or connecting member 122, 124 that contacts the respective semi-conductive or conductive layer and extends rearwardly out the back or fourth surface 114c of the rear substrate 114 for electrical connection to an appropriate power source or circuitry or control or the like at the rear of the electrochromic cell or reflective element assembly.


The first pin or connecting member 122 may be attached to the first or front substrate 112, such as by counter sinking a head 122a of pin 122 into the rear surface 112a of front substrate 112, such that a body or shaft portion 122b of pin 122 extends rearward therefrom. The pin 122 thus may contact (or may be contacted by) the semi-conductive layer or coating 118 on the second surface 112a of front substrate 112 to make the electrical connection thereto. The pin may be countersunk in the rear surface 112a of front substrate 112 prior to depositing or applying the semi-conductive layer 118 to the rear surface 112a of the substrate 112. The substrate and pin assembly may then be placed in a vacuum deposition chamber/apparatus, such as a sputter deposition chamber or the like, to have the semi-conductive coating 118 deposited on both the surface 112a of substrate 112 and on at least a portion of the pin 122 itself. Such an approach provides an effective electrical connection between the pin and the semi-conductive coating because the coating is also deposited on and contacts the electrical connector or pin.


As can be seen in FIG. 7, the pin 122 may be countersunk within the rear surface 112a of the front substrate 112 such that the head 122a of the pin 122 is within the glass substrate and generally flush with the surface 112 of the substrate. A metallic layer or coating or busbar 126 may be applied around the perimeter region or surface of the substrate 112 to enhance the electrical connection between the pin and the outer perimeter portion of the semi-conductive layer 118. The metallic layer or coating 126 may comprise an opaque metallic layer to conceal or hide the seal 119 and electrical connectors and the like, so as to reduce the size of the bezel overhang which may otherwise be needed to provide the desired appearance of the perimeter edges of the mirror assembly. Optionally, the perimeter coating 126 may comprise a chromium oxide (often referred to as “black chrome”) or other metal or metal oxide or metal compound that is dark, such as black, and thus effectively hides or conceals the seal, connectors and the like, thereby obviating the need for a bezel around the perimeter of the reflective element assembly. The shaft portion 122b of pin 122 may then extend through the seal and through a hole or aperture in the rear substrate 114. As can be seen in FIG. 7, the conductive coating 120 may not extend to the area where the pin 122 passes through rear substrate 114, such that a non-conductive glass surface or area or region 115 may be defined at the perimeter region of the surface 114a of rear substrate 114. The non-conductive seal 119 may partially or substantially fill or encompass the non-conductive area 115, such that the non-conductive area 115 and non-conductive seal 119 electrically isolate or insulate the pin 122 from conductive layer 120 of rear substrate 114.


Similar to pin 122, pin 124 may be countersunk within the front or third surface 114a of rear substrate 114, such that the head 124a of pin 124 is generally flush with the third surface 114a of the substrate. After the pin is countersunk within the rear substrate 114, the third surface 114a of the substrate may be coated with the semi-conductive layer or layers, such that the semi-conductive layer 120 coats or contacts the head 124a of pin 124 and makes electrical contact therewith. The shaft or body portion 124b of pin 124 may extend through a hole or opening through substrate 114 and rearwardly from the substrate or cell for electrical connection to the appropriate power source or circuitry or control or the like at the rear of the reflective element assembly. As can be seen in FIG. 7, the front or third surface 114a of rear substrate 114 may be masked during coating of the third surface in the area of the first pin 122, such that the conductive and/or semi-conductive coatings or layers 120 are not applied to or deposited on the surface 114a in the region where shaft 122b of pin 122 extends through substrate 114. This substantially precludes the possibility that pin 122 may come in contact with both semi-conductive layers 118, 120, which may short the electrochromic cell or reflective element assembly.


The pin connectors of the electrochromic cell or reflective element assembly of the present invention thus may facilitate a flush electrochromic cell or reflective element assembly, because no clips or busbars are required around the outside of the perimeter edges of the substrates to contact the semi-conductive and/or conductive layers of the substrates. Optionally, a perimeter coating, which may be substantially opaque and may be conductive or semi-conductive, may be applied along the perimeter regions or border of the semi-conductive layer of the first or front substrate, in order to mask or hide or conceal the seal and connectors and the like to enhance the aesthetic appearance of the electrochromic reflective element assembly and to minimize the size or overhang of the bezel of the mirror assembly. The perimeter coating or layer may be of the type disclosed in U.S. Pat. No. 5,066,112, which is hereby incorporated herein by reference, or may be any other type perimeter coating which may provide the desired result or appearance.


Referring now to FIG. 8, an electrochromic cell or reflective element assembly 210 comprises a flush or generally flush electrochromic reflective element assembly and includes a front substrate 212 having an semi-conductive coating or layer 218, and a rear substrate 214 having a conductive and/or semi-conductive coating 220, with an electrochromic medium 216 disposed or sandwiched between the conductive or semi-conductive layers 218, 220. An opaque or darkened or substantially opaquifying or hiding or concealing or light absorbing perimeter coating 228 may be applied around the perimeter region or surface of the semi-conductive coating 218 of front substrate 212 to mask or hide or conceal the seal 219 of the electrochromic reflective element assembly 210. Perimeter coating 228 may comprise a black or darkened or opaque coating (such as a substantially opaque or dark, such as black, coating or layer) and may be conductive (such as a metallic electric conductive layer or element) or a combined opaquifying or dark or black non-conductive layer closest to the substrate surface and a conductive layer on the opaquifying layer. The perimeter coating may provide a class A appearance (i.e. a surface readily viewable by a user of the vehicle and thus required to be aesthetically and functionally acceptable) and may comprise a black ink or the like that may provide a substantially uniform hiding and concealing layer which may be applied via an inkjet or screen print process or the like. If a non-conductive opaque layer (such as paint or ink or the like) is used on the substrate surface, it is desirable to apply a conductive layer (such as a conductive tape or coating or the like) overt the opaque layer. Optionally, the opaquifying layer may comprise a chrome oxide (sometimes referred to as “black chrome”), which may be substantially dark on the surface, and may be coated with a substantially pure metal or chrome (such as discussed below with respect to FIG. 20) to provide a conductive layer or raceway along the substrate. Preferably, the opaquifying conductive coating or layer comprises a silver and aluminum alloy, but may comprise other dark colored (preferably black) conductive inks and/or adhesives based on silver and/or silver alloys, such as an electrically conductive black epoxy, such as EPO-TEK H32E or EPO-TEK H32C, both of which are available from Epoxy Technology of Billerica, Mass. It is further envisioned that other colors (other than black) may be used for perimeter coatings and busbar hiding coatings to match the color of the mirror case or to match other desired colors or shades or the like.


A metallic or conducting connector layer 230 may be applied or disposed or positioned around the perimeter region of the perimeter coating 228 and may be folded or wrapped around to at least partially cover the perimeter edges 212b of the substrate 212 so that an outer or edge portion 230a may extend partially along the outer perimeter edge 212b of the substrate and may be in contact with the semi-conductive layers on the surface 212a of substrate 212. As shown in FIG. 8, an outer or edge portion 220a of the conductive layers 220 of rear substrate 214 may also extend around or wrap around the outer perimeter edges 214b of rear substrate 214.


The outer or edge portions 230a of the metallic layer 230 and the outer or edge portions 220a of the layers or layers 220 of rear substrate 214 thus may provide for electrical contact to the conductive layers of the substrate substantially around the perimeter of the electrochromic cell or reflective element assembly, without requiring overlap or offset between the cells, such as for known or conventional clips and busbars. The metallic layer 230 and conductive layers 220 thus may provide an electrical raceway around at least a portion of the reflective element to enhance electrical flow along the substrates to enhance the performance of the mirror cell. Optionally, the metallic layer 230 may be substantially hidden by the Class A type appearance of the opaque layer 228, such that the mirror cell or reflective element assembly may minimize the size of any bezel associated with the mirror assembly, while providing an aesthetically pleasing mirror reflective element and mirror assembly. The reflective element assembly of the present invention thus may provide a minimum bezel size or no bezel mirror cell or reflective element assembly.


With reference to FIG. 9, an electrochromic cell or reflective element assembly 210′ may be substantially similar to the electrochromic cell or reflective element assembly 210 shown in FIG. 8, and may include an outer wraparound connector 232, which may wrap around the perimeter of the reflective element assembly and provides for electrical contact between the metallic contacts or layers 230, 220 and the appropriate power source, circuitry or control or the like. In the illustrated embodiment, wraparound connector 232 comprises an extruded flexible member which includes a wire connector 234. The wire connector 234 extends along and through the wraparound connector 232 and connects to the metallic connector 230, and may connect at the other end to the appropriate power source, circuitry or control or the like. Wraparound connector 232 also includes a second wire connector 236 which extends through the wraparound connecter 232 and may connect the conductive and/or semi-conductive layers 220 of the rear substrate 214 to the appropriate power supply, circuitry or control or the like. The extruded wraparound connector 232 may be formed with the wires positioned or inserted therein and extending or protruding partially from an appropriate location or locations along the wraparound connector so as to make a strong electrical connection or contact with the respective member or layer when the wraparound connector 232 is wrapped around and secured to the reflective element assembly 210′.


Similarly, as shown in FIG. 10, a wraparound connector 232′ may include a pair of electrical wires or metallic members 234′, 236′ extending therealong and partially protruding from an inner surface of the extruded wraparound connector 232′. One of the wires or members 234′ may partially protrude along the inner surface of the connector to contact the outer or edge portion 230a of the metallic layer or connector 230 to make electrical connection thereto at least partially or substantially around the perimeter of the front substrate 212 of the electrochromic cell or reflective element assembly 210″. Likewise, the other wire or metallic member 236′ may protrude partially from the extruded wraparound connector 232′ to contact the outer or edge portion 220a of the layer or layers 220 along the outer perimeter edge of the rear substrate 214 to make electrical connection thereto at least partially or substantially around the perimeter edge or edges of the rear substrate. One or more electrical wires or connectors may extend through the wrap around connector 232′ to contact the appropriate one of the wires or metallic members 234′, 236′, in order to provide electrical connection to between the wires 234′, 236′ and the appropriate power source, circuitry or control or the like at the rear of the reflective element assembly.


Although shown as having a single perimeter electrical connector or layer 230 along the second surface of the front substrate 212, the reflective element assemblies 210′, 210″ may optionally include a substantially opaque Class A layer between the connectors 230 and semi-conductive layer 218, such as described above with respect to the reflective element assembly 210 of FIG. 8. Optionally, the electrical connectors 230 may comprise an opaque conductive material and may provide a black or opaque appearance to hide or conceal the seal 219 and connectors of the reflective element assemblies, such as via utilizing principles disclosed in U.S. Pat. No. 5,066,112, which is hereby incorporated herein by reference.


Referring now to FIGS. 11 and 12, a flush electro-optic or electrochromic cell or reflective element assembly 310 for an exterior rearview mirror assembly of a vehicle comprises a front substrate 312 and a rear substrate 314. The reflective element assembly 310 also includes semi-conductive and/or conductive layers and electrochromic medium (not shown in FIGS. 11 and 12), such as described above or such as otherwise known in the art. As can be seen in FIGS. 11 and 12, both of the substrates 312, 314 are cut in a wave like pattern, such as a sine wave or the like, around the perimeter edges of the substrate, with the wave cut of the rear substrate 314 being about 180 degrees out of phase with the wave cut of the front substrate 312. When the substrates are generally aligned with one another, the waves are out of phase and provide alternating outward peaks for connection of an electrical connector at least substantially around the entire perimeter of the substrates and reflective element assembly.


The front and rear substrates of the reflective element assembly thus may have a full wraparound busbar connected at at least some of or most of or each of the outer points or peaks of the waves. As shown in FIG. 12, a clip or busbar 338 for providing electrical connection to the outward protrusions or peaks of the respective one of the substrates may include a plurality of clips or clip portions 338a connected together by a connecting member 338b. The spacing between the clips 338a generally corresponds to the wavelength of the wave cut around the substrates. Although only one of the clips or busbars for the rear substrate 314 is shown in FIG. 12, the other clip or busbar for the front substrate 312 would be substantially similar to busbar 338, but with the clips aligning with the outward peaks or protrusions or wave portions of the wave cut around the front substrate. The clips may connect to or contact conductive layers or busbars or raceways (not shown in FIGS. 11 and 12) that are disposed along the perimeter edge of the substrate. The wave design or pattern may vary depending on the size and particular application of the mirror assembly, the conductivity of the semi-conductive and/or conductive coatings on the substrates, and/or the like. For example, the wave cut may change in amplitude and/or frequency depending on the particular application. The clips or busbars may also change to correspond with the changes in the wave profile.


The wave cut reflective element assembly or electrochromic cell may provide a faster coloring of the reflective element assembly or electrochromic cell and a more uniform transition from bleached to color because the electrical potential may be generally uniformly distributed at substantially all of the points along the perimeter of the reflective element assembly. The benefits associated with the wave cut design may be even more significant for larger mirror sizes. The wave cut design of the present invention may also facilitate implementation of a less expensive or lower conductivity substrate while having little or no effect on the performance of the reflective element assembly or electrochromic cell. The cell gap may thus also be made smaller to assist in reducing double imaging of the mirror assembly. Also, because the voltage may be distributed more uniformly across the electrochromic cell, the “banding effect” may be significantly less for the wave cut design. Because the electrochromic cell may be a generally flush electrochromic cell, multiple cells may be stacked on one another during the manufacturing process using less complicated and less costly fixtures and jigs, in order to reduce the manufacturing costs associated with the electrochromic cells. Also, by taking advantage of the overlapping areas of the substrates, the effective surface area of the perimeter seal around the electrochromic cell may be made larger than in conventional cells.


Referring now to FIGS. 13-15, a one sided flush electro-optic or electrochromic cell or reflective element assembly 410 includes a front substrate 412 and a rear substrate 414. The reflective element assembly 410 also includes an electro-optic or electrochromic medium and conductive and/or semi-conductive layers or coatings, which may be substantially similar to the elements of the reflective element assembly 10 of FIGS. 4-6, discussed above. As shown in FIG. 13, the front substrate 412 may comprise a substantially oval shaped substrate and may be downwardly offset with respect to the rear substrate 414, such that the lower edge 412b of the front substrate 412 extends over and below the lower edge 414b of the rear substrate 414 to facilitate electrical connection thereto. The rear substrate 414 is formed to have an upwardly extending portion or top hat portion 414c along the middle region of the upper edge of the substrate 414, such that the upward extending portion 414c is generally offset from the upper edge 412c of front substrate 412, while the side portions or regions of the upper edges of the substrates are generally flush or aligned with one another.


The upward extending portion or top hat portion 414c of rear substrate 414 thus may provide or facilitate electrical connection to the rear substrate, without requiring the substrates to be offset along the upper edges in the conventional manner. As shown in FIG. 14, the conductive coating 420 on the third surface of the rear substrate 414 may include a tab out portion 420a for the electrical connector to connect thereto. The upward extending portion or top hat portion 414c of the rear substrate 414 thus may provide for electrical connection to the conductive coatings on the rear substrate, while also providing for a substantially flush upper edge along a substantial portion of the upper edges of the reflective element assembly, such that offset pins and the like are not required during the manufacturing processes of the electrochromic cell or reflective element assembly 410. A seal 419 (FIG. 15) may be provided around the perimeter region or surface of the rear substrate 414 to encase or seal the electrochromic medium, such as discussed above.


Referring now to FIGS. 16-19, an electro-optic or electrochromic cell or reflective element assembly 510, such as for an interior or exterior rearview mirror assembly of a vehicle, includes a front substrate 512 and a rear substrate 514, with an electro-optic or electrochromic medium 516 (FIGS. 17 and 19) disposed or sandwiched therebetween. Front substrate 512 includes an opaquifying or darkening or hiding conductive coating or layer 519 (such as, for example, an opaque or black conductive epoxy or dark colored conductive frit or chrome oxide/metallic chrome bilayer or the like, or other materials such as described above with respect to layer 228) applied or deposited around the border or perimeter of the front substrate 512. The opaquifying layer 519 may at least partially wrap around the perimeter edges of the substrate so that an edge portion 519c of opaquifying layer 519 extends at least partially along the perimeter edge 512c of substrate 512. The front substrate 512 also includes a semi-conductive, transparent coating or layer 518 (such as an ITO layer or doped ITO layer or the like) applied to or deposited on the rear surface 512a of front substrate 512 and overlapping the opaquifying or hiding conductive border layer or coating 519 (as can be seen with reference to FIG. 17). Alternately, the semi-conductive layer 518 may be applied to or deposited on the rear surface 512a of front substrate 512 first, and then the opaquifying or black conductive layer may be applied to or deposited on the perimeter region of the semi-conductive layer 518. The conductive layer 519 provides an electrical raceway (due to the lower resistance provided by the conductive layer 519 versus the semi-conductive or ITO layer 518) around the perimeter of and in contact with the semi-conductive layer 518 to provide quick electrical flow around the perimeter of the semi-conductive layer to quickly energize the layer and get substantially uniform and even and rapid coloring or darkening of the reflective element assembly when electrical connection is made at the conductive layer 519, such as via an electrical connector 522 (FIG. 19).


The rear substrate 514 includes a metallic or conductive layer or coating 520, preferably a highly reflective metallic layer or coating (such as, for example, chromium, chromium/rhodium, silver, aluminum, silver alloy, aluminum alloy, ITO/silver/ITO stack, ITO/aluminum/ITO stack (such as ITO-silver-ITO stacks, display on demand stacks or infrared transmitting stacks of the types disclosed in PCT application No. PCT/US03/29776, filed Sep. 19, 2003, published Apr. 1, 2004 as International Publication No. WO 2004/026633, which is hereby incorporated herein by reference) or the like) applied to or deposited on and substantially over the third surface 514a of rear substrate 514. The outer perimeter edge area or border region 514b of the third surface 514a of the rear substrate 514 may be masked while the metallic reflector 520 is applied, such that the border region 514b of the front surface 514a of substrate 514 provides a non-conductive surface or path or raceway 514e (such as a glass surface or the like) at least partially around the metallic reflector 520 and proximate to the edge 514d of substrate 514.


As shown in FIG. 16, rear substrate 514 may also include a conductive coating or layer 521 (such as, for example, a conductive epoxy layer or a conductive silver frit layer or the like) applied to or deposited on or positioned at and partially along a perimeter edge 514d of the substrate 514 (optionally, a third surface portion 521a of the conductive layer 521 may extend partially along the border region 514b of the third surface 514a, or the conductive layer 521 may have an edge portion 521c that may partially wrap around and onto and over the edge 514d of substrate 514, or the conductive layer 521 may further include a rear portion 521b (FIG. 18) that may extend or wrap further around to the rear or fourth surface 514c of substrate 514). A tab out portion 520a of conductive layer 520 may extend over the border region 514b or raceway 514e and may overlap the conductive coating 521 to provide an electrical contact point or region or area for the rear substrate 514, as discussed below. The non-conductive raceway 514e thus is substantially devoid of the conductive layer 520 except at the tab portion. Optionally, the tab out portion 520a may wrap at least partially around the edge dimension 514d of the substrate 514 (such as shown in FIG. 16, where the tab out portion 520a extends along an outer perimeter or border region 514b of third surface 514a of substrate 514 and may further extend at least partially along and over the perimeter edge 514d of substrate 514 and over edge portion 521c of conductive coating 521).


As shown in FIG. 17, the front substrate has a height dimension that is greater than a corresponding height dimension of the rear substrate, such that the upper perimeter region or edge portion 512f and lower perimeter region or edge portion 512g of front substrate 512 extend beyond the corresponding perimeter regions or edge portions 514f, 514g of rear substrate 514 and define upper and lower overhang regions 512h, 512i. The connector or connectors may connect to the conductive layer at the rear surface of the front substrate at the overhang region or regions 512h, 512i and thus may not interfere or overlap the perimeter edge of the front substrate. The overhang regions of the front substrate relative to the rear substrate thus may allow for the electrical connectors to connect to the respective conductive layers substantially or entirely within the viewable profile of the front substrate by extending along the respective perimeter edges of the rear substrate, such that the connectors do not overlap the perimeter regions of the front substrate and, thus, are not viewable at the front surface of the front substrate. The front substrate may include a hiding layer or concealing layer at the perimeter regions or overhang regions, such as at the rear surface of the front substrate, to substantially hide or conceal the connectors and the seal of the reflective element assembly. The reflective element assembly thus may be suitable for a bezelless or minimal bezel mirror assembly.


Although shown and described herein as having upper and lower overhang regions, the reflective element assembly of the present invention may have only one overhang region, such as for the electrical connection to the conductive layer on the rear surface of the front substrate, or may have one or more overhang regions elsewhere along the perimeter of the reflective element assembly, such as along one or both sides of the reflective element assembly or the like, without affecting the scope of the present invention. The overhang region or regions may be selected at the upper or lower edges or at one or both side edges of the reflective element assembly depending on the particular application of the reflective element assembly. For example, for an interior rearview mirror assembly, where the longitudinal axis of the reflective element assembly typically extends lengthwise along the reflective element assembly (such as generally horizontally when the reflective element assembly is installed in a vehicle), the overhang region or regions may be at the upper and/or lower edges of the reflective element assembly. Similarly, for an exterior mirror assembly of, for example, a truck or the like, where the longitudinal axis of the reflective element assembly may extend generally vertically when the reflective element assembly is installed at the truck or vehicle (in other words, where the width of the reflective element assembly is less than the height of the reflective element assembly), the overhang regions may be at the side edges of the reflective element assembly. The overhang regions may thus extend along the width dimension of the reflective element assembly. However, the overhang regions may be elsewhere along or around the edges of the reflective element assembly, without affecting the scope of the present invention.


As can also be seen with reference to FIG. 17, reflective element assembly 510 may provide an electrically conductive opaque or hiding or concealing layer 519 at least substantially around the perimeter edges of the front substrate, with the transparent semi-conductive layer 518 overlapping the opaque conducting layer 519 in the area at which the seal 517 is positioned around the electrochromic medium 516. The opaque conducting layer 519 thus provides a contacting region around the perimeter of the substrate for contacting the transparent semi-conductive layers or coatings 518. The seal 517 is positioned along the opaque conductive layer 519 and is thus masked or hidden by the opaque conductive layer to enhance the appearance of the reflective element assembly, particularly when the electro-optic or electrochromic medium is darkened or colored. The opaque conductive layer may thus allow for a smaller or no bezel overhang around the perimeter of the reflective element assembly. As can be seen in FIGS. 17 and 19, the seal 517 may be positioned around the masked or border region 514b of the rear substrate 514. The non-conductive perimeter seal 517 at least partially fills or covers or encompasses the non-conductive glass surface or masked region 514e to electrically isolate or insulate the conductive coating 520 from the conductive adhesive 526, such that the conductive coating 520 of rear substrate 514 is electrically isolated from connector 522 that connects to the conductive surface 518 of front substrate 512.


As shown in FIGS. 18 and 19, the front substrate 512 and rear substrate 514 may include electrical connectors or terminals 522 and 524, respectively, for providing electrical connection to the conductive or semi-conductive layers 518, 520. Particularly, and as shown in FIG. 18, rear substrate 514 may include an electrical connection terminal or connector 524 at its rear or fourth surface 514c for providing electrical connection between the conductive metallic layer 520 and the appropriate electrical source, circuitry or control or the like at the rear of the reflective element assembly. The electrical connection terminal 524 may be soldered or adhered or attached (such as via electrically conductive adhesive or the like, such as a conductive coating or layer or the like) to, or may be mechanically contacting at (such as via a spring-action contact or the like) a rear portion 521b of the conductive coating or layer 521 along the fourth or rear surface 514c of rear substrate 514. The conductive layer 521 thus provides electrical connection between the terminal 524 at the rear or fourth surface 514c of rear substrate 514 and the conductive layer 520 at the front or third surface 514a of rear substrate 514.


As discussed above, the electrically conductive layer 521 may provide electrical connection to the metallic reflector 520 via the tab-out portion 520a of the metallic reflector, which may be overcoated or applied to the front portion 521a of the electrically conductive layer 521 along the front or third surface 514a of the rear substrate 514. A potting material 526 (such as, for example, a silicone or urethane elastomer, preferably a conductive semi-elastomeric material or the like) may be applied or positioned over the rear surface (and may be applied partially or entirely around the outer perimeter edge of the substrate) to seal the connection of the connector terminal 524 and the conductive layer 521. The electrical connection terminal 524 may extend rearward from the reflective element assembly 510 and may protrude from the potting material 526 for electrical connection to a connector associated with the appropriate electrical power, circuitry or control or the like.


As shown in FIG. 19, the front substrate 512 of reflective element assembly 510 may include one or more electrical connection terminals 522 at or along its rear or second surface 512a. The electrical connection terminal 522 may comprise a stick or ribbon or pin connector for providing electrical connection to the semi-conductive transparent layer 518 at the second surface 512a of front substrate 512 and generally at or along the lower overhang region 512i. The electrical connector or terminal 522 may be positioned entirely within a perimeter profile (as viewed from the front of the reflective element assembly) of the front substrate and generally rearward of the overhang region, so that the electrical connector or terminal is substantially not viewable through the front surface of the front substrate. The electrical connection terminal 522 may be soldered or adhesively attached, such as via an electrically conductive epoxy or the like, to the semi-conductive layer 518, or may be mechanically attached to or contacting the semi-conductive layer 518, such as via a spring-action contact or the like, and may extend or protrude rearward from the front substrate (and may extend rearward of the rear substrate as shown in FIG. 19) for electrical connection to the appropriate electrical power, circuitry or control or the like at the rear of the reflective element assembly.


As discussed above, the semi-conductive layer 518 may be applied to or deposited on the second surface 512a of substrate 512 and on or over a perimeter black out or opaquifying layer 519. Optionally, as also discussed above, the perimeter layer 519 may be conductive. Optionally, as shown in FIG. 19, the perimeter opaquifying layer 519 may be non-conducting and applied to or deposited on the outer perimeter region 512g of the rear surface 512a of front substrate 512, and an electrical conducting perimeter busbar layer 519a (such as a metallic or high electrical conducting layer) may be applied to the opaquifying layer 519 and may overlap or fold over to cover a portion of the side edge 512c of substrate 512, such that the metallic or high electrical conducting busbar layer 519a may provide the electrical connection to the semi-conductive layer 518, while the opaquifying layer 519 may function to substantially hide or conceal the metallic busbar layer 519a and seal 517 of the reflective element assembly, such that the layers and seals and connectors are not viewable by a driver or occupant of the vehicle when viewing the reflective element assembly of the mirror assembly of the vehicle.


The potting material 526 may extend partially around the perimeter edge of the front substrate and substantially surround and seal the electrical connector 522 at the rear surface of the front substrate. Preferably, the material 526 surrounding the connector 522 may comprise a conductive material, such as a conductive epoxy, such as a conductive epoxy commercially available from DuPont, a conductive paste, a conductive tape, such as a copper tape with conductive adhesive, a conductive frit or the like, to provide an enhanced connection of the pin or connector 522 to the conductive layer or raceway and the semi-conductive or ITO layer or the like on the front substrate. As shown in FIG. 19, the connector 522 may contact the semi-conductive layer 518 at the conductive busbar layer 519a, and the conductive material 526 may substantially surround the connector 522 to enhance the electrical connection between the connector and the semi-conductive layer 518 and/or the conductive busbar layer 519a. Optionally, and with reference to FIG. 19A, the connector 522′ may be spaced from the semi-conductive layer 518 and conductive busbar layer 519a and substantially surrounded by the conductive material 526, such that the conductive material 526 connects the connector 522 along the semi-conductive layer 518 and busbar layer 519a. Because a substantial amount of conductive material 526 may be packed in or disposed around the connectors and along the semi-conductive layer and busbar layer to substantially fill the overlap region or area, the conductive material may provide enhanced electrical flow and electrical contact between the connector and the busbar layer, thereby improving the performance of the reflective element assembly. Therefore, the conductive material may provide a substantial raceway effect along the semi-conductive layer and busbar layer even if the conductive material is a weak conductor.


The conductive material or epoxy may be injected or disposed into the area of the reflective element assembly outside and around the perimeter seal to substantially fill the area and to enhance the conductivity around the connector 522 and conductive coating 518 of front substrate 512. Optionally, the conductive material or epoxy may be applied to the overlap region at the “empty cell” stage of the manufacturing process, where the cell has not yet been filled with the electrochromic medium. The empty cell, with the seal and conductive epoxy disposed thereon, may then be fired or heated together to cure or harden both the seal and the conductive epoxy in a single process.


Therefore, the opaquifying layer and semi-conductive and conductive layers, and the electrical connectors of the reflective element assembly 510 provide a concealed or hidden seal and electrical connectors, such that the bezel size may be reduced or eliminated, while providing an aesthetically pleasing rearview mirror assembly and reflective element. The overhang region of the front substrate relative to the rear substrate may allow for multiple electrical connectors or multiple-point contact between the front electrical/perimeter busbar and the appropriate electrical power or circuitry or control or the like at the rear of the reflective element assembly or cell.


Optionally, and as shown in FIG. 20, the rear or second surface 512a′ of a front substrate 512′ may include multiple hiding layers 519′ around the perimeter regions (such as lower perimeter region 512g′ of FIG. 20) of the substrate to conceal or hide the seal 517 and connectors (not shown in FIG. 20) of the reflective element assembly. For example, the hiding layers 519′ may include a “black chrome” layer 519a′ (such as a chromium oxide layer or the like) applied to or deposited on the rear surface 512a′ of the substrate and along the perimeter regions and overhang regions, and a chromium metal layer 519b′, which may be sputter deposited or otherwise applied to the layer or layers of chromium oxide 519a′. Alternately, other metals or metal compounds may be deposited on the perimeter regions of front surface 512a′ of front substrate 512′, and preferably may be applied in a manner that results in a substantially opaque layer (that may be substantially non-conductive) at the surface of the substrate and a substantially pure, highly conductive metallic layer over the opaque layer, such as discussed below.


The coatings or layers on the second surface 512a′ of substrate 512′ may be applied to or deposited on the second surface in a manner to provide multiple and varying layers of chromium oxide or other metals or metal compounds or the like to enhance the performance of the layers. For example, the central region of the second surface 512a′ may be masked while leaving the border or perimeter region 512b′ unmasked during the application or deposition of the layers 519′. The chromium oxide layer or layers 519a′ or the like may be reactively sputter deposited or evaporated in an oxygen atmosphere to deposit a dark, light absorbing chromium layer on the perimeter region 512b′ of the second surface 512a′ of the front substrate 512′. While the chromium oxide is being deposited or applied to the perimeter region 512b′, the oxygen gas level in the vacuum chamber may be gradually reduced to approximately zero, thereby providing varying layers 519a′ of chromium oxide on the perimeter region 512b′. The chromium metal conductive layer 519b′ may then be sputter deposited or coated onto the chromium oxide layer or layers 519a′, such as in a zero oxygen atmosphere, to deposit a metal conducting perimeter coating at the perimeter region 512b′ of the rear surface 512a′ of front substrate 512′. The front substrate 512′ may be removed from the vacuum chamber and the mask over the central region may be removed. The transparent semi-conductive coating or layer 518 may then be sputter deposited or coated or otherwise applied to or deposited on or across the entire rear surface 512a′ of front substrate 512′. Such a process and coatings provide a buildup of “black chrome” (such as approximately 500 angstroms to approximately 2,000 angstroms thick) initially, followed by “metallic chrome” (such as approximately 500 angstroms to approximately 3,000 angstroms thick), thereby forming a border or perimeter electrically conductive busbar, but with the black chrome layer being substantially non-reflecting when viewed from the first surface side of the front substrate or reflective element assembly. Although described as comprising chrome oxide, other metals may be provided to form a metal compound (such as chrome oxide, nickel oxide, silver oxide or the like) at the substrate surface and a substantially pure metallic deposit (such as chromium, nickel, silver or the like) to provide a highly conductive raceway. The metal compound may be sandwiched between the substrate and the substantially pure metal, and provides a dark (such as black) layer at the substrate surface to at least substantially conceal or hide the seals and connectors and the like, while the substantially pure metal is at the semi-conductive layer or ITO layer or the like.


Optionally, and according to another aspect of the present invention, an electro-optic or electrochromic mirror assembly for a vehicle may comprise an electro-optic or electrochromic mirror element or reflective element assembly comprising a front or first substrate having first and second surfaces and a rear or second substrate having third and fourth surfaces. The first and second substrates are arranged so that the second surface opposes the third surface with an electro-optic or electrochromic medium disposed therebetween. The first substrate has at least one at least partially conductive or semi-conductive coating or layer on the second surface and may also have an opaquifying conductive border/perimeter coating/layer around the perimeter edges or regions of the substrate. The second substrate has at least one at least partially conductive coating or layer on the third surface. The first and second substrates are positioned relative to one another such that at least a portion of an edge of the first substrate is generally flush or aligned with a corresponding edge of the second substrate. The edge of the second substrate may have a relief area formed therealong relative to the edge of the first substrate, wherein the relief area provides clearance or access for electrical connection to the conductive border/perimeter coating/layer on the second surface of the corresponding edge of the first substrate. The electrical connections to the first substrate may provide or deliver electrical power to the semi-conductive coating on the second surface of the first substrate and to the conductive coating on the third surface of the second substrate, as discussed below.


The perimeter seal of the reflective element assembly may be formed such that the outer edge of the perimeter seal is generally flush with the edges of both the first and second substrates except in the relief area or areas formed along the edge of second substrate. The perimeter seal profile in the relief areas along the edge of the second substrate may be configured such that the outer edge of the perimeter seal is recessed from the outer edges of both the first and second substrates, such that a gap or spacing between the first and the second substrates is created outside of the seal. A conductive material or bridge may be disposed or applied at the gap or spacing to couple the conductive coating on the third surface of the second substrate with the appropriate electrical connector or contact at the border/perimeter conductive coating/layer on the second surface of the first substrate. In addition, in order to avoid shorting of the positive and negative electrical contacts, a small portion of the border/perimeter conductive coating/layer and the underneath transparent semi-conductive coating on the second surface of the first substrate may be removed (electrically isolated) in a pattern generally around the electrical contact for the second substrate at the spacing created in the relief area or areas formed along the edge or edges of the substrates. Electrical contact to the semi-conductive layer of the second surface of the first substrate may be made by affixing an electrical lead to the perimeter/border conductive coating/layer in the relief areas, while electrical contact to the third surface of the second substrate may be made by affixing an electrical lead to the perimeter/border conductive coating/layer of the first substrate in the electrically isolated portion of the relief area or areas. The electrical contact is then made to the third surface of the second substrate via the conductive material or bridge between the first and second substrates at the electrically isolated relief area or areas.


The electrical contacts to the transparent semi-conductive layer on the front substrate and the reflective conductive layer on the rear substrate may thus be made at one of the substrates, with a conductive bridge connecting one of the contacts at one substrate to the coating or layer on the other substrate. Such a configuration or arrangement may provide for a true flush, bezelless cell or reflective element assembly and may facilitate making both electrical contacts to the front substrate at specified areas or relief areas along the perimeter edges or regions of the substrates.


For example, and with reference to FIG. 21, an electro-optic or electrochromic reflective element assembly or cell 610 includes a front substrate 612 and a rear substrate 614 and may provide generally flush edges of the substrates substantially around the reflective element assembly. As shown in FIG. 21, the front substrate 612 may provide a top hat form or protrusion 612c along the upper edge of the front substrate, and the rear substrate 614 may also provide a smaller top hat form or protrusion 614c along its upper edge (such as discussed above with respect to the rear substrate 414 of FIGS. 13-15). The seal around the electrochromic medium is positioned along and between the outer edges of the substrates, except at the top hat forms. The top hat form 614c of rear substrate 614 thus generally overlaps the top hat form 612c of front substrate 612, with a gap or spacing defined between the top hat forms 612c, 614c and outward of the seal.


The second surface or rear surface of front substrate 612 is coated with a semi-conductive transparent coating or layer and a perimeter busbar layer 619a and perimeter opaquifying or “black-out” layer 619 around its perimeter edges, such as, for example, coatings or layers similar to the busbar layer 519a and opaquifying layer 519 of reflective element assembly 510, discussed above. As can be seen in FIG. 21, the top hat form 612c of front substrate 612 provides for electrical contacts or connectors 622 (such as pins or clips or the like) at the perimeter busbar layer 619a at either or both ends of the top hat form 612c. A gap or deletion line 621 may be provided along a portion of the conductive layer on top hat form 612c to electrically isolate a center portion or region 621a of the top hat form 612c from the ends of the top hat form where the positive electrical contacts are provided. An electrical contact or connector 624 (such as a pin or clip or the like) may be provided at the electrically isolated region 621a.


Top hat form 614c of rear substrate 614 may be coated with the conductive coating on the third surface of the substrate and/or may have a conductive coating or layer and tab-out edge of the conductive coating on the surface (such as, for example, a conductive coating or layer and tab-out portion of the types described above with respect to FIG. 16). The second or rear substrate 614 may include a perimeter, electrically conductive coating or layer around the perimeter edges and perimeter regions of the third surface of the rear substrate 614 (such as, for example, a perimeter electrically conductive coating of the type described above with respect to FIG. 18).


Reflective element assembly 610 further includes a conductive material or bridge 623, such as a conductive epoxy or the like, disposed at the electrically isolated region 621a and spanning the gap between the top hat forms 612c, 614c of the front and rear substrates. The conductive bridge 623 provides for electrical connection between the electrically isolated region 621a (and the electrical connector 624 connected thereto) of the top hat form 612c of front substrate 612 and the conductive coating or layer or tab-out region of the top hat form 614c of rear substrate 614.


Accordingly, electrical power may be applied to the semi-conductive coating or layer on the second surface of the front substrate via an electrical connector or contact (such as a pin or clip or the like) at the top hat form of the front substrate. Electrical power may also be applied to the conductive coating or layer on the third surface of the rear substrate via an electrical connector or contact (such as a pin or clip or the like) also positioned at the top hat form of the front substrate (and via the conductive bridge). The present invention thus provides a flush electro-optic or electrochromic cell or reflective element assembly with electrical contacts at only one of the substrates.


Optionally, and with reference to FIGS. 22 and 23, an electro-optic or electrochromic mirror cell or reflective element assembly 610′ may provide one or more relief regions 625 around the perimeter edges of the reflective element assembly, such as at generally opposite corners of the reflective element assembly 610′. The relief regions 625 may be defined by areas or regions of the rear substrate 614′ which may be cut back relative to the corresponding edge or edges of the front substrate 612′ to provide a relief area exposing the second surface of the front substrate 612′ when the reflective element assembly is viewed from the rear of the reflective element assembly. The front and rear substrates 612′, 614′ may otherwise be generally flush along their edges except at the relief regions 625.


The front substrate 612′ may include a transparent semi-conductive layer on its second or rear surface and may include a busbar layer 619a′ (which may include a tab out portion 619b′ over the relief region or regions 625) and/or a opaquifying or black-out layer around its perimeter edges and an electrical contact 622′ at each of the areas or regions exposed by the relief regions (such as discussed above). The electrical contact 622′ is electrically connected to the semi-conductive layer and busbar layer or tab out portion on the front substrate 612′. Each of the areas or regions of the second surface of the front substrate that are exposed by the relief regions also includes a deletion line 621′ that defines an electrically isolated area or region 621a′. A second electrical contact 624′ is applied or connected to the electrically isolated region 621a′ of each of the relief regions.


As can be seen in FIGS. 22 and 23, the seal 617′ around the electro-optic or electrochromic medium of the reflective element assembly may be configured or arranged to be between the front and rear substrates and generally along the perimeter edges of the front and rear substrates, except in the relief regions 625. At the relief regions 625, the seal may be positioned inward of the outer edges 614c′ of the rear substrate 614′, which are inward of the outer edges 612c′ of the front substrate 612′. A gap or spacing thus exists between the front and rear substrates outside of the seal 617′ and at each of the relief regions 625. The electrically isolated region 621a′ is formed to generally correspond with the area of the substrates that have the gap or spacing therebetween. A conductive material or bridge 623′ is provided between the front and rear substrates at each of the relief regions to conductively span the gap between the electrically isolated area 621a′ (and electrical connector 624′) of the front substrate 612′ and the conductive coating or layer or layers of the rear substrate 614′.


Optionally, and as shown in FIG. 24, the reflective element assembly 610″ may include a perimeter conductive coating or busbar coating 619a″ around the perimeter of the front substrate 612′ and a seal 617″ around the perimeter of the substrates except at the relief region 625″ of the rear substrate 614″. In the illustrated embodiment of FIG. 24, the electro-optic or electrochromic reflective element assembly includes one relief region 625″ (defined by the cut off or reduced edge 614c″ of rear substrate 614″), but could include two or more, such as at opposite corners of the reflective element assembly or the like, without affecting the scope of the present invention. The reflective element assembly 610″ is otherwise substantially similar to reflective element assembly 610′, discussed above, such that a detailed discussion of the reflective element assembly will not be repeated herein.


The electro-optic or electrochromic mirror cell or reflective element assembly 610′ thus may provide for electrical connections at two or more locations around the mirror cell or reflective element assembly, and may provide for the electrical connections at only the front substrate of the reflective element assembly. The reflective element assembly thus may provide a flush reflective element assembly or mirror cell that may be implemented in a bezelless mirror assembly, while providing enhanced performance or coloring or darkening of the reflective element assembly.


Optionally, and with reference to FIGS. 25A and 25B, an exterior rearview mirror cell or reflective element assembly for an exterior rearview mirror assembly of a vehicle includes a first or front substrate 712 (FIG. 25A) and a second or rear substrate 714 (FIG. 25B) and an electro-optic or electrochromic medium and seal 717 sandwiched therebetween, such as described above. As also described above, the front substrate 712 may have a transparent semi-conductive layer or coating 718 (such as ITO or the like) applied to the second or rear surface 712a of the substrate, and may include an opaquifying conductive border/perimeter coating or layer 719 (such as, for example, a black conductive epoxy or dark colored conductive frit or black chrome/metallic chrome layer or the like) applied around the perimeter edges of the front substrate 712. As shown in FIG. 25A, the perimeter coating or layer 719 may be along the perimeter edges of the front substrate 712 except in an electrical connection area or region 725 of substrate 712, where the perimeter coating 719 is inward of the outer edges of substrate 712. The electrical connection region 725 is coated by the semi-conductive layer 718 and/or a conductive layer or the like. A deletion line 721, such as a non-conductive area in the region 725 where the busbar layer and semi-conductive layer is etched off or otherwise removed from or not applied to the surface of the substrate, is formed at the electrical connection area 725 to separate and define and electrically isolate a rear substrate electrical connection area 725a or raceway portion of the semi-conductive layer from a front substrate electrical connection area 725b or surface portion of the semi-conductive layer.


An electrical connection or contact 722 is connected to or applied to the front substrate electrical connection area 725b to provide electrical power or connection to the semi-conductive layer 718 on the rear surface of the front substrate 712. Likewise, an electrical connection or contact 724 is connected to or applied to the electrically isolated rear substrate electrical connection area 725a and is in electrical communication with the conductive layer of the third surface 714a of rear substrate 714 via a conductive material or bridge 723, as discussed below.


With reference to FIG. 25B, rear substrate 714 includes a metallic reflector layer 720 (such as a layer or layers comprising, for example, chromium, chromium/rhodium, aluminum, silver, aluminum alloy, silver alloy, an ITO/silver/ITO stack, an ITO/aluminum/ITO stack or the like, such as ITO-silver-ITO stacks or layers, or display on demand stacks or layers or infrared transmitting stacks or layers of the types described in PCT application No. PCT/US03/29776, filed Sep. 19, 2003, published Apr. 1, 2004 as International Publication No. WO 2004/026633, which is hereby incorporated herein by reference) on its front or third surface 714a, and a perimeter black seal 717 generally around the perimeter edges of the substrate. As can be seen in FIG. 25B, an electrical connection area 727 may be defined at a region of the rear substrate 714, such as at a corner of the substrate, where the perimeter seal 717 is positioned inward of the outer edge of the substrate. The rear substrate 714 is formed to be substantially identical in shape to the front substrate 712, except at the electrical connection area 727, where the rear substrate may be cut back or reduced along a cut-away or cut back edge 714c. The conductive bridge 723 is positioned at a portion of the electrical connection area 727 to provide electrical connection to the metallic reflective coating or layer 720 via electrical connector 724 at front substrate 712.


When the substrates 712, 714 are placed together to form the electro-optic or electrochromic mirror cell or reflective element assembly (with the electro-optic or electrochromic medium disposed or sandwiched therebetween), the electrical connection area 727 of rear substrate 714 generally aligns with a portion of the electrical connection area 725 of front substrate 712. The conductive bridge 723 bridges or spans the gap or spacing between the electrical connection areas 725a and 727 to connect the electrical contact or connector 724 and electrical connection area 725a to the metallic conductive reflective layer 720 of rear substrate 714.


The cut-away edge 714c of rear substrate 714 provides for exposure of the electrical connectors or contacts 722, 724 along the outer edge 712c of the electrical connection area 725 of front substrate 712. The electrical contacts for providing electrical power to the conductive or semi-conductive layers at both substrates are made at only one of the substrates. The other edges of the substrates 712, 714 are generally flush or aligned to form a flush reflective element assembly for an exterior rearview mirror assembly. The reflective element assembly may thus be implemented in a mirror assembly having a minimal bezel or a bezelless mirror assembly to enhance the appearance of the mirror assembly.


Referring now to FIGS. 26 and 27, an electro-optic or electrochromic mirror cell or reflective element assembly 810 includes a front substrate 812 and a rear substrate 814 and an electro-optic or electrochromic medium 816 sandwiched between the semi-conductive or conductive layers 818, 820 on the surfaces 812a, 814a of the substrates 812, 814, respectively. A dimension of the front substrate, such as a height dimension, is greater than that of the rear substrate, such that the upper and lower perimeter regions or edge portions 812b, 812c of front substrate 812 extend beyond the upper and lower perimeter regions or edge portions 814f, 814g of rear substrate 814 and define overhang regions 812f, 812g. As shown in FIG. 26, the conductive layer 820 of rear substrate 814 does not extend fully over third surface 814a at the perimeter region 814g of substrate 814. Third surface 814a may be masked during the coating process, such that a non-conductive glass surface 814e is provided generally along the perimeter region 814g of surface 814a.


Reflective element assembly 810 includes electrical connectors 824, 822 at a rear surface 814b of rear substrate 814 and at least partially along the upper edge 814c and lower edge 814d of rear substrate 814, respectively. The connectors may be disposed partially at the rear surface 814b of rear substrate 814 and may extend along and overlap the edges 814c, 814d of rear substrate 814. The electrical or metallic connectors 824, 822 are in electrical connection with the respective conductive layers 820, 818 and may be connected to an electrical power source or circuitry or the like to provide electrical power to the semi-conductive coatings 818, 820 to darken or color the electrochromic medium 816. The front substrate 812 includes a deletion line 821 along the upper portion 812b of the substrate and along the semi-conductive coating or layer 818 on the rear surface 812a of substrate 812. The deletion line 821 defines an electrically isolated area or region 821a along a perimeter region of substrate 812, such as along the upper portion of the substrate 812.


As can be seen with reference to FIG. 27, the reflective element assembly 810 includes a non-conductive perimeter seal 817 around the electrochromic medium 816, as is known in the art. The seal 817 overlaps and at least partially or substantially fills or encompasses the deletion line 821 along one side of the reflective element assembly and at least partially or substantially fills or covers or encompasses the masked surface 814e along the other side of the reflective element assembly. A conductive material or adhesive or bridge or the like 823a is disposed or applied along the upper region of the front substrate and outside of the seal 817, while a conductive material or adhesive or bridge or the like 823b is disposed or applied along the lower region of the front substrate and outside of the seal 817. Accordingly, when power is applied to connector 822, the connector provides or delivers power to or energizes the semi-conductive layer 818 on front substrate 812 via the conductive bridge 823b (whereby the conductive bridge may function as an electrical raceway along the edge of the reflective element assembly). The non-conductive seal 817 and non-conductive surface 814e of rear substrate 814 function to electrically isolate or insulate connector 822 and conductive bridge 823b from conductive coating or layer 820 of rear substrate 814. When power is applied to connector 824, the connector provides or delivers power to the conductive layer 820 on rear substrate 814 via contact of the connector 824 along the edge of the conductive coating 820 and via the conductive bridge 823a along the edge or perimeter region of the reflective element assembly. The conductive bridge 823a and raceway portion 821a may function as an electrical raceway along an edge portion or perimeter region of the conductive layer or coating 820 of rear substrate 814. The conductive bridge 823a does not power the semi-conductive layer 818 on front substrate 812 because the conductive bridge 823a is at the electrically isolated area 821a along the upper portion or perimeter region of the front substrate.


Optionally, and as shown in FIG. 28, an electro-optic or electrochromic mirror cell or reflective element assembly 810′ may include metallic connectors 822′, 824′ that extend across the gap between the substrates 812, 814 and contact the semi-conductive layer 818 on the rear surface 812a of the front substrate 812. The conductive bridge 823 functions to communicate the power from connector 824′ to the conductive layer 820 on the front surface 814a of rear substrate 814. The deletion line 821 defines the electrically isolated area 821a along the front substrate where the connector 824′ connects to or contacts the semi-conductive layer 818 of the front substrate 812 at the overhang region 812f of front substrate 812. The connector 822′ contacts the surface portion of the semi-conductive layer 818 (which substantially covers the rear surface of the front substrate 812) along the other border or perimeter region or overhang region 812g of the front substrate. The non-conductive glass surface 814e and non-conductive perimeter seal 817 function to electrically isolate or insulate the connector 822′ from conductive coating 820 of rear substrate 814. The mirror cell or reflective element assembly 810′ is otherwise substantially similar to the reflective element assemblies discussed above, such that a detailed discussion of the reflective element assembly will not be repeated herein.


Optionally, and as shown in FIG. 29, a reflective element assembly 810″ is substantially similar to the reflective element assembly 810′, discussed above, but includes conductive pins or foil strips 822″, 824″. The foil strips 822″, 824″ are disposed between a heater pad or backing plate 811 and the semi-conductive layer 818 at the rear surface 812a of the front substrate 812. The strips 822″, 824″ may include one or more pins or extensions 822a″, 824a″ extending rearwardly through the backing plate 811 for connection to an appropriate power source, control or circuitry or the like. The conductive bridge 823 functions to communicate the power from strip 824″ to the conductive layer 820 on the front surface 814a of rear substrate 814. The deletion line 821 defines the electrically isolated area 821a along the front substrate where the strip 824″ connects to or contacts the semi-conductive layer 818 of the front substrate 812. The strip 822″ contacts the surface portion of the semi-conductive layer 818 along the other border or perimeter region of the front substrate and may function as an electrical raceway along the border region of the semi-conductive layer 818. The mirror cell or reflective element assembly 810″ is otherwise substantially similar to the reflective element assemblies discussed above, such that a detailed discussion of the reflective element assembly will not be repeated herein.


Optionally, and with reference to FIG. 30, a reflective element assembly 810′″ includes metallic connectors or strips or foil 822′″, 824′″ that are inserted partially between the substrates 812, 814. The strip or foil 822′″ extends across the gap between the substrates 812, 814 and contacts the semi-conductive layer 818 on the rear surface 812a of the front substrate 812 and generally at the overhang region 812g. The strip or foil 824′″ contacts and connects to the conductive layer 820 on the front surface 814a of rear substrate 814. The deletion line 821 defines the electrically isolated area or raceway portion 821a along the front substrate where the strip or foil 824′″ is generally positioned to isolate that portion of the front substrate to avoid shorting of the cell or reflective element assembly due to any contacting of the strip or foil 824′″ to the surface portion of the semi-conductive layer 818 of the front substrate 812. The mirror cell or reflective element assembly 810′″ is otherwise substantially similar to the reflective element assemblies discussed above, such that a detailed discussion of the reflective element assembly will not be repeated herein. As can be seen in FIG. 31, the connectors or strips or foils 822′″, 824′″ may be insulated on their sides 822e, 824a′″ opposite to their electrically contacting side, such that the deletion line is not necessary.


Optionally, and with reference to FIG. 32, an electro-optic or electrochromic cell or reflective element assembly 910 includes a front substrate 912 and a rear substrate 914 with an electro-optic or electrochromic medium 916 sandwiched between a semi-conductive layer or coating (such as ITO or the like) 918 on the rear surface 912a of the front substrate 912 and a conductive layer or coating 920 (such as silver, silver alloy, or the like) on the front surface 914a of the rear substrate 914. A perimeter seal 917 is disposed around the electrochromic medium 916. As can be seen in FIG. 32, the conductive layer 920 is applied or coated or oversprayed at least partially onto the edges 914b, 914c of the rear substrate 914. The conductive layer 920 on the rear substrate 914 includes a deletion line 921 to define an electrically isolated area or raceway portion 921a along a perimeter or border region or portion of the rear substrate 914. A conductive material or bridge 923 (such as a conductive epoxy, frit, paste or the like) is disposed along the perimeter or border region and between the electrically isolated area 921a and the semi-conductive layer 918 of front substrate 912.


An electrical connector 922 is disposed at the rear substrate, such as partially along the rear surface 914d of rear substrate 914, and overlaps at least a portion 920a of the conductive layer 920 on the edge 914b of rear substrate 914, thereby providing an electrical connection from the rear of the reflective element assembly 910 to the electrically isolated area 921a of the conductive layer 920. The connector 922 thus provides an electrical connection to the semi-conductive layer 918 on the rear surface 912a of the front substrate 912 via the conductive bridge 923 extending along and between the isolated area 921a and the semi-conductive layer 918 at the perimeter or border regions of the front and rear substrates. The isolated area 921a and the conductive bridge 923 provide an electrical raceway along a perimeter or border portion of the semi-conductive layer 918 to enhance the performance of the reflective element assembly 910.


A second electrical connector 924 is disposed partially along the rear surface 914d of the rear substrate 914 and overlaps at least a portion 920b of the conductive layer 920 at the edge 914c of rear substrate 914, thereby providing an electrical connection from the rear of the reflective element assembly 910 to the conductive layer 920 along the front surface 914a of rear substrate 914.


Referring now to FIGS. 33A-C, an electro-optic or electrochromic cell or reflective element assembly 1010 includes a front substrate 1012 and a rear substrate 1014 with an electro-optic or electrochromic medium 1016 sandwiched between a semi-conductive layer or coating (such as ITO or the like) 1018 on the rear surface 1012a of the front substrate 1012 and a conductive layer or coating (such as silver, silver alloy or the like) 1020 on the front surface 1014a of the rear substrate 1014. A perimeter seal 1017 is disposed around the electrochromic medium 1016. The semi-conductive layer 1018 on the front substrate 1012 includes a deletion line 1019 to define an electrically isolated area or raceway portion 1019a along a perimeter or border region or portion 1012b of the front substrate 1012, while the conductive layer 1020 on the rear substrate 1014 includes a deletion line 1021 to define an electrically isolated area or raceway portion 1021a along a perimeter or border region or portion 1014b of the rear substrate 1014. A conductive material or bridge 1023a (such as a conductive epoxy, film, frit, paste or the like) is disposed along the perimeter or border region 1012b and between the electrically isolated area 1019a and the conductive layer 1020 of rear substrate 1014, while a second conductive material or bridge 1023b (such as a conductive epoxy, film, frit, paste or the like) is disposed along the opposite perimeter or border region 1014b and between the electrically isolated area 1021a and the semi-conductive layer 1018 of front substrate 1012.


As can be seen in FIGS. 33B and 33C, the rear substrate 1014 includes a pair of notches 1025a, 1025b to provide for electrical contact to the respective conductive bridges 1023a, 1023b. As best shown in FIG. 33C, an electrical connector or contact (not shown) may engage or contact the conductive bridge 1023a at the notch or cut away 1025a, whereby the conductive bridge 1023a may function as an electrical raceway along the border region 1014c of rear substrate 1014, while the electrically isolated area 1019a and deletion line 1019 of border region 1012b of front substrate 1012 substantially precludes electrical power from reaching the semi-conductive layer 1018 along the rear surface 1012a of front substrate 1012. Likewise, another electrical connector or contact may engage or contact the conductive bridge 1023b at the notch or cut away 1025b, whereby the conductive bridge 1023b may function as an electrical raceway along the border region 1012c of front substrate 1012, while the electrically isolated area 1021a and deletion line 1021 of border region 1014b of rear substrate 1014 substantially precludes electrical power from reaching the conductive layer 1020 along the front surface 1014a of rear substrate 1014.


Referring now to FIG. 34, an electro-optic or electrochromic cell or reflective element assembly 1110 includes a front substrate 1112 and a rear substrate 1114 with an electro-optic or electrochromic medium 1116 sandwiched between a semi-conductive layer or coating (such as ITO or the like) 1118 on the rear surface 1112a of the front substrate 1112 and a conductive layer or coating (such as silver, silver alloy, or the like) 1120 on the front surface 1114a of the rear substrate 1114. A perimeter seal 1117 is disposed around the electrochromic medium 1116. The front substrate 1112 includes an opaquifying or darkening or blackening or concealing or hiding non-conductive border coating 1119 disposed around the perimeter regions or border of the rear surface 1112a. The border coating 1119 may comprise a decorative and/or color matching coating, and may be colored to match the body color, the color of the mirror case or the color of the electrochromic medium in its night state, or any other desired color. The transparent semi-conductive coating or layer 1118 is disposed on the rear surface 1112a of front substrate 1112 and may at least partially overlap the non-conductive border coating 1119, at least along one border region 1112b of the front substrate 1112, such as shown in FIG. 34.


Reflective element assembly 1110 includes an electrical connector 1122 that may be disposed at a perimeter or border region 1110a of the reflective element assembly for providing or delivering electrical power to the semi-conductive layer 1118 of front substrate 1112 via a conductive bridge or adhesive 1123a. As can be seen in FIG. 34, the connector 1122 is formed to overlay the rear surface 1114b of rear substrate 1114 and extend along an edge 1114c of the rear substrate and contact the conductive bridge 1123a disposed between the connector 1122 and the semi-conductive layer 1118 and outside of the perimeter seal 1117 at the overhang region 1112g. The conductive layer 1120 may not extend fully across the front surface 1114a of rear substrate 1114 at the connector 1122, so that a non-conductive glass surface 1114e is defined along the perimeter edge portion or region 1114c of rear substrate, whereby a gap is defined between the connector 1122 and conductive layer 1120. The non-conductive glass surface 1114e or gap and the non-conductive perimeter seal 1117 function to electrically isolate or insulate the connector 1122 from conductive coating 1120 of rear substrate 1114 to preclude shorting of the electrochromic cell or reflective element assembly.


Likewise, a second electrical connector 1124 may be disposed on another perimeter region 1110b of the reflective element and may be formed to overlay the rear surface 1114b of rear substrate 1114 and extend along an edge 1114d of the rear substrate and contact the conductive bridge 1123b disposed between the connector 1124 and the conductive layer 1120 and outside of the perimeter seal 1117. The conductive layer or coating 1118 of front substrate 1112 may not extend fully across the surface 1112a of front substrate 1112 so as to define a non-conductive surface or area of border coating 1119 at conductive bridge 1123b and generally at the overhang region 1112f. The second surface 1112a of front substrate 1112 and the non-conductive border coating 1119 and non-conductive seal 1117 function to electrically isolate or insulate the connector 1124 and conductive adhesive 1123b from the conductive coating 1118 of front substrate 1112. The second connector 1124 may provide electrical power to the metal reflector coating or conductive layer 1120 on the rear substrate 1114, with the conductive adhesive 1123b acting as a raceway along a perimeter or border region of the front surface of the rear substrate 1114. The connectors 1122, 1124 may be connected to an appropriate power source, control, circuitry or the like for controlling the electrochromic cell or reflective element assembly.


Optionally, and as shown in FIG. 35, an opaquifying non-conductive border coating or layer 1119′ may be disposed along the front surface 1112c of front substrate 1112 to provide a decorative border coating along the perimeter or border regions of the front surface 1112c of front substrate 1112. The transparent semi-conductive coating or layer 1118′ thus may be disposed on the rear surface 1112a of front substrate 1112 in a generally uniform thickness and may coat the border region 1112b, but may not extend to the border region 1112d, thereby defining a non-conductive area or electrically isolated area or non-conductive glass surface 1112e at the border region 1112d. The non-conductive glass surface 1112e and non-conductive seal 1117 function to electrically isolate or insulate the conductive coating 1118 of front substrate 1112 from connector 1124 and conductive adhesive 1123b generally at the overhang region 1112f. Likewise, and as described above, the conductive coating 1120 may not extend to the edge 1114c of rear substrate 1114 to define a non-conductive glass surface 1114e at and adjacent to connector 1122, so that connector 1122 is electrically isolated and insulated from conductive coating 1120 by non-conductive surface 1114e and non-conductive seal 1117. Optionally, and as shown in FIG. 36, an opaquifying border 1119″ may be embedded in the border regions 1112b′, 1112d′ of the front substrate 1112′, such as via a radiation induced coloration in the glass of the substrate or via other means or processes.


Referring now to FIG. 37, an electro-optic or electrochromic cell or reflective element assembly 1210 includes a front substrate 1212 and a rear substrate 1214 with an electro-optic or electrochromic medium 1216 sandwiched between a semi-conductive layer or coating (such as ITO or the like) 1218 on the rear surface 1212a of the front substrate 1212 and a conductive layer or coating (such as silver, silver alloy, or the like) 1220 on the front surface 1214a of the rear substrate 1214. The conductive coating 1220 of rear substrate 1214 does not extend fully to the edge 1214c of substrate 1214, so that a non-conductive glass surface or area or region 1214e is defined on surface 1214a along the perimeter portion at edge 1214c. A non-conductive perimeter seal 1217 is disposed around the electrochromic medium 1216 and may at least partially or substantially fill or cover or encompass the non-conductive glass surface 1214e. The non-conductive glass surface 1214e and non-conductive seal 1217 thus function to electrically isolate or insulate the conductive coating 1220 from the connector 1222 and conductive adhesive 1223a.


The front substrate 1212 includes an opaquifying or darkening or blackening or concealing or hiding non-conductive border coating 1219a disposed over the semi-conductive layer 1218 and around or along a perimeter region or border 1212b of the rear surface 1212a of the front substrate 1212, and an opaquifying conductive border coating 1219b disposed over the semi-conductive layer 1218 and around or along a perimeter region or border 1212c of the rear surface 1212a of the front substrate 1212. The transparent semi-conductive coating or layer 1218 may include a deletion line 1221 to define an electrically isolated area or region 1221a, with the non-conductive border coating 1219a disposed along the semi-conductive layer 1218 and over the deletion line 1221. The non-conductive border coating 1219a may at least partially or substantially fill in or encompass deletion line 1221. The non-conductive border coating 1219a and deletion line 1221 thus function to electrically isolate or insulate the conductive coating 1218 from electrical connector 1224.


In the illustrated embodiment, the reflective element assembly 1210 includes an encapsulant 1225 which substantially surrounds the rear and side edges of the reflective element assembly and may cover or overlay a heater pad or the like 1227 at the rear surface 1214b of the rear substrate 1214. The encapsulant 1225 extends along the edges 1214c, 1214d of rear substrate 1214, and further at least partially along the perimeter edges 1212d, 1212e of front substrate 1212. A metal connector 1222 may be provided through the encapsulant 1225 to power or energize the semi-conductive layer 1218 on rear surface 1212a of front substrate 1212 via a conductive bridge or epoxy or adhesive 1223a disposed at least partially around the connector 1222 and between the connector 1222 and the opaquifying conductive border coating 1219b. As can be seen in FIG. 37, the connector 1222 may be disposed generally within the conductive bridge 1223a and the non-conductive glass surface 1214e and non-conductive seal 1217 may separate or isolate the connector 1222 and conductive bridge 1223a from the conductive layer or coating 1220 of rear substrate 1214, in order to avoid contact or electrical communication between the connector 1222 and the conductive layer 1220 on front surface 1214a of rear substrate 1214.


Likewise, the metal connector 1224 may be provided through the encapsulant 1225 to power or energize the conductive layer 1220 on front surface 1214a of rear substrate 1214 via a conductive bridge or epoxy or adhesive 1223b disposed at least partially around the connector 1224 and between the connector 1224 and the opaquifying conductive border coating 1219a, and further between the opaquifying conductive border coating 1219a and the conductive layer 1220. The non-conductive border coating 1219a and deletion line 1221 thus serve to electrically isolate the connector 1224 and conductive bridge 1223b from conductive layer or coating 1218 of front substrate 1212.


Optionally, and with reference to FIG. 38, the conductive bridge or adhesive 1223b′ may be disposed at the overhang regions 1212f, 1212g of the front substrate 1212, with the perimeter seal 1217′ disposed generally flush with the edges 1214c, 1214d of the rear substrate 1214. As can be seen in FIG. 38, the connectors 1222, 1224 may be positioned generally within the respective conductive bridges 1223a, 1223b′, whereby the electrical contact to the conductive coating 1219b (and the semi-conductive layer 1218′) and to the conductive layer 1220 is through the respective conductive bridges 1223a′, 1223b′. The conductive metallic reflector layer 1220 on front surface 1214a of rear substrate 1214 may not be applied at the outer perimeter region of the front surface 1214a to provide a non-conductive glass surface or region or area 1214e at or near or adjacent to the connector 1222 and conductive bridge 1223a′ to electrically isolate or insulate connector 1222 and conductive bridge 1223a′ from conductive layer 1220 of rear substrate 1214.


The conductive bridge 1223b′ may contact the conductive layer 1220 along an edge portion 1220a of the conductive layer. Optionally, in such an embodiment, the edge portion 1220a of the metallic reflector or conductive layer 1220 may wrap at least partially around the edge dimension 1214d of the rear substrate 1214 to extend partially along the edge 1214d, and the encapsulant 1225 may provide a cavity 1225a partially along the edge 1214d for receiving the conductive bridge or epoxy or adhesive or paste or frit or the like 1223b′ to provide contact to the conductive layer 1220 along the wrapped edge portion 1220a of the conductive layer 1220 to enhance the electrical contact and conductivity from the connector 1224 to the conductive layer 1220. The reflective element assembly 1210′ thus may provide an enlarged electro-optic or electrochromic region of the reflective element assembly by reducing the conductive bridge region for the conductive adhesive or bridge 1223b′.


Therefore, the present invention provides an electro-optic or electrochromic reflective element assembly that provides electrical contact to electrical raceways or conductive layers or coatings along regions or border or perimeter regions of the assembly that have a restricted overhang. The electrical connections may be made at overhang regions of the front substrate where the perimeter regions of the front substrate extend beyond the corresponding perimeter regions of the rear substrate, such that the electrical connectors are not viewable through the front surface of the front substrate. The present invention thus may provide a reduced or minimal bezel or no bezel assembly and may provide enhanced performance of the electrochromic mirror assembly. The conductive epoxy or adhesive or bridge may provide an electrical raceway along a perimeter or border portion of the semi-conductive and/or conductive layers of the substrates to provide rapid electrical flow along the layers or coatings to further provide rapid and substantially uniform darkening or coloring of the electrochromic medium. The connectors and bridges of the present invention facilitate such enhanced performance at a restricted overhang region and thus provide for a minimal bezel or no bezel around the perimeter of the reflective element assembly. The electrical connectors are electrically isolated or insulated from the other conductive layer or coating via a non-conductive surface and non-conductive seal being positioned between the connector and the respective other conductive layer.


In the embodiments described above, it is envisioned that the non-conductive glass surfaces (where applicable) may be formed by masking the surface of the substrate during coating or deposition of the conductive layer or coating, or may be formed by etching (such as laser etching, chemical etching, mechanical etching or the like) or otherwise removing the conductive layer or coating at the desired area or region, such as via a high voltage discharge to remove or burn the coating off of the desired area or region. The masked portion or etched portion or non-conductive portion may be generally at the outer perimeter or edge of the coating, and may have a width of approximately 0.05 mm, or approximately 0.1 mm, or up to approximately 1 mm. The masked portion or non-conductive surface may be partially or substantially filled or encompassed by the non-conductive seal or by other non-conductive layers or the like disposed at the surface of the substrate. Likewise, the deletion lines (where applicable) may be formed on and through the respective conductive or semi-conductive layer to define electrically isolated areas or regions of the layers. The deletion lines may be formed via any known manner, such as via chemical etching, mechanically etching or, and preferably, laser etching of the layers. The size or width of the deletion line is selected to be sufficient to create an electrical break so there is no electrical conductivity between the layer and the electrically isolated region of the layer. Typically, the deletion lines may be formed to be approximately 0.01 mm to approximately 0.5 mm or thereabouts.


Also, the perimeter seal that generally surrounds the electrochromic medium and spaces the front and rear substrates may have a width of preferably approximately 0.5 mm to approximately 3 mm, more preferably approximately 1 mm to approximately 2 mm, and most preferably approximately 1.25 mm to approximately 1.75 mm. The overhang that is defined at the edges of the substrates (where, for example, the rear substrate may be smaller than the front substrate) may be preferably approximately 0.1 mm to approximately 2 mm, more preferably approximately 0.25 mm to approximately 1.5 mm, and most preferably approximately 0.75 mm to approximately 1.25 mm.


In addition to other materials to be used as conductive busbars (such as silver frit, paste, conductive inks, and/or the like), optionally, ultrasonic soldering techniques may be used to apply a busbar which consists of solder (typically, standard soldering technique may not provide good adhesion/flow between the solder and a glass substrate). The solder can be used to provide a busbar for a semi-conductive coating (such as ITO or the like) or for a metallic coating. For example, an ultrasonic soldering system made by Asahi Glass company of Japan (e.g., Model: Sunbonder USM-3) may be used for applying this special solder. The solders that may be used include, for example, ultrasonic solders 143 and 297, available from Asahi Glass Company. However, other materials may be implemented, such as conductive inks, pastes, frits, and the like, without affecting the scope of the present invention.


Optionally, and with reference to FIG. 39, the rear or smaller substrate 1314 of an electro-optic or electrochromic cell or reflective element assembly 1310 may be formed to have a tab out portion or protrusion 1314a along one edge. The electro-optic or electrochromic medium may then be injected through an opening or gap in the perimeter seal 1317 (that spaces the front substrate 1312 from the rear substrate 1314) that generally corresponds with the outward protrusion 1314a of the rear substrate 1314. A plug is applied or inserted into the gap to seal the electrochromic medium within the perimeter seal and the substrates after the electrochromic medium is injected. Typically, such plugs may be difficult to insert in non-flush edges of mirror cells because they may be visible if they are inserted too far into the gaps in the seals. The tab out portion 1314a of the rear substrate 1314 provides an edge portion that is generally flush with the front substrate to provide a larger area for the plug to be positioned at without having the plug insert into the area where it may be visible to a user of the mirror assembly. Optionally, an opaquifying or hiding or darkening layer of the reflective element assembly (if applicable) may be expanded in that area to cover or conceal or hide the plug and tab out portion.


Optionally, the electro-optic or electrochromic cell or reflective element assembly of the present invention and the electrical connectors thereon or therearound may be coated with a protective coating to limit or reduce corrosion that may occur on the electrical connectors over time. The coating may comprise a parylene coating or parylene C coating or the like to enhance corrosion resistance (or may comprise other known parylene coatings, such as a parylene N coating, a parylene D coating or a parylene HT coating or the like). Such a parylene coating may be formed in a plasma chamber or vacuum applied and is highly penetrating or permeating so that the parylene coating may penetrate and surround the metal electrical clips or pins or connectors and seal them to limit corrosion of the electrical components. The parylene coating may comprise a thin coating (such as, for example, approximately 2.5 μm to about 12.5 μm) which coats and permeates anything placed in the chamber and not otherwise covered or masked. The parylene coating may comprise a vacuum applied polymer that is either in a gaseous or solid state, and may possess substantial dielectric and barrier properties per unit thickness. Such parylene coatings are known and are typically used in position sensor applications, intake manifold pressure sensor applications, gas sensor applications and valve cover gasket applications for vehicles.


For example, an electrical clip or connector may be in contact with the semi-conductive or conductive layer and may be susceptible or vulnerable to corrosion at the point where the two come in contact (particularly in a high moisture or salt environment and particularly for exterior rearview mirror assemblies). A parylene coating may be applied to substantially seal the connector at the semi-conductive or conductive layer to resist such corrosion. The electrochromic cell or reflective element assembly (with electrical contacts or connectors attached thereto) may be placed in a chamber and the parylene coating may be applied, such as via a vacuum vapor deposition process or the like. Optionally, two or more cells may be stacked in a stepped or offset manner, such that the edges of each cell are exposed to the parylene coating, while the above and below cell act as a mask over the rest of the cell. The parylene coating thus may only be applied to the offset area. The cells of the stack of cells thus may act as a self-masking element for the other cells of the stack. Such a self-masking approach with multiple cells may be particularly useful for parylene coatings because of the amount of time that it typically may take to coat an item with such parylene coatings.


The parylene raw material (di-para-xylylene dimer) is a crystalline powder and may be vaporized at approximately 150 degrees C. and then molecularly cleaved or pyrolyzed at approximately 680 degrees C. This forms the para-xylylene, which may be introduced generally at room temperature into a vacuum deposition chamber as a monomeric gas that polymerizes substantially evenly on the substrates. The coating then grows as a conformal film on all of the exposed surfaces, edges, etc. of the substrates or cells.


Testing has shown that a known conventional corrosion protection coating or seal may allow corrosion of the electrical contacts and failure of the mirror after about 12 weeks in a salt spray test chamber (such as a test chamber conducting tests in accordance with ASTM B-117, which is hereby incorporated herein by reference), while a substantially identical or similar mirror coated with a parylene C coating may be substantially unchanged, with the electrical contacts remaining at least substantially uncorroded, after about 22 weeks in the same salt spray test chamber and undergoing the same salt spray test. The parylene coating thus provides substantial enhancement of corrosion resistance and the mirror reflective element life cycle over known mirror corrosion protection means.


Optionally, the mirror assemblies or reflective element assemblies or cells of the present invention may include one or more displays for displaying information to the driver or occupant of the vehicle. Optionally, the conductive or semi-conductive layers of the reflective element assembly may have a metallic layer which may be absent or removed at portions, such as to create a local window for placement therebehind of a light emitting display, such as a compass display or PSIR display or other informational display or the like, such as a display of the type disclosed in commonly assigned U.S. Pat. Nos. 6,222,460 and 6,326,900, which are hereby incorporated herein by reference in their entireties, but while maintaining at least the underlying semi-conducting layer at the local window region so that electrical connection through the electrochromic medium at that local region is sustained.


Optionally, the reflective element assembly of the present invention may include other display systems or elements (not shown) which are operable to provide, emit or display information or light through the reflective element assembly. The light is emitted through the reflective element assembly at a display area, such that the display information or light is viewable by a driver of the vehicle. The second or rear substrate and the respective semi-conductive layers of the reflective element assembly or cell then comprise a transflective one way mirror, such as disclosed in commonly assigned U.S. patent application Ser. No. 10/054,633, filed Jan. 22, 2002, now U.S. Pat. No. 7,195,381, which is hereby incorporated herein by reference. Preferably, the reflective element assembly (behind which the display is disposed so that the information displayed is visible by viewing through the reflective element assembly) of the mirror assembly comprises a transflective mirror reflector or reflective element assembly such that the mirror reflective element assembly is significantly transmitting to visible light incident from its rear (i.e., the portion furthest from the driver in the vehicle), while simultaneously, the mirror reflective element assembly is substantially reflective to visible light incident from its front (i.e. the position closest to the driver when the mirror assembly is mounted in the vehicle, such as is disclosed in U.S. patent application Ser. No. 09/793,002, filed Feb. 26, 2001, now U.S. Pat. No. 6,690,268; and/or in U.S. Pat. Nos. 5,668,663 and 5,724,187, the entire disclosures of which are hereby incorporated by reference herein.


The display system preferably comprises a display-on-demand type of display and includes a display element or light emitting device (also not shown) positioned at the back or fourth surface of the rear substrate. The display element is operable to emit light, such as in the form of indicia, alphanumeric characters, images, or the like, in response to a control or input. The display element may be a vacuum fluorescent (VF) display, a light emitting diode (LED), an organic light emitting diode (OLED), a gas discharge display, a plasma display, a cathode ray tube, a backlit active matrix LCD screen, an electroluminescent display, a field emission display or the like, without affecting the scope of the present invention. The particular display element may be selected to provide a desired color to the display. For example, a VF display may be selected to provide a blue-green color or other colors to the information displayed (depending on the phosphor selected for the display), while a light emitting diode may be selected to provide other colors, such as reds, ambers, or other colors.


Preferably, the display is a display-on-demand type of display, such as of the types disclosed in commonly assigned U.S. Pat. Nos. 5,668,663 and 5,724,187, and/or in U.S. patent applications, Ser. No. 10/054,633, filed Jan. 22, 2002, now U.S. Pat. No. 7,195,381; and/or Ser. No. 09/793,002, filed Feb. 26, 2001, now U.S. Pat. No. 6,690,268, which are all hereby incorporated herein by reference. With such a display, it is not only desirable to adjust the display brightness according to ambient lighting conditions, but it is also desirable to adjust the display brightness such that a sufficient contrast ratio is maintained against the variable background brightness of the reflected scene. Also, it may be desirable to compensate for changes in transmission of the electrochromic device affected to control rearward glare sources, in order that the display brightness appears to be maintained at a generally constant level.


In certain conditions, the ambient light intensity within the cabin of the vehicle may be sufficiently high so that reflected light from the mirror reflective element and, in particular, from the display region, tends to “wash-out” the display. It is envisioned that this glare may be reduced by taking advantage of the electrochromic function of the mirror assembly. More particularly, the electro-optic or electrochromic medium of the electro-optic or electrochromic reflective element assembly may be colored or darkened in the area of the display by constructing a locally addressable region across the display. This may be achieved by creating a deletion line in the second surface semi-conductive layer at the second surface of the first or front substrate and/or in the third surface semi-conductive layer of the rear substrate, hence breaking electrical continuity from the rest of the electrochromic cell. An ambient light sensor (not shown) may be used to detect the critical ambient light levels at which “wash-out” is a problem. The addressable region may then be separately colored or darkened to the appropriate level to reduce the glare from the display area in response to the ambient light sensor. Although such a glare problem could be solved by coloring the entire mirror, by localizing the region of coloration to only the display area, the electrochromic mirror assembly of the present invention allows the rest of the mirror reflective area, which does not incorporate the display, to retain full reflectivity while the display area is colored or darkened (such as may be useful when driving by day).


In order to maintain easy viewing of the display, it is desirable to adjust the display intensity in response to ambient light levels (in order to avoid washout during daytime driving conditions and glare during nighttime driving conditions) and in response to the degree of transmissivity of the electrochromic reflective element. For example, in low lighting conditions, such as during the nighttime, the intensity of the display may be dimmed to avoid glare, while in higher lighting conditions, such as during the daytime, the intensity of the display may be increased to provide sufficient visibility of the display to the driver of the vehicle. The mirror assembly may include light sensors for sensing the ambient light in the cabin of the vehicle or at the mirror assembly and may include a control which is operable to automatically adjust the display intensity and/or the transmissivity of the electrochromic medium in response to the ambient light sensors.


Further, automatic dimming circuitry used in electro-optic or electrochromic mirror assemblies utilizing the reflective element assemblies of the present invention may utilize one or more (typically two) photo sensors to detect glaring and/or ambient lighting. For example, a silicon photo sensor, such as a TSL235R Light-to-Frequency converter (available from Texas Advanced Optoelectronic Solutions Inc. of Plano, Tex.), can be used as such photo sensors. Such light-to-frequency converters comprise the combination of a silicon photodiode and a current-to-frequency converter on a single monolithic CMOS integrated circuit.


The reflective element assembly or assemblies of the present invention may also include or house a plurality of electrical or electronic devices, such as antennas, including global positioning system (GPS) or cellular phone antennas, such as disclosed in U.S. Pat. No. 5,971,552, a communication module, such as disclosed in U.S. Pat. No. 5,798,688, displays, such as shown in U.S. Pat. Nos. 5,530,240 and 6,329,925, blind spot detection systems, such as disclosed in U.S. Pat. Nos. 5,929,786 or 5,786,772, transmitters and/or receivers, such as garage door openers, a digital network, such as described in U.S. Pat. No. 5,798,575, a high/low head lamp controller, such as disclosed in U.S. Pat. No. 5,715,093, a memory mirror system, such as disclosed in U.S. Pat. No. 5,796,176, a hands-free phone attachment, a video device for internal cabin surveillance and/or video telephone function, such as disclosed in U.S. Pat. Nos. 5,760,962 and 5,877,897, a remote keyless entry receiver, map lights, such as disclosed in U.S. Pat. Nos. 5,938,321; 5,813,745; 5,820,245; 5,673,994; 5,649,756 or 5,178,448, microphones, such as disclosed in U.S. Pat. Nos. 6,243,003 and 6,278,377, speakers, a compass, such as disclosed in U.S. Pat. No. 5,924,212, a seat occupancy detector, a trip computer, an ONSTAR® system or the like (with all of the above-referenced patents commonly assigned, and with the disclosures of the referenced patents being hereby incorporated herein by reference in their entireties).


The reflective element assembly or assemblies of the present invention may include a printed circuit board (PCB), which may be attached to the rear surface (e.g. the fourth surface) of the mirror element by, for example, a suitable adhesive or the like. An example of such an arrangement is disclosed in commonly assigned U.S. Pat. No. 5,820,245, which is hereby incorporated herein by reference in its entirety. The PCB optionally may include glare sensing and ambient photo sensors and electrochromic circuitry that automatically dims the reflectivity of the electrochromic mirror element when glare conditions are detected, such as at nighttime or the like. Alternately, the PCB may be snap connected, by a clip or otherwise attached, to a plastic plate that itself is adhered to the electrochromic element.


The printed circuit board may include electronic or electrical circuitry for actuating the variable reflectance of the reflective element and for operating other electrical or electronic functions supported in the rearview mirror assembly. The circuit board may support, for example, light emitting diodes (LEDs) for illuminating indicia on display elements provided on the chin of the bezel of the mirror assembly or display devices provided on the reflective element, or map or dash board lights or the like. The circuit board may be independently supported from the reflective element or in the casing or may be mounted to the reflective element's rear or fourth surface on a separate plate or may be directly adhered to the rear surface by a suitable adhesive. Reference is made to U.S. Pat. Nos. 5,671,996 and 5,820,245, the disclosures of which are hereby incorporated herein by reference in their entireties.


Optionally, and as described in U.S. patent application Ser. No. 10/054,633, filed Jan. 22, 2002, now U.S. Pat. No. 7,195,381, incorporated above, FIG. 40 describes a combined ground illumination/turn-signal indicator system 1600 suitable to use in an exterior mirror assembly of an automobile, and especially in smaller-sized exterior mirror assemblies, such as are used on, for example, a MY2002 Honda Accord or a MY2002 Toyota Camry or a MY2002 Acura Legend or a MY2002 Ford Taurus/Mercury Sable, and similar-sized passenger sedan vehicles. A lighting module 1650 comprises a plurality of five individual non-power LEDs 1620, 1622, 1624, 1626, 1628 (and that each, preferably, pass less than about 75 milliamps forward current when powered, more preferably each less than about 50 milliamps, and most preferably each less than about 30 milliamps) configured to emit angled light beams 1620a, 1622a, 1624a, 1626a, 1628a generally rearwardly, horizontally and laterally away from the body side of the vehicle equipped with module 1650, and so as not to be substantially visible to the driver of the subject vehicle equipped with module 1650, and constituting a turn signal indicator signal visible to a driver approaching/overtaking the vehicle from the rear (i.e. traveling in the same direction in which the subject vehicle equipped with module 1650 is traveling) such as in a blind spot of the reflective element of the particular exterior mirror assembly that module 1650 is included in. Such an arrangement is disclosed in U.S. Pat. No. 5,669,705. Note that beams 1620a, 1622a, 1624a, 1626a, 1628a project from the exterior mirror assembly generally horizontally to the road surface upon which the vehicle equipped with module 1650 is traveling. Module 1650 is optionally, and preferably, equipped with LED light source 1630 that is adapted to project light beam 1632 generally horizontally and directed away from the body side of the vehicle (and so function as a side-marker turn signal) and/or is equipped with LED light source 1640 that is adapted to project light beam 1642 generally horizontally and forwardly in the direction of travel of the vehicle equipped with module 1650 (and so function as a front turn signal).


Module 1650′ further includes a security light unit 1610′. As best seen in FIG. 41, security light assembly 1610′ projects a light beam 1615′ that is directed generally downward and at least generally rearward from the bottom of the driver-side or passenger-side exterior mirror assembly equipped with module 1650′ when mounted on the exterior of a vehicle (so as to illuminate the ground adjacent at least the front door and preferably adjacent the front and rear door of the side of the vehicle on which the exterior mirror assembly equipped with module 1650′ is mounted, in order to create a lighted security zone adjacent that side of the vehicle). Security light assembly 1610′ preferably comprises a single high-intensity power LED light source, and preferably a single high-intensity white light emitting LED light source such as the Luxeon™ Star Power LXHL-MW1A white light emitting diode described above, and preferably includes a heat sink and/or a reflector 1690′ and/or a lens 1696′, such as described above in connection with LED light module 1300. An electronic element 1695′ (that can comprise a load-dropping series power resistor and/or a direct current (DC) step-down conversion element and/or pulse width modulation circuitry) can be included in module 1610′ to allow connection of the preferred single LED light source in security light assembly 1610′ to the vehicle battery/ignition power supply (typically 12 volts DC nominal). Electronic element 1695′ preferably comprises an MC34063A control circuit or a National LM78S40 switching regulator or a MAX 1627 switching regulator.


Module 1650 preferably includes a unitary connector 1660 (FIG. 40) that allows connection of turn signal indicator LEDs 1620, 1622, 1624, 1626, 1628 and security light assembly 1610 to the vehicle wiring (so as, for example, to bring in the vehicle battery/ignition line and ground line to the electrical/electronic elements of module 1650) as a single-point-of-connect, thus facilitating electrical hook-up to the vehicle (such as by a single multi-pin plug/socket connection).


Module 1650 is preferably incorporated into an exterior mirror assembly as shown at 1750 in FIG. 42 (and such as disclosed in U.S. Pat. Nos. 6,276,821 and 5,669,705). A lighted exterior mirror system 1700 comprises a lighted exterior mirror assembly 1775 that includes a fixed portion 1725 adapted for attachment to vehicle exterior body portion 1780 and a movable portion 1778 that, preferably, includes a break-away joint to fixed portion 1725 (such as is disclosed in U.S. Pat. No. 5,371,659). Movable portion 1778 includes a housing portion 1723 that includes an exterior mirror reflective element 1730 (and preferably an electrochromic mirror reflective element, such as disclosed in U.S. Pat. Nos. 6,245,262; 6,154,306; 6,002,511; 5,910,854; 5,724,187; 5,668,663; 5,611,966; 5,500,760; 5,424,865; 5,239,405 and 5,233,461) that is mounted on an electrically-operated actuator (not shown) and that is located in a cavity 1770 formed by the walls of housing 1723. Module 1750 attaches to a lower portion of movable portion 1778 and comprises individual LED turn signal indicators 1720, 1722, 1724, 1726, 1728 (that each project a light beam generally horizontally and laterally away from body portion 1780 when the driver actuates a turn signal circuit of the vehicle, and that each, preferably, pass less than about 75 milliamps when powered, more preferably each less than about 50 milliamps and most preferably each less than about 30 milliamps) and further comprises a single high-intensity power LED security light assembly 1753 that projects a ground illumination light beam 1754 generally downwardly and at least rearwardly in order to create a lighted security zone, as described above with respect to security light assembly 1610′. Optionally, instead of single high-intensity power LED security light assembly 1753 (or in addition to), a single high-intensity power LED light module 1764 (preferably such as described in connection with module 1300 and that emits a ground illumination beam 1765 when powered in order to create a lighted security zone at entrances/exits to the vehicle equipped with assembly 1775) can be included in fixed portion 1725 of exterior mirror assembly 1775.


Note the use of an all-LED lighting system such as in module 1650 and module 1750 and in particular the combination of a plurality of individual lower-intensity (typically emitting less than 0.75 lumens and, more typically less than 0.5 lumens), lower current (less than 50 mA typically) non-power LEDs to form a turn signal indicator assembly and a compact (preferably less than about 20 mm cross-sectional diameter, more preferably less than about 15 mm, and most preferably less than about 10 mm) single high-intensity (luminous efficiency typically greater than about 1 lumen/watt, more preferably greater than about 3 lumens/watt, and most preferably greater than about 7 lumens/watt), high current (greater than 200 milliamps typically) power LED security light assembly in a common housing and forming a unitary sealed module is particularly well suited for exterior mirror assemblies of restricted size, and is particularly well suited for use in exterior mirror assemblies on mid-sized and compact sedan vehicles, where the width of the part of the mirror assembly that houses the exterior mirror reflective element has a width less than about 7.5 inches, more preferably less than about 6.5 inches, and most preferably less than about 5.5 inches. Also, in order to provide a compact combined turn signal/security light module for incorporation into an exterior mirror assembly, the combination of single high-intensity power LED source behind a linear row of lower-intensity individual non-power LED turn signal indicators, as best can be seen in FIG. 40, is advantageous.


Note also that a single high-intensity power LED turn signal assembly, such as those described above in connection with system 1400 and system 1500 can be combined with a single high-intensity power LED security light assembly (such as described in connection with module 1300) into a compact, sealed, unitary module that can be incorporated into an exterior mirror assembly.


A single high-intensity power LED lighting system 1800 suitable to use in the interior of a vehicle is shown in FIG. 43. An interior mirror assembly 1810 comprises a mirror housing 1808 that includes an interior mirror reflective element 1809 (preferably, an electrochromic reflective element). Mirror housing 1808 is pivotally adjustable about mirror support 1807 that is a two-ball support comprising two pivot joints 1804a, 1804b and a mirror mount 1805 that attaches via mirror mounting button 1803 to windshield portion 1802. A high-intensity single LED light module 1820 is included in the interior cavity formed by the walls of housing 1808 (and located at least partially behind reflective element 1809). Light module 1820 preferably includes a single high-intensity power LED light source 1850 that preferably is a white light emitting high-intensity LED such as the Luxeon™ Star Power LXHL-MW1A white light emitting diode described above. Light emitted by LED source 1850 (when powered) is shaped and directed by reflector 1840 and/or lens 1822 (as described above with respect to module 1300) to form light beam 1885 that preferably is of an intensity such as to illuminate a roughly 1 foot by 1 foot zone (such as at a lap area of a driver or front seat passenger in a vehicle in which mirror assembly 1810 is mounted) at a distance of about 20-40 inches and to an averaged light intensity of at least about 30 lux, more preferably at least about 50 lux, and most preferably at least about 75 lux. Such a high intensity single LED can function as a map light or reading light or courtesy light for a front seat occupant of the vehicle. LED light source 1850 is in thermal contact with a heat sink 1860 (fabricated of materials and preferably with heat dissipating elements, as previously described with respect to heat sink 1340). Vehicle battery/ignition power is provided to light source 1850 via a series power resistor 1870 that preferably has a power rating of at least about 2 watts, more preferably at least about 3 watts and most preferably at least about 4 watts. Preferably, heat sink 1860 functions as a heat sink/heat dissipater for heat generated within series power resistor 1870. Optionally, a direct current (DC) step-down voltage conversion element (such as an MC34063A control circuit or a National LM78S40 switching regulator or a MAX 1627 switching regulator) can be used as an alternate to, or in addition to, series power resistor 1870.


A single high-intensity power LED lighting system 1900 suitable to use in the interior of a vehicle is shown in FIG. 44. An interior mirror assembly 1910 comprises a mirror housing 1908 that includes an interior mirror reflective element 1909 (preferably, an electrochromic reflective element). Mirror housing 1908 is pivotally adjustable about mirror support 1907 that is a single-ball support comprising a single pivot joint 1904 and a mirror mount 1905 that attaches via a mirror mounting button 1903 to a windshield portion 1902. Note that, alternately, a header mounting to a header portion of the vehicle interior above the front windshield, as known in the automotive mirror art, can be used, without affecting the scope of the present invention. A single high-intensity LED light module 1920 is included in the interior cavity formed by the walls of housing 1908 (and preferably located at least partially behind reflective element 1909). Light module 1920 preferably includes a single high-intensity power LED light source 1950 that preferably is a white light emitting high-intensity LED such as the Luxeon™ Star Power LXHL-MW1A white light emitting diode described above. Light emitted by LED source 1950 (when powered) is shaped and directed by reflector 1940 and/or lens 1922 (as described above with respect to module 1300) to form light beam 1985 that preferably is of an intensity such as to illuminate a roughly 1 foot by 1 foot zone (at a lap area of a driver or front seat passenger in a vehicle in which mirror assembly 1910 is mounted) to an averaged light intensity of at least about 30 lux, more preferably at least about 50 lux, and most preferably at least about 75 lux. Such a high intensity single LED can function as a map light or reading light or courtesy light for a front seat occupant of the vehicle. LED light source 1950 is in thermal contact with a heat sink 1960 (fabricated of materials and preferably with heat dissipating elements as previously described with respect to heat sink 1340) that is combined with reflector 1940. Vehicle battery/ignition voltage and power is provided to light source 1950 via plug terminals 1971, 1972 that connect to a direct current (DC) step-down voltage conversion element 1970 (such as an MC34063A control circuit or a National LM78S40 switching regulator or a MAX 1627 switching regulator) that in turn connects to and feeds power (at a voltage typically in the about 1.5-5 volts range and at a current greater than about 100 milliamps, more preferably at least about 200 milliamps, and most preferably at least about 300 milliamps) to high-intensity LED light source 1950.


The system 1900′ shown in FIG. 45 is similar to that shown in FIG. 44, but with the high-intensity LED light module 1920′ of system 1900′ positioned in the mirror support 1907′ (sometimes referred to as the mirror bracket) of interior mirror assembly 1910′, and adapted to project an intense beam 1985′ of, preferably, white light down towards a lap area of an occupant of a front seat occupant of the vehicle.


Note that an LED light module such as described above could be included in a pod attaching to the interior mirror assembly or in an accessory module, such as are disclosed in U.S. Pat. Nos. 5,708,410; 5,576,687; 5,255,442; 4,930,742 and 4,807,096; and U.S. patent application Ser. No. 09/793,002, filed Feb. 26, 2001, now U.S. Pat. No. 6,690,268.


It should be understood from the foregoing that the present invention provides an improved non-incandescent light source unit/module suitable for use in a vehicle accessory, such as a lighted interior mirror assembly or a lighted exterior mirror assembly, including a ground illumination exterior mirror assembly, and in other interior lighting applications such as dome lights, rail lights, reading lights, or vanity lighting in a sunvisor. The unit is provided as a single or modular assembly that, preferably, can be directly and releasably mounted in the vehicle accessory, such as those disclosed in U.S. provisional applications, Ser. No. 60/263,680, filed Jan. 23, 2001; and Ser. No. 60,243,986, filed Oct. 27, 2000.


It should be understood from the foregoing that the present invention provides a high-intensity non-incandescent light source unit/module that, optionally, provides a one-for-one replacement for an incandescent light source in a vehicle accessory, such as a lighted interior mirror assembly or a lighted exterior mirror assembly, including a ground illumination exterior mirror assembly, and in other interior lighting applications such as dome lights, rail lights, reading lights, or vanity lighting in a sunvisor. The high-intensity LED lighting unit is provided as a single or modular assembly that can be directly and releasably plugged into a socket of an incandescent light source circuit, and be powered thereby, or can otherwise be incorporated into the vehicle accessory. Alternately, the light source unit/module of the present invention can be connected into other circuits that are connected to the vehicle ignition voltage supply. Furthermore, since LEDs do not typically generate the heat associated with incandescent light sources, more sensitive electronics which have either been heretofore relegated to exterior locations of the interior rearview mirror assembly, or to less desirable locations within the mirror assembly, may be located at more optimal positions within the mirror casing. Moreover, the mirror casing space proximate to the light source unit may be used to house heat sensitive devices, such as electronics.


Also, the present invention can be used for lighting for illumination purposes and the like, and especially for reading lights such as map reading lights, or for instrumentation/console lighting, provided in video mirror assemblies, rearview mirror assemblies, camera assemblies and/or accessory modules (and/or in other vehicular accessories, such as an exterior mirror assembly-mounted ground illumination/security light or in an exterior mirror assembly-mounted turn indicator or brake indicator signal light). Such accessories may include the high-intensity, high-current capability light emitting diodes such as the high-flux LEDs available from LumiLeds Lighting, U.S., LLC of San Jose, Calif. under the SunPower Series High-Flux LED tradename described above.


Suitable LEDs for the light sources of the present invention include a white light emitting light emitting diode, such as described in U.S. provisional applications, Ser. No. 60/263,680, filed Jan. 23, 2001; Ser. No. 60,243,986, filed Oct. 27, 2000; Ser. No. 60/238,483, filed Oct. 6, 2000; Ser. No. 60/237,077, filed Sep. 30, 2000; Ser. No. 60/234,412, filed July 21, 2000; Ser. No. 60/218,336, filed Jul. 14, 2000; and Ser. No. 60/186,520, filed Mar. 2, 2000; and U.S. patent applications, Ser. No. 09/793,002, filed Feb. 26, 2001, now U.S. Pat. No. 6,690,268; and Ser. No. 09/585,379, filed Jun. 1, 2000, including a thermostable LED, which emits the same color light even when the temperature varies. Thus, regardless of the interior or exterior temperature of the vehicle and/or of the accessory equipped with the thermostable non-incandescent light emitting diode source, the same color light is radiated. Such a thermostable white light emitting non-incandescent light emitting diode source can incorporate a trio of red, green, and blue fluorescent materials that together create white light when struck by 380 nm wavelength light from a gallium-nitride LED, and is available from Toyoda Gosei Co. and Toshiba Corp of Nagoya, Japan.


One suitable white light emitting diode (LED) that is thermostable is available from Toshiba America Electronic Components, Inc. of Irvine, Calif., Part Number: TLWA1100. The thermostable white-light LED integrates multiple colored phosphors and a short peak wavelength (preferably, approximately 380 nanometers (nm) in peak spectral output intensity) light-emitting diode junction in a phosphor-mixed transparent resin package to achieve a high luminosity, low power consumption light source. Such thermostable LEDs adopt a technological approach differing from that used in conventional LEDs. Light emission in the visible wavelength band is controlled by excited phosphors, not by using temperature changes in the LED to achieve a change in color output. The fact that the LED emission does not directly determine the color brings advantages in overall controllability and wavelength stability. Incorporated in vehicular accessories such as those disclosed above, the thermostable diode achieves improved tonic reproduction and enhanced color durability during temperature shifts. Such thermostable LEDs utilize a short wavelength light source by reducing the indium in an indium-doped GaN emission layer. This excites red, green, and blue (RGB) phosphors in the transparent resin of the device package to output white light. The RGB balance of the phosphor layer determines the output color, and different colored output can be achieved through modified phosphor balance. The emission light from the LED itself does not directly contribute to the white color. The phosphors used in the new LED offer excellent performance in terms of operating temperature range and color yield. Specifications of such thermostable white LEDs include a compact package (3.2×2.8 millimeter), provided in a Surface Mount Device (SMD). Luminosity is typically about 100 millicandela (mcd) at 20 mA and luminous flux/electrical watt is about 4.5-5.0 lumens per watt at 20 mA. Correlated color temperature is about 6,500-9,000 K. Operating temperature is about −40 degrees Celsius −100 degrees Celsius and storage temperature is about −40 degrees −100 degrees Celsius.


Depending on the application, LEDs emitting a colored light can be used, such as high-intensity amber and reddish orange light emitting diode sources, such as solid state light emitting diode LED sources utilizing double hydro junction AlGaAs/GaAs Material Technology, such as very high-intensity red LED lamps (5 mm) HLMP-4100/4101 available from Hewlett Packard Corporation of Palo Alto, Calif., or transparent substrate aluminum indium gallium phosphide (AlInGaP) Material Technology, commercially available from Hewlett Packard Corporation of Palo Alto, Calif. Also, blue can be used, or a combination of individual different colored diodes, such as red, blue, white, green, amber, orange etc. can be used with color mixing thereof to form a desired color or to deliver a desired local intensity of illumination as noted above. Other suitable white emitting light-emitting diodes are available from Nichia Chemical Industries of Tokyo, Japan and from Cree Research Inc., of Durham, N.C. For example, a white light emitting diode is available from Nichia Chemical Industries of Tokyo, Japan under Model Nos. NSPW 300AS, NSPW 500S, NSPW 310AS, NSPW 315AS, NSPW 510S, NSPW 515S and NSPW WF50S, such as is disclosed in U.S. patent applications, Ser. No. 09/448,700, filed Nov. 24, 1999, now U.S. Pat. No. 6,329,925, and Ser. No. 09/244,726, filed Feb. 5, 1999, now U.S. Pat. No. 6,172,613. A variety of constructions are used including GaAsP on GaP substrate, gallium aluminum phosphide, indium gallium nitride, and GaN on a SiC substrate. Optionally, a plurality of LEDs, such as a cluster of two, three, four, six, eight or the like LEDs (each of the same color or the cluster comprising different colored LEDs), can be used to target and illuminate a local area for higher illumination at that area, such as may be useful in a map light or as a reading light or as an interior light or as an illumination source for an interior vehicle cabin-mounted and monitoring camera (most preferably illuminating the target area with white light). Such a cluster of high efficiency LEDs can be mounted at the mirror mount so as to project an intense pattern of light generally downwardly into the vehicle cabin for purposes of map reading, general illumination, courtesy illumination and the like. Also, a cluster of LED's, preferably including at least one white emitting LED and/or at least one blue emitting LED, can be mounted in a roof portion, side portion or any other portion of the vehicle cabin to furnish dome lighting, rail lighting, compartment lighting and the like. Use of white emitting LEDs is disclosed in U.S. Pat. No. 6,152,590, entitled “LIGHTING DEVICE FOR MOTOR VEHICLES”, filed Feb. 12 1999, by Peter Fuerst and Harald Buchalla of Donnelly Hohe Gmbh & Co, KG.


As described above in connection with system 1400, it is sometimes desirable to mount a signal light behind the exterior mirror reflective element in the exterior mirror assembly, and such as is described in U.S. Pat. Nos. 6,166,848; 6,257,746; 6,045,243 and 5,788,357. Such incorporation of a signal light assembly such that the turn signal indicator light beam passes through the reflector of the reflective element (either by creating a local high transmission window in the reflector coating of the reflector of the exterior reflective element or by using a dichroic reflector) has the disadvantage of requiring a specialized reflective element specially adapted for this purpose. This approach is particularly disadvantageous for electrochromic exterior mirror reflective elements as dimming of the electrochromic medium in response to detected glare can also attenuate the intensity of the signal light beam(s) passing through the electrochromic medium.


An improved system 2000 whereby a turn signal element can be included in an exterior mirror reflective element assembly without the above disadvantages is shown in FIG. 46. An exterior mirror reflective element assembly 2150 comprises a bezel frame element 2100 (that typically comprises a molded polymeric structure, such as of a polypropylene material or an ABS material or an ASA material or a nylon material or the like). Exterior mirror reflective element assembly 2150 further comprises a principal exterior mirror reflective element 2120 (that provides the driver principally with a rearward field of view of other vehicles approaching from the rear in the side lane adjacent to the side of the vehicle that the exterior mirror assembly equipped with assembly 2150 is mounted to) and an auxiliary reflective element 2130 adapted to provide the driver with a field of view that extends laterally beyond that provided by reflective element 2120, and so as to function as a blind-spot mirror element. Exemplary constructions and materials suitable to use in assembly 2150 are disclosed in U.S. patent applications, Ser. No. 09/478,315, filed Jan. 6, 2000, now U.S. Pat. No. 6,522,451; and Ser. No. 09/745,172, filed Dec. 20, 2000, now U.S. Pat. No. 6,717,712.


Bezel frame element 2100 further includes a plurality of turn signal indicator elements 2102′, 2104′, 2106′, 2108′, 2110′, preferably located at a bezel frame element portion 2132 that separates and demarcates auxiliary reflective element 2130 (that preferably comprises a wide-angle mirror element and comprises a convex or aspheric metallic-reflective element, such as a chromium coated, bent glass or plastic substrate) from principal reflective element 2120 (that may be a flat, convex or aspheric mirror element, and that preferably comprises an electrochromic mirror element). Turn signal indicator elements 2102′, 2104′, 2106′, 2108′, 2110′ preferably comprise individual red light-emitting or amber light emitting LEDs such as those disclosed in U.S. Pat. Nos. 6,276,821 and 5,371,659. Turn signal indicator elements 2102′, 2104′, 2106′, 2108′, 2110′ are preferably mounted in bezel element 2100 at an angle so that the light beams emitted (beams 2102a′, 2104a′, 2106a′, 2108a′, 2110a′ as shown in FIG. 47) are directed horizontally and laterally away from the side of the vehicle (preferably at an angle of at least about 15 degrees to the longitudinal axis of the vehicle) to which the exterior mirror assembly equipped with assembly 2150 is mounted, and so as not to be substantially visible to the driver of the subject vehicle (and so distract when operated at night), but be visible to a driver of another vehicle overtaking the subject vehicle from the rear.


Assembly 2150 is preferably supplied to an exterior mirror assembly manufacturer by a mirror reflective element manufacturer as a sealed module that includes the mirror reflective element(s), any load dropping resistor used in conjunction with the LED turn signal light source(s), any heater pad(s) used in association with the reflective element(s), any interconnection wiring and connector(s), and any backing plate element that attaches to a mirror adjustment mechanism such as an electrically-operated actuator, as is conventional. Thus, a unitary module can be supplied that allows an automaker choose to include a turn signal indicator into an exterior mirror assembly while impacting substantially only the mirror reflective element that detachably attaches to a mirror-adjustment mechanism.


As an alternate to using a plurality of lower-intensity, lower-current individual non-power LEDs as described above, a single high-intensity, high-current power LED can be used along with light piping, heat sinking and low heat-dissipation circuitry such as are described above. Also, turn signal indicator light sources can optionally be placed in alternate, or additional, locations in bezel frame 2100, such as portion 2133, 2134 or 2135 or elsewhere around bezel frame 2100. Further, a portion (such as portion 2132) or all of bezel frame element 2100 can be fabricated of a colored (such as red or amber), light-transmissive material (such as is conventionally used for automotive exterior brake and turn lights), and with the turn signal light sources located in the bezel element radiating from behind and through this colored, light-transmissive material. Also, instead of the dual reflective element assembly shown in FIG. 46, a single reflective element assembly (such as an electrochromic reflective element and assembly disclosed in U.S. Pat. No. 5,151,824) can be used, and with the individual turn signal light sources being located in the bezel that holds the reflective element into the reflective element assembly.


Also, where a heater pad (such as is disclosed in U.S. Pat. Nos. 5,446,576 and 5,151,824) is used in connection with an exterior rearview mirror reflector in an exterior mirror assembly equipped with a Luxeon™ Star Power high-intensity, high-current power LED system as disclosed herein, at least a portion of the resistive path/heater element that is comprised in such exterior mirror heater pads (that are typically used for defrosting ice and the like accumulated on the exterior of the mirror reflector during sub-zero temperatures) can be electrically connected in series with the high-intensity power LED used so that the heater pad serves as a voltage-dropping element for the power LED and so that any heat being dissipated is beneficially used to heat the exterior mirror reflector. In this regard, and referring to FIG. 48, improved lighted exterior mirror system 3700 comprises exterior mirror assembly 3780 (that attached to vehicle side body portion 3785). Exterior mirror assembly 3780 includes a ground illumination light source 3710 and a mirror reflective element 3782 that is heated by heater element 3784 (typically a PTC heater pad). Ground illumination light source 3710 illuminates when actuated by control 3750 (that is located in the vehicle) but only if not locked-out by lock-out 3730. Control 3750 actuates light source 3710 upon receipt of a signal from actuator 3760 (that, for example, may be a hand-held key fob that wirelessly communicates, such as by RF or IR communication, with control 3750 and such as is disclosed in U.S. Pat. No. 5,371,659; or it may be an actuator responsive to the proximity of approach of a person to the vehicle when parked or in response to actuation of a passive entry system of the vehicle). Once actuated by control 3750 (and assuming not locked-out by lock-out 3730 so as to prevent inadvertent actuation when the vehicle is being normally operated on a highway and not parked), light source 3710 illuminates to create a lighted security zone adjacent at least the front door on the vehicle side to which assembly 3780 is mounted until timeout 3740 times out (a timeout period of about 20 to 60 seconds typically, or longer if desired). Preferably, light source 3710 comprises a light emitting diode and preferably, a high-intensity, high-current capability power light emitting diode such as a high-flux LED available from LumiLeds Lighting, U.S., LLC of San Jose, Calif. under the SunPower Series High-Flux LED tradename. Such high intensity LEDs comprise a power package allowing high current operation of at least about 100 milliamps forward current, more preferably at least about 250 milliamps forward current, and most preferably at least about 350 milliamps forward current through a single LED. Such high current/high intensity LEDs (as high as 500 mA or more current possible, and especially with use of heat sinks) are capable of delivering a luminous efficiency of at least about 1 lumen per watt, more preferably at least about 3 lumens per watt, and most preferably at least about 5 lumens per watt. For applications such as ground illumination from exterior mirror assemblies and map/reading lighting from interior mirror assemblies or from windshield-mounted accessory modules such as windshield electronic modules or for ground illumination/camera-field-of-view illumination in association with video-based reverse-aids systems or park-aid systems or tow hitch-aid systems, it is preferable to use a single high-intensity power LED source having a luminous efficiency of at least about 7 lumens/watt; more preferably at least about 15 lumens/watt; and most preferably at least about 20 lumens/watt, with such single high efficiency power LED light source preferably being provided in a module that includes a heat sink/heat dissipater and most preferably, that further includes a power regulator such as a series power resistor and most preferably, a DC to DC voltage converter. Such high efficiency power LEDs are available from LumiLeds Lighting, U.S., LLC of San Jose, Calif. under the SunPower Series High-Flux LED tradename, for example. Preferably LED light source 3710 is connected in electrical series with heater element 3784 such that when vehicle battery voltage/vehicle ignition voltage (currently about 12V nominal but in future vehicles, about 42V nominal or a division thereof) is applied across the series combination, the difference between the desired forward voltage desired to operate light source 3710 and vehicle battery/ignition voltage is applied across heater element 3784 (or a portion thereof) such that heater element 3784 functions as a voltage divider and as a power dissipater that ballasts the application of vehicle battery/ignition voltage to light source 3710. By way of illustration, assume light source 3710 comprises a Luxeon™ Star Power white light power LED with a forward operating voltage of 2.5 volts and passing a forward current of 350 milliamps when operating. With such a light source, and with a 12V vehicle battery, the resistance of heater element 3784 (or a portion thereof) in series electrical connection with the LED light source is chosen to be 30 ohms so that when 350 milliamps is passed by the white light LED (and being in series therewith, also passed by the heater element or portion thereof), a voltage of 10.5 volts is dropped by the heater element (or portion thereof) that functions as a ballast to the high current white light LED. Consequently, power of 3.675 watts is dissipated by the heater element, which power can beneficially heat the mirror reflective element 3784 that heater element 3784 thermally contacts to heat (such as is desirable to remove condensation or frost or the like). Note that such an arrangement when used in a security lighting/ground illumination system such as disclosed in the '659 patent referenced above has the advantage of providing a deicing/defrosting/heating of an exterior mirror reflective element before the driver enters the vehicle and/or the ignition is turned on (conventionally, such heater elements are actuated when the driver enters the vehicle and turns on the ignition). Thus, in the present invention, a driver approaching his or her vehicle can remotely, and at a distance, actuate the security lights in the exterior mirror assemblies on the vehicle, and for as long as these lights are actuated, the heater pads attached to the exterior mirror reflective element assemblies are dissipating energy, and are consequently heating the respective mirror reflective elements and assisting defrosting/demisting thereof. Optionally, heater pad 3784 (or a portion thereof) can be connected with the vehicle battery so that the full vehicle battery voltage is applied thereto (or to a portion thereof) but with such connection and application of the vehicle battery voltage being controlled by control 3750 such that a driver approaching his or her vehicle can remotely, and at a distance, actuate the security lights and/or the heater elements in the exterior mirror assemblies on the vehicle, and for as long as timeout 3740 has not timed-out, the heater pads attached to the mirror reflective elements in the exterior mirror assemblies are dissipating energy, and are consequently heating the respective mirror reflective elements and assisting defrosting/demisting thereof.


Optionally, and as described in U.S. Pat. No. 5,724,187, incorporated above, a mirror reflective element assembly 1401 may include front and rear substrates that may be flush or offset relative to one another. For example, and with reference to FIGS. 49 and 50A-C, an exposed portion of the conductive electrode coatings 1404, 1404′ may be provided through displacement in opposite directions relative to one another—i.e., laterally from, but parallel to, the cavity which is created by the substrates 1402, 1403 and the sealing means 1405 of the substrates 1402, 1403 onto which the bus bars may be affixed or adhered (see FIG. 50A). In addition, substrates 1402, 1403 may be off-set to provide an exposed portion of the conductive electrode coatings 1404, 1404′ through displacement in opposite directions relative to one another followed by perpendicular displacement relative to one another (see FIG. 50B). The dimensions of substrates 1102, 1103 may also be such that, for example, substrate 1402 may have a greater width and/or length than substrate 1403. Thus, simply by positioning substrates 1402, 1403 in spaced-apart relationship and so that their central portions are aligned will allow for peripheral edges of the substrate with greater dimensions to extend beyond the peripheral edges of the substrate with smaller dimensions. Thus, a portion of conductive electrode coating 1404 or 1404′ will be exposed, depending on whichever of substrates 1402, 1403 is dimensioned with a larger width and/or length (see FIG. 50C).


An exposed portion of the conductive electrode coatings 1404, 1404′ may also be provided in a flush design, where the substrates 1402, 1403 are sized and shaped to like dimensions. In such a flush design, the first substrate 1402 and the second substrate 1403 may each be notched at appropriate positions along their respective edges. The notches so provided present convenient areas for bus bars and/or point contacts to which are connected or affixed electrical leads 1410 for the introduction of an applied potential thereto.


It may also be desirable to apply a layer of reflective material onto the inward surface of substrate 1403, and with substrate 1403 notched in at least one appropriate position along its edges. In this way, direct access is available to the conductive electrode coated inward surface of substrate 1402. Likewise, substrate 1402 may be notched at a position appropriately spaced from the notch or notches on substrate 1403 to provide access to the conductive electrode coated inward surface of substrate 1403. These notches provide convenient areas for electrical leads to be connected or affixed, and allow for such connection or affixation to be made within the overall dimensions of the mirror assembly. For example, one or both of the substrates 1402, 1403 may be notched along one or more edges, and bus bars may then be affixed over the exposed portion of conductive electrode coatings 1404, 1404′ of substrates 1402, 1403. Electrical leads may then be joined to the bus bars. The electrical connection may be made to the inward surfaces of substrates 1402, 1403 without requiring further electrical connection on the peripheral edge of the mirror assembly. As such, the electrical connection to conductive electrode coatings 1404, 1404′ will be hidden from view by the reflective element and/or the mirror case or housing.


Alternatively, one or more localized lobe(s) may be provided at appropriate positions along the respective edges of substrates 1402, 1403 to facilitate direct access to the conductive coated inward surfaces of substrates 1402, 1403.


The bus bars may also comprise thin metal films, preferably with a thickness within the range of about 500 Å to about 50,000 Å or greater. These thin metal film bus bars may be deposited onto conductive electrode 1404 and/or 1404′ by vacuum deposition, such as by evaporation or sputtering, and typically have a width within the range of about 0.05 mm to about 6 mm (and preferably with a thickness in the range of 0.05 μm to about 5 μm or greater) and are inboard from the perimeter edge of the substrate.


To form the thin metal film bus bars, a mask may be affixed over the central region of the substantially transparent conductive electrode coated substrate leaving at least a portion, and preferably most, of the perimeter region unmasked. Then a thin film of metal, such as chromium and/or silver, or other metals such as copper, titanium, steel, nickel-based alloys, and the like, may be deposited using a vacuum deposition process across the entire surface, coating both the masked central region and the unmasked perimetal region. Thereafter, the mask may be removed leaving the central region of the substrate transparent and with a conducting thin metal film bus bar deposited on at least a portion of the perimetal region. For manufacturing economy, it may be desirable to establish thin metal film bus bars on the inward surface of substrate 1402, conductive electrode coating 1404′ and electrochromic solid film 1407 in a unitary vacuum deposition process step. Thus, it may be convenient to overlay in central alignment, for example, substrate 1403 (being uncoated glass) onto the substantially transparent conductive electrode coated surface of substrate 1402, where substrate 1403 is sized and shaped 30 about 2 mm to about 4 mm smaller in both length and width than substrate 1402 (see e.g., FIG. 50C). A peripheral edge of substrate 1402 of about 2 mm to about 4 mm will then extend beyond the peripheral edge of substrate 1403. In this instance, substrate 1402 is made, for example, from ITO-coated glass, and substrate 1403 is made from clear soda-lime glass. With this configuration, a vacuum deposition process may be used to deposit a thin metal film and, optionally, a metal oxide thereover, across the entire surface.


Upon completion of the deposition process, the substrates 1402, 1403 may be separated from one another. The formation of a thin metal film bus bar consisting of a chromium/silver coating about the peripheral edge of substrate 1402 may then be seen where, because of its smaller dimensions, substrate 1403 has served the role of a mask to the major, central region of substrate 1402 during deposition. That is, when substrate 1403 is removed, the major, central region of substrate 1402 has not been coated during the deposition and the transparency of the major, central region of substrate 1402 is maintained. Because this thin metal film bus bar is highly conductive and extends about the entire periphery of substrate 1402, electric potential may be supplied by means of a point electrical contact (optionally with local removal of any metal oxide) without the need for a large metal clip or ribbon connector wire as has been conventionally used heretofore. Moreover, because the thin metal film bus bar consists of a chromium/silver coating it forms a highly reflective perimeter coating which may be used to conceal any seal and/or electrical connection for the electrochromic cell [See U.S. Pat. No. 5,060,112 (Lynam)].


Also, whether the sealing means 1405 is a single seal or a double seal, it may be desirable for the seal material to comprise a cured conductive adhesive so that the seal, or at least a portion thereof, may provide, in whole or at least in part, an electrical bus bar function around the perimeter of a substrate of the assembly. When using such a combined seal and bus bar, care should be taken to avoid electrically shorting the inward facing surfaces of substrates 1402 and 1403. To obviate this, a seal construction, such as that shown in FIG. 51A, may be used. With reference to FIG. 51A, substrates 1420 and 1430 are coated on their inwardly facing surfaces with electrical conductor electrodes 1420′ and 1430′. The substrates 1420, 1430 are mated together with the compound seal 1450. The compound seal 1450 includes a conducting seal layer 1450A (formed, for example, of a conducting epoxy such as is described below) and a non-conducting, electrically insulating seal layer 1450B (formed, for example, of a conventional, non-conducting epoxy), which serves to insulate the two conducting electrodes from electrically shorting via conducting seal layer 1450A. Since the compound seal 1450 essentially circumscribes the edge perimeter of the part, the conducting seal layer 1450A (to which electrical potential may be connected to via the electrical lead 1490) serves as an electrically conductive bus bar that distributes applied electrical power more evenly around and across the electrochromic medium (not shown) sandwiched between the substrates 1420 and 1430.


Where the electrical conductor electrode 1420′, 1430′ on at least one of the opposing surfaces of the substrates 1420, 1430 is removed (or was never coated) in the region of the peripheral edge (as shown in FIG. 51B), a unitary conducting seal (as opposed to 35 the compound seal of FIG. 51A) may be used. Reference to FIG. 51B shows the electrically conducting seal 1450A joining the electrical conductor electrode 1430′ on the surface of substrate 1430 to a bare, uncoated surface of opposing substrate 1420. Since the contact area of the conducting seal layer 1450A to the substrate 1420 is devoid of the electrical conductor electrode 1420′, the conducting seal layer 1450A does not short the electrodes 1420′ and 1430′. Conducting seal layer 1450A serves the dual role of bus bar and seal, yielding economy and ease in device fabrication and production. Conducting seal layer 1450A may form a single seal for the cell or may be one of a double seal formed, for example, when a conventional, non-conducting epoxy is used inboard of that conducting seal.


Such a construction is particularly amenable to devices, such as those depicted in FIG. 49. For instance, in a rearview mirror, a fixture can form a mask around the edge substrate perimeter, while an adhesion layer of chromium followed by a reflector layer of aluminum followed by an electrochromic layer of tungsten oxide are deposited. Once removed from such a coating fixture, the edges, as masked by the coating fixture, are uncoated and present a bare glass surface for joining via a conductive epoxy seal to an opposing transparent conductor coated substrate. In such a configuration, the conductive seal can serve as a bus bar for the transparent conductor coated substrate it contacts without shorting to the reflector/adhesion layers on the opposite substrate.


As described supra, it may be advantageous to construct electrochromic mirrors whose reflective element is located within the laminate assembly. This may be achieved by coating the inward surface of substrate 1403 with a layer of reflective material, such as silver, so that the silver coating (along with any adhesion promoter layers) is protected from the outside environment. For example, a layer of reflective material may be vacuum deposited onto the inward surface of substrate 1403 in one and the same process step as the subsequent deposition of the electrochromic solid film 1407 onto substrate 1403. This construction and process for producing the same not only becomes more economical from a manufacturing standpoint, but also achieves high optical performance since uniformity of reflectance across the entire surface area of the mirror is enhanced. The thin film stack [which comprises the electrochromic solid film 1407 (e.g., tungsten oxide), the layer of reflective material (e.g., silver or aluminum) and any undercoat layers between the layer of reflective material and substrate 1403] should have a light reflectance within the range of at least about 70% to greater than about 80%, with a light transmission within the range of about 1% to about 20%. Preferably, the light transmission is within the range of about 3% to about 20%, and more preferably within the range of about 4% to about 8%, with a light reflectance greater than about 80%.


The inward facing surface of substrate 1403 may be coated with a multi-layer partially transmitting/substantially reflecting conductor comprising a partially transmitting (preferably, in the range of about 1% to about 20%)/substantially reflecting (preferably, greater than about 70% reflectance, and more preferably, greater than about 80% reflectance) metal layer (preferably, a silver or aluminum coating) that is overcoated with an at least partially conducting transparent conductor metal oxide layer [comprising a doped or undoped tin oxide layer, a doped or undoped indium oxide layer (such as indium tin oxide) or the like]. Optionally, an undercoating metal oxide (or another at least partially transmitting metal compound layer, such as a metal nitride like titanium nitride) may be included in the stack which comprises the multilayer conductor. This multi-layer conductor functions as the reflective element, and can be overcoated with electrochromic solid film 1407 during fabrication of an electrochromic mirror incorporating on demand displays.


Alternatively, the multi-layer conductor described supra may be used on the inward surface of substrate 1403, with the electrochromic solid film 1407 coated onto the inward surface of substrate 1402.


A light reflectance of at least 70% (preferably, at least 80%) for the reflective element to be used in an electrochromic mirror incorporating on demand displays is desirable so that the bleached (unpowered) reflectivity of the electrochromic mirror can be at least 55% (preferably, at least 65%) as measured using SAE J964a, which is the recommended procedure for measuring reflectivity of rearview mirrors for automobiles. Likewise, a transmission through the reflective element of, preferably, between about 1% to 20% transmission, but not much more than about 30% transmission (measured using Illuminant A, a photopic detector, and at near ‘normal incidence) is desirable so that emitting displays disposed behind the reflective element of the electrochromic mirror are adequately visible when powered, even by day but, when unpowered and not emitting, the displays (along with any other components, circuitry, backing members, case structures, wiring and the like) are not substantially distinguishable or visible to the driver and vehicle occupants.


Optionally, the outermost surface of the substrate (i.e., the surface contacted by the outdoor elements including rain, dew and the like when, for example, the substrate forms the outer substrate of an interior or exterior rearview mirror for a motor vehicle constructed) can be adapted to have an anti-wetting property. For example, the outermost glass surface of an exterior electrochromic rearview mirror can be adapted so as to be hydrophobic. This reduces wetting by water droplets and helps to obviate loss in optical clarity in the reflected image off the exterior mirror when driven during rain and the like, caused by beads of water forming on the outermost surface of the exterior electrochromic mirror assembly. Preferably, the outermost glass surface of the electrochromic mirror assembly is modified, treated or coated so that the contact angle θ (which is the angle that the surface of a drop of liquid water makes with the surface of the solid anti-wetting adapted outermost surface of the substrate it contacts) is preferably greater than about 90 degrees, more preferably greater than about 120 degrees and most preferably greater than about 150 degrees. The outermost surface of the substrate may be rendered anti-wetting by a variety of means including ion bombardment with high energy, high atomic weight ions, or application thereto of a layer or coating (that itself exhibits an anti-wetting property) comprising an inorganic or organic matrix incorporating organic moieties that increase the contact angle of water contacted thereon. For example, a urethane coating incorporating silicone moieties (such as described in U.S. Pat. No. 5,073,012) may be used. Also, to enhance durability, diamond-like carbon coatings, such as are deposited by chemical vapor deposition processes, can be used as an anti-wetting means on, for example, electrochromic mirrors, windows and devices.


Double image performance in rearview mirrors is greatly assisted by the use of a vacuum-assisted sealing technique. An example of such a technique is a vacuum bag technique where, spacer means, such as spacer beads, are disposed across the surfaces of the substrates being mated, and a vacuum is used to better assure substrate to substrate conformity. It is preferable for at least one substrate (usually the first or front substrate) to be thinner than the other, and preferably for at least one substrate to have a thickness of 0.075″ or less, with a thickness of 0.063″ or less being more preferable, and with a thickness of 0.043″ or less being most preferable. This improvement in double image performance is particularly desirable when producing convex or multi-radius outside mirror parts, and when producing large area parts (such as, Class 8 heavy truck mirrors), and especially when vacuum backfilling is used in their production.


For exterior mirrors that have an area of at least about 140 cm2, it is desirable to place at least some rigid spacer means (such as precision glass beads) at locations within the interpane space between the substrates in the laminate electrochromic cell. Preferably, such spacer beads are chosen to have a refractive index within the range of about 1.4 to about 1.6 so that they optically match the refractive index of the substrates (typically glass) and the electrolyte. These rigid spacer beads not only assist conformity and uniformity of interpane spacing, but also help maintain the integrity of peripheral seals on exterior rearview mirrors assemblies that use a liquid or thickened liquid. For instance, the peripheral seal may burst if an installer or vehicle owner presses on the mirror at its center and causes a hydraulic pressure build-up at the perimeter seal due to the compression of the fluid or thickened fluid at the part center. Use of such spacer beads, particularly when located at the center of the part within the interpane space, are beneficial in this regard whether the exterior rearview mirror is a flat mirror, convex mirror or multi-radius mirror, and is particularly beneficial when at least the first or front substrate (the substrate touched by the vehicle operator or service installer) is relatively thin glass, such as with a thickness of about 0.075″ or less. Use of, for example, two substrates, each having a thickness of about 0.075″ or less, for exterior rearview mirrors, including large area mirrors of area greater than about 140 cm2, has numerous advantages including reduced weight (reduces vibration and facilitates manually- and electrically-actuated mirror adjustment in the mirror housing), better double-image performance, and more accurate bending for convex/multi-radius parts.


Optionally, on demand displays may be positioned behind the reflective element of the mirror and become activated by user input or by input from a sensor, such as a supplementary vision device (e.g., camera, sensor, proximity detector, blind-spot detector, infrared and microwave detector), temperature sensor, fuel sensor, fault detector, compass sensor, global positioning satellite detector, hazard detector or the like. In addition, a vehicle function (such as a turn signal, hand brake, foot brake, high beam selection, gear change, memory feature selection and the like) may activate the on demand display. The on demand display may also be activated by a function such as a compass, clock, a message center, a speedometer, an engine revolution per unit meter and the like. In the context of their use in conjunction with rearview mirrors for motor vehicles, an on demand display, when not active or activated, should desirably remain at least substantially unobservable or undetectable by the driver and/or passengers. Similarly, in other applications with which these on demand displays may be desirably used, they should remain at least substantially unobservable or undetectable when not activated.


On demand displays should be an emitting electronic display, such as a vacuum fluorescent display, a light emitting diode, a gas discharge display, a plasma display, a cathode ray tube, an electroluminescent display and the like.


If a display is to be mounted behind the reflective element, an appropriately sized and shaped aperture through the auxiliary heating means should be used to accommodate the display but not leave portions of the mirror unheated for de-icing or de-misting purposes. Likewise, should a heat distribution pad be used, such as an aluminum or copper foil as described in the '676 application, an appropriately sized and shaped aperture should also be provided therein to accommodate such displays. Where apertures are to be included in a PTC heater pad, a pattern of resistive electrodes which contact the conductive polymer, which may typically be applied by a silk-screening process as described in Friel, should be designed to accommodate the apertures in the pad. In addition, such a pattern may also be useful to thermally compensate for the apertures in the pad. Alternatively, the resistive electrode/conductive polymer combination may be applied, for example, directly onto the rearmost (non-inward) surface of substrate 3, or onto a heat distribution pad that is contacted and/or adhered thereto.


It may also be advantageous to provide mirrors in the form of a module, which module comprises the mirror itself and its electrical connection means (e.g., electrical leads); any heater pad (optionally, including a heat distribution pad) and associated electrical connection means; bezel frames; retaining members (e.g., a one-piece plate) and electrical connection means (see e.g., O'Farrell); actuators [e.g., Model No. H16-49-8001 (right-hand mirror) and Model No. H16-49-8051 (left-hand mirror), commercially available from Matsuyama, Kawoge City, Japan] or planetary-gear actuators [see, U.S. Pat. No. 4,281,899 (Oskamo) and the '947 application] or memory actuators that include memory control circuitry such as Small Electrical Actuator #966/001 which includes a 4 ear adjusting ring, 25 degree travel and an add-on memory control and is available from Industrie Koot B. V. (IKU) of Montfort, Netherlands; and brackets for mounting the module within the casing or housing of a mirror assembly such as taught by and described in the '947 application. Electrochromic mirrors may be assembled using these items to provide modules suitable for use with a mirror casing or housing that includes the electrochromic element, which incorporates the reflective element and any associated components such as heater means, bezel means, electrically or manually operable actuation means, mounting means and electrical connection means. These components may be pre-assembled into a module that is substantially sealed from the outside environment through the use of sealants like silicones, epoxies, epoxides, urethanes and the like. These components may also be formed and/or assembled in an integral molding process, such as with those processes described in U.S. Pat. No. 4,139,234 (Morgan) and U.S. Pat. No. 4,561,625 (Weaver), each of which describe suitable molding processes in the context of modular window encapsulation. An added-value electrochromic mirror module, including the actuators which allow adjustment and selection of reflector field of view when mounted within the outside mirror housings attached to the driver-side and passenger-side of a vehicle, may be pre-assembled and supplied to outside vehicular mirror housing manufacturers to facilitate ease and economy of manufacturing.


Many aspects of the present invention, particularly those relating to the use of PRM and emitting displays; glass cover sheets, foils and the like; and thin film metal coatings that are applied locally and that are substantially reflecting and partially transmitting, may of course be employed with non-electrochromic rearview mirrors for motor vehicles, such as conventional prismatic mirrors. For instance, with exterior rearview mirrors for motor vehicles, a driver-side rearview mirror and a passenger-side rearview mirror may be mounted in combination on a motor vehicle to be used to complement one another and enhance the driver's rearward field of view. One of such mirrors may be an electrochromic mirror and the other mirror may be a non-electrochromic mirror, such as a chromed-glass mirror, with both exterior mirrors benefitting from these aspects of the present invention. In addition, these aspects of the present invention may be employed in connection with a display window that has been established in a prismatic mirror.


Optionally, and as described in U.S. Pat. No. 5,668,663, incorporated above, one or more localized lobe(s) may be provided at appropriate positions along the respective edges of substrates 1402, 1403 to facilitate direct access to the conductive coated inward surfaces of substrates 1402, 1403.


The bus bars may also comprise thin metal films, preferably with a thickness within the range of about 500 Angstroms to about 50,000 Angstroms or greater. These thin metal film bus bars may be deposited onto conductive electrode 1404 and/or 1404′ by vacuum deposition, such as by evaporation or sputtering, and typically have a width within the range of about 0.05 mm to about 6 mm (and preferably with a thickness in the range of 0.05 μm to about 5 μm or greater) and are inboard from the perimeter edge of the substrate.


To form the thin metal film bus bars, a mask may be affixed over the central region of the substantially transparent conductive electrode coated substrate leaving at least a portion, and preferably most, of the perimeter region unmasked. Then a thin film of metal, such as chromium and/or silver, or other metals such as copper, titanium, steel, nickel-based alloys, and the like, may be deposited using a vacuum deposition process across the entire surface, coating both the masked central region and the unmasked perimetal region. Thereafter, the mask may be removed leaving the central region of the substrate transparent and with a conducting thin metal film bus bar deposited on at least a portion of the perimetal region. For manufacturing economy, it may be desirable to establish thin metal film bus bars on the inward surface of substrate 1402, conductive electrode coating 1404′ and electrochromic solid film 1407 in a unitary vacuum deposition process step. Thus, it may be convenient to overlay in central alignment, for example, substrate 1403 (being uncoated glass) onto the substantially transparent conductive electrode coated surface of substrate 1402, where substrate 1403 is sized and shaped about 2 mm to about 4 mm smaller in both length and width than substrate 1402 (see e.g., FIG. 50C). A peripheral edge of substrate 1402 of about 2 mm to about 4 mm will then extend beyond the peripheral edge of substrate 1403. In this instance, substrate 1402 is made, for example, from ITO-coated glass, and substrate 1403 is made from clear soda-lime glass. With this configuration, a vacuum deposition process may be used to deposit a thin metal film and, optionally, a metal oxide thereover, across the entire surface.


Upon completion of the deposition process, the substrates 1402, 1403 may be separated from one another. The formation of a thin metal film bus bar consisting of a chromium/silver coating about the peripheral edge of substrate 1402 may then be seen where, because of its smaller dimensions, substrate 1403 has served the role of a mask to the major, central region of substrate 1402 during deposition. That is, when substrate 1403 is removed, the major, central region of substrate 1402 has not been coated during the deposition and the transparency of the major, central region of substrate 1402 is maintained. Because this thin metal film bus bar is highly conductive and extends about the entire periphery of substrate 1402, electric potential may be supplied by means of a point electrical contact (optionally with local removal of any metal oxide) without the need for a large metal clip or ribbon connector wire as has been conventionally used heretofore. Moreover, because the thin metal film bus bar consists of a chromium/silver coating it forms a highly reflective perimeter coating which may be used to conceal any seal and/or electrical connection for the electrochromic cell [See U.S. Pat. No. 5,066,112 (Lynam)].


In addition, the surface of substrate 1403 which was exposed during deposition is now coated with a chromium/silver/tungsten oxide stack, which may be used as the inward surface in forming an electrochromic cell. The cut edge of substrate 1403 is also coated with a chromium/silver coating during the unitary vacuum deposition process due to the inevitable overspray which occurs in such a process. This chromium/silver coating around the cut edge of substrate 1403 may itself conveniently be used to establish an electrical connection to apply potential to electrochromic solid film 1407.


Optionally, and as described in U.S. Pat. No. 5,668,663, incorporated above, the present teaching is well-suited for use in electrochromic mirrors having a curved functional surface, with a convex curvature, a compound curvature, a multi-radius curvature, aspherical curvature, an aspheric curvature, or combinations of such curvature (See FIG. 52). Convex electrochromic mirrors for motor vehicles may be manufactured with the electrochromic element of the present invention, with radii of curvature typically within the range of about 25″ to about 250″, preferably within the range of about 35″ to about 120″, as are conventionally known.


Multi-radius mirrors for motor vehicles, such as those described in U.S. Pat. No. 4,449,786 (McCord), may also be manufactured in accordance with the present invention. Multi-radius mirrors for motor vehicles may typically be used on the driver-side exterior of a motor vehicle to extend the driver's field of view and to enable the driver to see safely and to avoid blind-spots in the rearward field of view. Generally, such mirrors have a region of a higher radius (i.e., substantially planar or flat) closer or inboard to the driver that serves principally as the primary driver's rear vision function and a region of a lower radius (i.e., more curved) farther or outboard from the driver that serves principally as the blind-spot detection zone in the mirror.


In forming spherical mirrors, such as convex exterior mirrors, or aspherical mirrors such as the multi-radius mirror 1544 in FIG. 52, the radius of curvature for the substrates to be used for the laminate assembly formed by the electrochromic element 1501 between substrates 1502, 1503 should be matched. Moreover, in aspherical mirrors, the two substrates 1502, 1503 in the laminate assembly should be matched so that the local radius in one substrate, for example in the first substrate 1502, is located over, and oriented to align with, its corresponding local radius in the other substrate, for example, in the second substrate 1503 (See FIG. 52).


To achieve such radius of curvature matching, a desired shape for the substrates of the aspherical mirrors may be cut from a flat substrate of dimensions greater than that of the desired multi-radius shape. This initial flat substrate (“a flat minilite”) may have a rectangular, square or circular shape, or may be of the general shape of the desired multi-radius shape, or any other convenient alternative shape. Glass lites from which the flat minilites may be cut are desirably substantially colorless or tinted soda-lime sheets of glass. In addition, depending on the particular mirror construction and whether the desired bent shape derived from the flat minilite is to be employed as the front substrate 1502 or the rear substrate 1503, glass lites/flat minilites, from which the desired bent shape may be derived, may be coated with a substantially transparent conductive electrode coating, such as ITO or fluorine-doped tin oxide. As noted supra, fluorine-doped tin oxide coated glass is commercially available from Libbey-Owens-Ford Co. under the “TEC-Glass” tradename.


Once cut, the oversized flat minilites may be bent to the desired multi-radius using either conventional slump bending or press bending. Also, individual minilites may be bent to compound curvature or two flat minilites may be bent together as a matched pair. To manufacture a matched pair of bent minilites, two flat minilites may be stacked on top of one another, loaded in a tandem orientation into a bending press and bent together to the desired curvature (which may be spherical or aspherical) in one bending process step.


Where individual bent minilites are to be manufactured, any one bent minilite manufactured in any one bending process step is intended to match any other bent minilite. In electrochromic mirrors, it may be advantageous to use the twin bent minilites manufactured in tandem one on top of the other in the one bending operation step as a given matched pair to assemble a laminate construction.


The desired substrates may be cut from bent minilites to the dimension and shape suitable for use in the intended laminate construction of the particular electrochromic mirror. To the extent that the cullet trimmed away from the bent minilite manufactured as described supra conforms least to the intended radius design, bending oversized minilites is recommended. However, and particularly where the bending operation is to be attentively supervised, the desired dimensioned shape may first be cut from flat glass lites, with the desired dimensioned shape then bent to the desired multi-radius curvature.


It may be advantageous to cut multi-radius front and rear substrates from their respective bent minilites to facilitate proper alignment of a local radius on the first substrate relative to its corresponding local radius on the second substrate. In this regard, a matched pair of bent minilites may be assembled into a laminate construction with the first substrate laterally displaced from the second substrate, yet sustaining local to local radius alignment there between. In addition, should there be an asymmetry in radius, one perimeter length, LC, of the bent minilite may be identified as the lower radius (more curved) part of the minilite compared with its opposite perimeter length, LF, identified as the higher radius (more flat) part of that same bent minilite. Likewise, for its twin match in a matched pair of bent minilites, there may exist corresponding LC′ and LF′ perimeter lengths.


A demarcation means 1522 may be used in the multi-radius mirrors as described herein to separate the more curved, outboard region 1555 (i.e., that portion of an exterior driver-side multi-radius mirror outboard and farthest from the driver) used by the driver principally as the blind-spot detection zone from the less curved, more flat inboard region 1565 (i.e., closer to the driver) used by the driver principally for the primary rear vision function (See FIG. 52).


The demarcation means 1522 may be a black or darkly colored continuous line or closely interspaced dots, dashes or spots (silk-screened or otherwise applied), which divides the outboard region from the inboard region of the multi-radius mirror. This black or darkly colored dividing line (or its aforestated equivalent) may assist the driver of a motor vehicle to discern the difference between images in the outermost, more curved region from those in the innermost, more flat region of the mirror. The thickness of this dividing line should be within the range of about 0.1 mm to about 3 mm, with about 0.5 mm to about 2 mm being preferred.


The demarcation means 1522 may be constructed from an organic material, such as a polymer like an epoxy; an inorganic material, such as a ceramic frit; or a mixed organic/inorganic material. Such demarcation means 1522 may be constructed to include, for example, an epoxy coupled with glass spacer beads, or plastic tape or a die cut from plastic tape. The demarcation means may be placed onto the conductive electrode coatings 1504, 1504′ of either or both of substrates 1502, 1503 by silk-screening or other suitable technique prior to assembling the device. Also, the demarcation means 1522 may be applied to any or all of the surfaces of substrates 1502, 1503—i.e., the inward surfaces of substrates 1502, 1503 or the opposite, non-inward surfaces of substrates 1502, 1503. Additives may be included in the material used as a demarcation means to provide or enhance color, such as a dark color, like black, or dark blue or dark brown; to enhance stability (e.g., ultraviolet stabilizing agents such as described herein); or to increase adhesion (e.g., coupling agents, such as silane-, titanium-, or zirconium-based coupling agents). Alternatively, a dividing line may be established by etching a surface of substrate 1502 and/or 1503 (such as by sand blasting, laser etching or chemical etching) with optional staining of the etched-surface to develop a dark colored dividing line.


Where ceramic frits are used as a demarcation means and/or where bus bars are formed by applying a silver conductive frit [e.g., #7713 (Du Pont)] around the periphery and inboard from the edge of the inward surface(s) of substrate 1502 and/or substrate 1503, it may be convenient to silk-screen or otherwise apply the material to either or both of the substrates 1502, 1503 prior to bending. In this way, the bending operation serves the dual purpose of bending and firing/curing the ceramic frit onto the substrates. In addition, where epoxies or other organic-based materials are used as the demarcation means and/or materials which act as bus bars, it may be convenient to silk-screen or otherwise apply the material to either or both of the substrates prior to final cure of the material used as the sealing means so that the sealing means, the demarcation means and/or material which acts as bus bars may be fired/cured in one and the same operation step. A dividing line may also be established within the cavity formed between substrates 1502, 1503.


A driver textural warning 1523, such as the conventional textural warning “objects in mirror are closer than they appear”, may be included in the outermost more curved portion 1555 of an electrochromic multi-radius exterior mirror according to this invention (See FIG. 52). Alternatively, a driver textural warning may be included in the innermost less curved region 1565. Heretofore, such warnings have been established through sandblasting or as described in O'Farrell. Alternatively, textural warnings may be applied by silkscreening onto a surface of one of the substrates 1502, 1503 of the mirror assembly or by other suitable techniques, such as laser etching, onto the reflective element of the mirror which is coated onto a surface of substrate 1503.


Therefore, the present invention provides an electro-optic or electrochromic reflective element assembly which requires a minimal bezel or no bezel around the perimeter edges of the reflective element assembly. The reflective element assembly may provide for electrical connection to the conductive layer at the front substrate that is substantially non viewable through the front substrate. The present invention may also provide a reflective element assembly which may provide a flush alignment of the edges of the substrates along at least one side or edge, while providing a relief area for electrical connection to one of the substrates along the flush or aligned edges. The reflective element assembly of the present invention provides enhanced manufacturing of the reflective element assembly, since the flush alignment of the substrates obviates the need for stepped spacers or pins positioned along the upper or lower edges of the substrates during assembly of the reflective element assembly.


Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the present invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law.

Claims
  • 1. An exterior electrically variable reflectance mirror reflective element assembly suitable for use for a vehicle, said exterior electrically variable reflectance mirror reflective element assembly comprising: an electrically variable reflectance mirror reflective element;wherein said electrically variable reflectance mirror reflective element comprises a front glass substrate and a rear glass substrate and an electrochromic medium disposed between said front and rear glass substrates;wherein said front glass substrate has a first surface and a second surface and wherein a transparent electrically conductive layer is disposed at said second surface of said front glass substrate;wherein said rear glass substrate has a third surface and a fourth surface and wherein a mirror reflector is disposed at at least a portion of said third surface of said rear glass substrate;wherein said mirror reflector comprises a stack of thin films and wherein said stack of thin films comprises at least a first metal thin film and a second metal thin film;wherein said first metal thin film is formed of a first metal material and said second metal thin film is formed of a second metal material;wherein said first metal material of said first metal thin film is different than said second metal material of said second metal thin film;wherein said mirror reflector provides at least 55 percent photopic reflectance measured in accordance with Society of Automotive Engineers test procedure SAE J964a;wherein said electrochromic medium is disposed in an interpane cavity between said third surface of said rear glass substrate and said second surface of said front glass substrate and is bounded by a perimeter seal;wherein width of said perimeter seal is at least 0.5 mm;wherein no part of said rear glass substrate extends beyond any part of said front glass substrate;wherein at least a perimeter edge portion of said rear glass substrate is inward of a corresponding perimeter edge portion of said front glass substrate by at least 0.1 mm;wherein a perimeter layer is disposed at said second surface of said front glass substrate proximate a perimeter edge of said front glass substrate, and wherein said perimeter layer comprises a reflective perimeter layer;wherein said perimeter layer comprises at least one metal thin film and wherein said perimeter layer is electrically conductive;wherein said perimeter layer conceals said perimeter seal from view by a driver of a vehicle normally viewing said front glass substrate when said exterior electrically variable reflectance mirror reflective element assembly is mounted in an exterior mirror assembly attached at an exterior portion of the vehicle;wherein at least a portion of said mirror reflector extends from under said perimeter seal outward towards at least a portion of said perimeter edge of said rear glass substrate;wherein light that reflects off of said mirror reflector and passes through said electrochromic medium and said front glass substrate has an untinted reflectant characteristic to a viewer normally viewing said front glass substrate of said electrically variable reflectance mirror reflective element when no voltage is applied to said electrochromic medium; andwherein said rear glass substrate has a thickness of 0.063 inches or less.
  • 2. The exterior electrically variable reflectance mirror reflective element assembly of claim 1, wherein said mirror reflector has a sheet resistance of no greater than 5 ohms per square.
  • 3. The exterior electrically variable reflectance mirror reflective element assembly of claim 1, wherein said first metal thin film has a thickness of at least 600 angstroms.
  • 4. The exterior electrically variable reflectance mirror reflective element assembly of claim 3, wherein said first metal material of said first metal thin film has a specific resistivity of less than 1×10−3 ohm·cm, and wherein said second metal material of said second metal thin film has a specific resistivity of less than 1×10−3 ohm·cm.
  • 5. The exterior electrically variable reflectance mirror reflective element assembly of claim 1, wherein width of said perimeter seal is not greater than 2 mm.
  • 6. The exterior electrically variable reflectance mirror reflective element assembly of claim 1, wherein width of said perimeter seal is not greater than 3 mm.
  • 7. The exterior electrically variable reflectance mirror reflective element assembly of claim 1, wherein said exterior electrically variable reflectance mirror reflective element assembly comprises a driver-side exterior electrically variable reflectance mirror reflective element assembly suitable for use in a driver-side exterior mirror assembly attached at a driver-side exterior portion of a vehicle.
  • 8. The exterior electrically variable reflectance mirror reflective element assembly of claim 1, wherein said perimeter seal is at least partially visible to a viewer viewing through said rear glass substrate.
  • 9. The exterior electrically variable reflectance mirror reflective element assembly of claim 1, wherein electrically conductive epoxy is in electrical contact with at least one selected from the group consisting of (i) said perimeter layer disposed at said second surface of said front glass substrate and (ii) said transparent electrically conductive layer disposed at said second surface of said front glass substrate.
  • 10. The exterior electrically variable reflectance mirror reflective element assembly of claim 1, wherein electrically conductive epoxy is in electrical contact with said at least a portion of said mirror reflector that extends from under said perimeter seal outward towards said at least a portion of said perimeter edge of said rear glass substrate.
  • 11. The exterior electrically variable reflectance mirror reflective element assembly of claim 1, wherein the at least a perimeter edge portion of said rear glass substrate is inward of the corresponding perimeter edge portion of said front glass substrate by no greater than 2 mm.
  • 12. The exterior electrically variable reflectance mirror reflective element assembly of claim 1, wherein said exterior electrically variable reflectance mirror reflective element assembly comprises a light source, and wherein said light source comprises a light source of an indicator, and wherein said indicator is disposed rearward of said electrically variable reflectance mirror reflective element and, when actuated, illuminates through said electrically variable reflectance mirror reflective element.
  • 13. An exterior electrically variable reflectance mirror reflective element assembly suitable for use for a vehicle, said exterior electrically variable reflectance mirror reflective element assembly comprising: an electrically variable reflectance mirror reflective element;wherein said electrically variable reflectance mirror reflective element comprises a front glass substrate and a rear glass substrate and an electrochromic medium disposed between said front and rear glass substrates;wherein said front glass substrate has a first surface and a second surface and wherein a transparent electrically conductive layer is disposed at said second surface of said front glass substrate;wherein said rear glass substrate has a third surface and a fourth surface and wherein a mirror reflector is disposed at at least a portion of said third surface of said rear glass substrate;wherein said mirror reflector comprises a stack of thin films and wherein said stack of thin films comprises at least a first metal thin film and a second metal thin film;wherein said first metal thin film is formed of a first metal material and said second metal thin film is formed of a second metal material;wherein said first metal material of said first metal thin film is different than said second metal material of said second metal thin film;wherein said mirror reflector provides at least 55 percent photopic reflectance measured in accordance with Society of Automotive Engineers test procedure SAE J964a;wherein said electrochromic medium is disposed in an interpane cavity between said third surface of said rear glass substrate and said second surface of said front glass substrate and is bounded by a perimeter seal;wherein width of said perimeter seal is at least 0.5 mm and wherein width of said perimeter seal is not greater than 3 mm;wherein no part of said rear glass substrate extends beyond any part of said front glass substrate;wherein at least a perimeter edge portion of said rear glass substrate is inward of a corresponding perimeter edge portion of said front glass substrate by at least 0.1 mm;wherein the at least a perimeter edge portion of said rear glass substrate is inward of the corresponding perimeter edge portion of said front glass substrate by no greater than 2 mm;wherein a perimeter layer is disposed at said second surface of said front glass substrate proximate a perimeter edge of said front glass substrate, and wherein said perimeter layer comprises a reflective perimeter layer;wherein said perimeter layer comprises at least one metal thin film and wherein said perimeter layer is electrically conductive;wherein said perimeter layer conceals said perimeter seal from view by a driver of a vehicle normally viewing said front glass substrate when said exterior electrically variable reflectance mirror reflective element assembly is mounted in an exterior mirror assembly attached at an exterior portion of the vehicle;wherein at least a portion of said mirror reflector extends from under said perimeter seal outward towards at least a portion of said perimeter edge of said rear glass substrate; andwherein light that reflects off of said mirror reflector and passes through said electrochromic medium and said front glass substrate has an untinted reflectant characteristic to a viewer normally viewing said front glass substrate of said electrically variable reflectance mirror reflective element when no voltage is applied to said electrochromic medium.
  • 14. The exterior electrically variable reflectance mirror reflective element assembly of claim 13, wherein said first metal thin film has a thickness of at least 600 angstroms.
  • 15. The exterior electrically variable reflectance mirror reflective element assembly of claim 14, wherein said mirror reflector has a sheet resistance of no greater than 5 ohms per square.
  • 16. The exterior electrically variable reflectance mirror reflective element assembly of claim 15, wherein said first metal material of said first metal thin film has a specific resistivity of less than 1×10−3 ohm·cm, and wherein said second metal material of said second metal thin film has a specific resistivity of less than 1×10−3 ohm·cm.
  • 17. The exterior electrically variable reflectance mirror reflective element assembly of claim 16, wherein width of said perimeter seal is not greater than 2 mm.
  • 18. The exterior electrically variable reflectance mirror reflective element assembly of claim 16, wherein said exterior electrically variable reflectance mirror reflective element assembly comprises a driver-side exterior electrically variable reflectance mirror reflective element assembly suitable for use in a driver-side exterior mirror assembly attached at a driver-side exterior portion of a vehicle.
  • 19. The exterior electrically variable reflectance mirror reflective element assembly of claim 18, wherein said perimeter seal is at least partially visible to a viewer viewing through said rear glass substrate.
  • 20. The exterior electrically variable reflectance mirror reflective element assembly of claim 16, wherein electrically conductive epoxy is in electrical contact with at least one selected from the group consisting of (i) said perimeter layer disposed at said second surface of said front glass substrate and (ii) said transparent electrically conductive layer disposed at said second surface of said front glass substrate.
  • 21. The exterior electrically variable reflectance mirror reflective element assembly of claim 13, wherein electrically conductive epoxy is in electrical contact with said at least a portion of said mirror reflector that extends from under said perimeter seal outward towards said at least a portion of said perimeter edge of said rear glass substrate.
  • 22. The exterior electrically variable reflectance mirror reflective element assembly of claim 21, wherein said exterior electrically variable reflectance mirror reflective element assembly comprises a light source, and wherein said light source comprises a light source of an indicator, and wherein said indicator is disposed rearward of said electrically variable reflectance mirror reflective element and, when actuated, illuminates through said electrically variable reflectance mirror reflective element.
  • 23. An exterior electrically variable reflectance mirror reflective element assembly suitable for use for a vehicle, said exterior electrically variable reflectance mirror reflective element assembly comprising: an electrically variable reflectance mirror reflective element;wherein said electrically variable reflectance mirror reflective element comprises a front glass substrate and a rear glass substrate and an electrochromic medium disposed between said front and rear glass substrates;wherein said front glass substrate has a first surface and a second surface and wherein a transparent electrically conductive layer is disposed at said second surface of said front glass substrate;wherein said rear glass substrate has a third surface and a fourth surface and wherein a mirror reflector is disposed at at least a portion of said third surface of said rear glass substrate;wherein said mirror reflector comprises a stack of thin films and wherein said stack of thin films comprises at least a first metal thin film and a second metal thin film;wherein said first metal thin film is formed of a first metal material and said second metal thin film is formed of a second metal material;wherein said first metal material of said first metal thin film is different than said second metal material of said second metal thin film;wherein said mirror reflector provides at least 55 percent photopic reflectance measured in accordance with Society of Automotive Engineers test procedure SAE J964a;wherein said electrochromic medium is disposed in an interpane cavity between said third surface of said rear glass substrate and said second surface of said front glass substrate and is bounded by a perimeter seal;wherein width of said perimeter seal is at least 0.5 mm and wherein width of said perimeter seal is not greater than 3 mm;wherein no part of said rear glass substrate extends beyond any part of said front glass substrate;wherein at least a perimeter edge portion of said rear glass substrate is inward of a corresponding perimeter edge portion of said front glass substrate by at least 0.1 mm;wherein the at least a perimeter edge portion of said rear glass substrate is inward of the corresponding perimeter edge portion of said front glass substrate by no greater than 2 mm;wherein a perimeter layer is disposed at said second surface of said front glass substrate proximate a perimeter edge of said front glass substrate, and wherein said perimeter layer comprises a reflective perimeter layer;wherein said perimeter layer comprises at least one metal thin film and wherein said perimeter layer is electrically conductive;wherein said perimeter layer conceals said perimeter seal from view by a driver of a vehicle normally viewing said front glass substrate when said exterior electrically variable reflectance mirror reflective element assembly is mounted in an exterior mirror assembly attached at an exterior portion of the vehicle;wherein at least a portion of said mirror reflector extends from under said perimeter seal outward towards at least a portion of said perimeter edge of said rear glass substrate;wherein light that reflects off of said mirror reflector and passes through said electrochromic medium and said front glass substrate has an untinted reflectant characteristic to a viewer normally viewing said front glass substrate of said electrically variable reflectance mirror reflective element when no voltage is applied to said electrochromic medium; andwherein electrically conductive epoxy is in electrical contact with said at least a portion of said mirror reflector that extends from under said perimeter seal outward towards said at least a portion of said perimeter edge of said rear glass substrate.
  • 24. The exterior electrically variable reflectance mirror reflective element assembly of claim 23, wherein said perimeter seal is at least partially visible to a viewer viewing through said rear glass substrate.
  • 25. The exterior electrically variable reflectance mirror reflective element assembly of claim 24, wherein said rear glass substrate has a thickness of 0.063 inches or less.
  • 26. The exterior electrically variable reflectance mirror reflective element assembly of claim 25, wherein said front glass substrate has a thickness of 0.063 inches or less.
  • 27. The exterior electrically variable reflectance mirror reflective element assembly of claim 26, wherein said exterior electrically variable reflectance mirror reflective element assembly comprises a driver-side exterior electrically variable reflectance mirror reflective element assembly suitable for use in a driver-side exterior mirror assembly attached at a driver-side exterior portion of a vehicle.
  • 28. The exterior electrically variable reflectance mirror reflective element assembly of claim 27, wherein said first metal thin film has a thickness of at least 600 angstroms.
  • 29. The exterior electrically variable reflectance mirror reflective element assembly of claim 27, wherein said mirror reflector has a sheet resistance of no greater than 5 ohms per square.
  • 30. The exterior electrically variable reflectance mirror reflective element assembly of claim 27, wherein said first metal material of said first metal thin film has a specific resistivity of less than 1×10−3 ohm·cm, and wherein said second metal material of said second metal thin film has a specific resistivity of less than 1×10−3 ohm·cm.
  • 31. The exterior electrically variable reflectance mirror reflective element assembly of claim 27, wherein width of said perimeter seal is not greater than 2 mm.
  • 32. The exterior electrically variable reflectance mirror reflective element assembly of claim 23, wherein electrically conductive epoxy is in electrical contact with said perimeter layer disposed at said second surface of said front glass substrate.
  • 33. The exterior electrically variable reflectance mirror reflective element assembly of claim 23, wherein electrically conductive epoxy is in electrical contact with said transparent electrically conductive layer disposed at said second surface of said front glass substrate.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 16/042,053, filed Jul. 23, 2018, now U.S. Pat. No. 10,363,875, which is a continuation of U.S. patent application Ser. No. 15/406,859, filed Jan. 16, 2017, now U.S. Pat. No. 10,029,616, which is a continuation of U.S. patent application Ser. No. 14/791,947, filed Jul. 6, 2015, now U.S. Pat. No. 9,545,883, which is a continuation of U.S. patent application Ser. No. 14/450,315, filed Aug. 4, 2014, now U.S. Pat. No. 9,073,491, which is a continuation of U.S. patent application Ser. No. 13/716,766, filed Dec. 17, 2012, now U.S. Pat. No. 8,797,627, which is a continuation of U.S. patent application Ser. No. 12/979,492, filed Dec. 28, 2010, now U.S. Pat. No. 8,335,032, which is a continuation of U.S. patent application Ser. No. 12/727,691, filed Mar. 19, 2010, now U.S. Pat. No. 7,864,399, which is continuation of U.S. patent application Ser. No. 12/429,620, filed Apr. 24, 2009, now U.S. Pat. No. 7,710,631, which is a continuation of U.S. patent application Ser. No. 11/956,893, filed Dec. 14, 2007, now U.S. Pat. No. 7,525,715, which is a continuation of U.S. patent application Ser. No. 11/709,625, filed Feb. 22, 2007, now U.S. Pat. No. 7,310,177, which is a continuation of U.S. patent application Ser. No. 10/533,762, filed May 4, 2005, now U.S. Pat. No. 7,184,190, which is a 371 application of PCT Application No. PCT/US2003/035381, filed Nov. 5, 2003, which claims priority of U.S. provisional applications, Ser. No. 60/490,111, filed Jul. 25, 2003, and Ser. No. 60/423,903, filed Nov. 5, 2002; and U.S. patent application Ser. No. 10/533,762 is a continuation-in-part of U.S. patent application Ser. No. 10/528,269, filed Mar. 17, 2005, now U.S. Pat. No. 7,274,501, which is a 371 application of PCT Application No. PCT/US2003/029776, filed Sep. 19, 2003, which claims priority of U.S. provisional applications, Ser. No. 60/489,816, filed Jul. 24, 2003; Ser. No. 60/424,116, filed Nov. 5, 2002; and Ser. No. 60/412,275, filed Sep. 20, 2002, which are all hereby incorporated herein by reference in their entireties.

US Referenced Citations (1588)
Number Name Date Kind
1096452 Perrin May 1914 A
1563258 Cunningham Nov 1925 A
2069368 Horinstein Feb 1937 A
2166303 Hodney et al. Jul 1939 A
2263382 Gotzinger Nov 1941 A
2414223 De Virgilis Jan 1947 A
2457348 Chambers Dec 1948 A
2561582 Marbel Jul 1951 A
2580014 Gazda Dec 1951 A
3004473 Athur et al. Oct 1961 A
3075430 Woodward et al. Jan 1963 A
3141393 Platt Jul 1964 A
3152216 Woodward Oct 1964 A
3162008 Berger et al. Dec 1964 A
3185020 Thelen May 1965 A
3266016 Maru Aug 1966 A
3280701 Donnelly et al. Oct 1966 A
3432225 Rock Mar 1969 A
3451741 Manos Jun 1969 A
3453038 Kissa et al. Jul 1969 A
3467465 Van Noord Sep 1969 A
3473867 Byrnes Oct 1969 A
3480781 Mandalakas Nov 1969 A
3499112 Heilmeier et al. Mar 1970 A
3499702 Goldmacher et al. Mar 1970 A
3521941 Deb et al. Jul 1970 A
3543018 Barcus et al. Nov 1970 A
3557265 Chisholm et al. Jan 1971 A
3565985 Schrenk et al. Feb 1971 A
3612654 Klein et al. Oct 1971 A
3614210 Caplan Oct 1971 A
3628851 Robertson Dec 1971 A
3676668 Collins et al. Jul 1972 A
3680951 Jordan et al. Aug 1972 A
3689695 Rosenfield et al. Sep 1972 A
3711176 Alfrey, Jr. et al. Jan 1973 A
3712710 Castellion et al. Jan 1973 A
3748017 Yamamura et al. Jul 1973 A
3781090 Sumita Dec 1973 A
3806229 Schoot et al. Apr 1974 A
3807832 Castellion Apr 1974 A
3807833 Graham et al. Apr 1974 A
3821590 Kosman et al. Jun 1974 A
3837129 Losell Sep 1974 A
3860847 Carley Jan 1975 A
3862798 Hopkins Jan 1975 A
3870404 Wilson et al. Mar 1975 A
3876287 Sprokel Apr 1975 A
3932024 Yaguchi et al. Jan 1976 A
3940822 Emerick et al. Mar 1976 A
3956017 Shigemasa May 1976 A
3978190 Kurz, Jr. et al. Aug 1976 A
3985424 Steinacher Oct 1976 A
4006546 Anderson et al. Feb 1977 A
4035681 Savage, Jr. Jul 1977 A
4040727 Ketchpel Aug 1977 A
4052712 Ohama et al. Oct 1977 A
4075468 Marcus Feb 1978 A
4088400 Assouline et al. May 1978 A
4093364 Miller Jun 1978 A
4097131 Nishiyama Jun 1978 A
4109235 Bouthors Aug 1978 A
4139234 Morgan Feb 1979 A
4159866 Wunsch et al. Jul 1979 A
4161653 Bedini et al. Jul 1979 A
4171875 Taylor et al. Oct 1979 A
4174152 Giglia et al. Nov 1979 A
4200361 Malvano et al. Apr 1980 A
4202607 Washizuka et al. May 1980 A
4211955 Ray Jul 1980 A
4214266 Myers Jul 1980 A
4219760 Ferro Aug 1980 A
4221955 Joslyn Sep 1980 A
4228490 Thillays Oct 1980 A
4247870 Gabel et al. Jan 1981 A
4257703 Goodrich Mar 1981 A
4274078 Isobe et al. Jun 1981 A
4277804 Robison Jul 1981 A
4281899 Oskam Aug 1981 A
4288814 Talley et al. Sep 1981 A
RE30835 Giglia Dec 1981 E
4306768 Egging Dec 1981 A
4310851 Pierrat Jan 1982 A
4331382 Graff May 1982 A
4338000 Kamimori et al. Jul 1982 A
4377613 Gordon Mar 1983 A
4398805 Cole Aug 1983 A
4419386 Gordon Dec 1983 A
4420238 Felix Dec 1983 A
4425717 Marcus Jan 1984 A
4435042 Wood et al. Mar 1984 A
4435048 Kamimori et al. Mar 1984 A
4436371 Wood et al. Mar 1984 A
4438348 Casper et al. Mar 1984 A
4443057 Bauer et al. Apr 1984 A
4446171 Thomas May 1984 A
4465339 Baucke et al. Aug 1984 A
4473695 Wrighton et al. Sep 1984 A
4490227 Bitter Dec 1984 A
4491390 Tong-Shen Jan 1985 A
4499451 Suzuki et al. Feb 1985 A
4521079 Leenhouts et al. Jun 1985 A
4524941 Wood et al. Jun 1985 A
4538063 Bulat Aug 1985 A
4546551 Franks Oct 1985 A
4555694 Yanagishima et al. Nov 1985 A
4561625 Weaver Dec 1985 A
4572619 Reininger et al. Feb 1986 A
4580196 Task Apr 1986 A
4580875 Bechtel et al. Apr 1986 A
4581827 Higashi Apr 1986 A
4588267 Pastore May 1986 A
4603946 Kato et al. Aug 1986 A
4623222 Itoh et al. Nov 1986 A
4625210 Sagl Nov 1986 A
4626850 Chey Dec 1986 A
4630040 Haertling Dec 1986 A
4630109 Barton Dec 1986 A
4630904 Pastore Dec 1986 A
4634835 Suzuki Jan 1987 A
4635033 Inukai et al. Jan 1987 A
4636782 Nakamura et al. Jan 1987 A
4638287 Umebayashi et al. Jan 1987 A
4646210 Skogler et al. Feb 1987 A
4652090 Uchikawa et al. Mar 1987 A
4655549 Suzuki et al. Apr 1987 A
4664479 Hiroshi May 1987 A
4665311 Cole May 1987 A
4665430 Hiroyasu May 1987 A
4669827 Fukada et al. Jun 1987 A
4671615 Fukada et al. Jun 1987 A
4671619 Kamimori et al. Jun 1987 A
4678281 Bauer Jul 1987 A
4679906 Brandenburg Jul 1987 A
4682083 Alley Jul 1987 A
4692798 Seko et al. Sep 1987 A
4694295 Miller et al. Sep 1987 A
4697883 Suzuki et al. Oct 1987 A
4701022 Jacob Oct 1987 A
4702566 Tukude Oct 1987 A
4704740 McKee et al. Nov 1987 A
4711544 Iino et al. Dec 1987 A
4712879 Lynam et al. Dec 1987 A
4713685 Nishimura et al. Dec 1987 A
RE32576 Pastore Jan 1988 E
4718756 Lancaster Jan 1988 A
4721364 Itoh et al. Jan 1988 A
4729068 Ohe Mar 1988 A
4729076 Masami et al. Mar 1988 A
4731669 Hayashi et al. Mar 1988 A
4733335 Serizawa et al. Mar 1988 A
4733336 Skogler et al. Mar 1988 A
4740838 Mase et al. Apr 1988 A
4761061 Nishiyama et al. Aug 1988 A
4773740 Kawakami et al. Sep 1988 A
4780752 Angerstein et al. Oct 1988 A
4781436 Armbruster Nov 1988 A
4789774 Koch et al. Dec 1988 A
4789904 Peterson Dec 1988 A
4793690 Gahan et al. Dec 1988 A
4793695 Wada et al. Dec 1988 A
4794261 Rosen Dec 1988 A
D299491 Masuda Jan 1989 S
4799768 Gahan Jan 1989 A
4803599 Trine et al. Feb 1989 A
4807096 Skogler et al. Feb 1989 A
4820933 Hong et al. Apr 1989 A
4825232 Howdle Apr 1989 A
4826289 Vandenbrink et al. May 1989 A
4827086 Rockwell May 1989 A
4837551 Iino Jun 1989 A
4842378 Flasck et al. Jun 1989 A
4845402 Smith Jul 1989 A
4847772 Michalopoulos et al. Jul 1989 A
4855161 Moser et al. Aug 1989 A
4855550 Schultz, Jr. Aug 1989 A
4859813 Rockwell Aug 1989 A
4859867 Larson et al. Aug 1989 A
4860171 Kojima Aug 1989 A
4862594 Schierbeek et al. Sep 1989 A
4871917 O'Farrell et al. Oct 1989 A
4872051 Dye Oct 1989 A
4882466 Friel Nov 1989 A
4882565 Gallmeyer Nov 1989 A
4883349 Mittelhauser Nov 1989 A
4884135 Schiffman Nov 1989 A
4886960 Molyneux et al. Dec 1989 A
4889412 Clerc et al. Dec 1989 A
4891828 Kawazoe Jan 1990 A
4892345 Rachael, III Jan 1990 A
4902103 Miyake et al. Feb 1990 A
4902108 Byker Feb 1990 A
4906085 Sugihara et al. Mar 1990 A
4909606 Wada et al. Mar 1990 A
4910591 Petrossian et al. Mar 1990 A
4916374 Schierbeek et al. Apr 1990 A
4917477 Bechtel et al. Apr 1990 A
4926170 Beggs et al. May 1990 A
4930742 Schofield et al. Jun 1990 A
4933814 Sanai Jun 1990 A
4935665 Murata Jun 1990 A
4936533 Adams et al. Jun 1990 A
4937796 Tendler Jun 1990 A
4937945 Schofield et al. Jul 1990 A
4943796 Lee Jul 1990 A
4948242 Desmond et al. Aug 1990 A
4953305 Van Lente et al. Sep 1990 A
4956591 Schierbeek et al. Sep 1990 A
4957349 Clerc et al. Sep 1990 A
4959247 Moser et al. Sep 1990 A
4959865 Stettiner et al. Sep 1990 A
4970653 Kenue Nov 1990 A
4973844 O'Farrell et al. Nov 1990 A
4974122 Shaw Nov 1990 A
4978196 Suzuki et al. Dec 1990 A
4983951 Igarashi et al. Jan 1991 A
4985809 Matsui et al. Jan 1991 A
4987357 Masaki Jan 1991 A
4989956 Wu et al. Feb 1991 A
4996083 Moser et al. Feb 1991 A
5001386 Sullivan et al. Mar 1991 A
5001558 Burley et al. Mar 1991 A
5005213 Hanson et al. Apr 1991 A
5006971 Jenkins Apr 1991 A
5014167 Roberts May 1991 A
5016988 Iimura May 1991 A
5016996 Ueno May 1991 A
5017903 Krippelz, Sr. May 1991 A
5018839 Yamamoto et al. May 1991 A
5027200 Petrossian et al. Jun 1991 A
5037182 Groves et al. Aug 1991 A
5038255 Nishihashi et al. Aug 1991 A
5052163 Czekala Oct 1991 A
5056899 Warszawski Oct 1991 A
5057974 Mizobe Oct 1991 A
5058851 Lawlor et al. Oct 1991 A
5059015 Tran Oct 1991 A
5066108 McDonald Nov 1991 A
5066112 Lynam Nov 1991 A
5069535 Baucke et al. Dec 1991 A
5070323 Iino et al. Dec 1991 A
5073012 Lynam Dec 1991 A
5076673 Lynam et al. Dec 1991 A
5076674 Lynam Dec 1991 A
5078480 Warszawski Jan 1992 A
5096287 Kakinami et al. Mar 1992 A
5100095 Haan et al. Mar 1992 A
5101139 Lechter Mar 1992 A
5105127 Lavaud et al. Apr 1992 A
5115346 Lynam May 1992 A
5119220 Narita et al. Jun 1992 A
5121200 Choi Jun 1992 A
5122619 Dlubak Jun 1992 A
5123077 Endo et al. Jun 1992 A
5124845 Shimojo Jun 1992 A
5124890 Choi et al. Jun 1992 A
5128799 Byker Jul 1992 A
5130898 Akahane Jul 1992 A
5131154 Schierbeek et al. Jul 1992 A
5134507 Ishii Jul 1992 A
5134549 Yokoyama Jul 1992 A
5135298 Feltman Aug 1992 A
5136483 Schoniger et al. Aug 1992 A
5140455 Varaprasad et al. Aug 1992 A
5140465 Yasui et al. Aug 1992 A
5142407 Varaprasad et al. Aug 1992 A
5145609 Varaprasad et al. Sep 1992 A
5148306 Yamada et al. Sep 1992 A
5150232 Gunkima et al. Sep 1992 A
5151816 Varaprasad et al. Sep 1992 A
5151824 O'Farrell Sep 1992 A
5154617 Suman et al. Oct 1992 A
5158638 Osanami et al. Oct 1992 A
5160200 Cheselske Nov 1992 A
5160201 Wrobel Nov 1992 A
5166815 Elderfield Nov 1992 A
5168378 Black Dec 1992 A
5173881 Sindle Dec 1992 A
5177031 Buchmann et al. Jan 1993 A
5178448 Adams et al. Jan 1993 A
5179471 Caskey et al. Jan 1993 A
5183099 Bechu Feb 1993 A
5184956 Langlais et al. Feb 1993 A
5189537 O'Farrell Feb 1993 A
5193029 Schofield et al. Mar 1993 A
5197562 Kakinami et al. Mar 1993 A
5202950 Arego et al. Apr 1993 A
5206756 Cheshire Apr 1993 A
5207492 Roberts May 1993 A
5210967 Brown May 1993 A
5212819 Wada May 1993 A
5214408 Asayama May 1993 A
5217794 Schrenk Jun 1993 A
5223814 Suman Jun 1993 A
5223844 Mansell et al. Jun 1993 A
5229975 Truesdell et al. Jul 1993 A
5230400 Kakinami et al. Jul 1993 A
5233461 Dornan et al. Aug 1993 A
5235316 Qualizza Aug 1993 A
5239405 Varaprasad et al. Aug 1993 A
5239406 Lynam Aug 1993 A
5243417 Pollard Sep 1993 A
5245422 Borcherts et al. Sep 1993 A
5252354 Cronin et al. Oct 1993 A
5253109 O'Farrell et al. Oct 1993 A
5255442 Schierbeek et al. Oct 1993 A
5260626 Takase et al. Nov 1993 A
5277986 Cronin et al. Jan 1994 A
5280555 Ainsburg Jan 1994 A
5285060 Larson et al. Feb 1994 A
5289321 Secor Feb 1994 A
5296924 de Saint Blancard et al. Mar 1994 A
5303075 Wada et al. Apr 1994 A
5303205 Gauthier et al. Apr 1994 A
5304980 Maekawa Apr 1994 A
5305012 Faris Apr 1994 A
5307136 Saneyoshi Apr 1994 A
5313335 Gray et al. May 1994 A
5325096 Pakett Jun 1994 A
5325386 Jewell et al. Jun 1994 A
5327288 Wellington et al. Jul 1994 A
5330149 Haan et al. Jul 1994 A
5331312 Kudoh Jul 1994 A
5331358 Schurle et al. Jul 1994 A
5339075 Abst et al. Aug 1994 A
5339529 Lindberg Aug 1994 A
5341437 Nakayama Aug 1994 A
D351370 Lawlor et al. Oct 1994 S
5354965 Lee Oct 1994 A
5355118 Fukuhara Oct 1994 A
5355245 Lynam Oct 1994 A
5355284 Roberts Oct 1994 A
5361190 Roberts et al. Nov 1994 A
5363294 Yamamoto et al. Nov 1994 A
5371659 Pastrick et al. Dec 1994 A
5373482 Gauthier Dec 1994 A
5379146 Defendini Jan 1995 A
5386285 Asayama Jan 1995 A
5386306 Gunjima et al. Jan 1995 A
5400158 Ohnishi et al. Mar 1995 A
5402103 Tashiro Mar 1995 A
5406395 Wilson et al. Apr 1995 A
5406414 O'Farrell et al. Apr 1995 A
5408353 Nichols et al. Apr 1995 A
5408357 Beukema Apr 1995 A
5410346 Saneyoshi et al. Apr 1995 A
5414439 Groves et al. May 1995 A
5414461 Kishi et al. May 1995 A
5416313 Larson et al. May 1995 A
5416478 Morinaga May 1995 A
5418610 Fischer May 1995 A
5422756 Weber Jun 1995 A
5424726 Beymer Jun 1995 A
5424865 Lynam Jun 1995 A
5424952 Asayama Jun 1995 A
5426524 Wada et al. Jun 1995 A
5426723 Horsley Jun 1995 A
5430431 Nelson Jul 1995 A
5432496 Lin Jul 1995 A
5432626 Sasuga et al. Jul 1995 A
5436741 Crandall Jul 1995 A
5437931 Tsai et al. Aug 1995 A
5439305 Santo Aug 1995 A
5444478 Lelong et al. Aug 1995 A
5446576 Lynam et al. Aug 1995 A
5455716 Suman et al. Oct 1995 A
5461361 Moore Oct 1995 A
D363920 Roberts et al. Nov 1995 S
5469187 Yaniv Nov 1995 A
5469298 Suman et al. Nov 1995 A
5475366 Van Lente et al. Dec 1995 A
5475494 Nishida et al. Dec 1995 A
5481409 Roberts Jan 1996 A
5483453 Uemura et al. Jan 1996 A
5485161 Vaughn Jan 1996 A
5485378 Franke et al. Jan 1996 A
5487522 Hook Jan 1996 A
5488496 Pine Jan 1996 A
5497305 Pastrick et al. Mar 1996 A
5497306 Pastrick Mar 1996 A
5500760 Varaprasad et al. Mar 1996 A
5506701 Ichikawa Apr 1996 A
5509606 Breithaupt et al. Apr 1996 A
5510983 Lino Apr 1996 A
5515448 Nishitani May 1996 A
5517853 Chamussy May 1996 A
5519621 Wortham May 1996 A
5521744 Mazurek May 1996 A
5521760 De Young et al. May 1996 A
5523811 Wada et al. Jun 1996 A
5523877 Lynam Jun 1996 A
5525264 Cronin et al. Jun 1996 A
5525977 Suman Jun 1996 A
5528422 Roberts Jun 1996 A
5528474 Roney et al. Jun 1996 A
5529138 Shaw et al. Jun 1996 A
5530240 Larson et al. Jun 1996 A
5530420 Tsuchiya et al. Jun 1996 A
5530421 Marshall et al. Jun 1996 A
5535056 Caskey et al. Jul 1996 A
5535144 Kise Jul 1996 A
5539397 Asanuma et al. Jul 1996 A
5541590 Nishio Jul 1996 A
5550677 Schofield et al. Aug 1996 A
5555172 Potter Sep 1996 A
5561333 Darius Oct 1996 A
5566224 ul Azam et al. Oct 1996 A
5567360 Varaprasad et al. Oct 1996 A
5568316 Schrenk et al. Oct 1996 A
5570127 Schmidt Oct 1996 A
5572354 Desmond et al. Nov 1996 A
5574426 Shisgal et al. Nov 1996 A
5574443 Hsieh Nov 1996 A
5575552 Faloon et al. Nov 1996 A
5576687 Blank et al. Nov 1996 A
5576854 Schmidt et al. Nov 1996 A
5576975 Sasaki et al. Nov 1996 A
5578404 Kliem Nov 1996 A
5587236 Agrawal et al. Dec 1996 A
5587699 Faloon et al. Dec 1996 A
5593221 Evanicky et al. Jan 1997 A
5594222 Caldwell Jan 1997 A
5594560 Jelley et al. Jan 1997 A
5594615 Spijkerman et al. Jan 1997 A
5602542 Widmann Feb 1997 A
5602670 Keegan Feb 1997 A
5603104 Phelps, III et al. Feb 1997 A
5608550 Epstein et al. Mar 1997 A
5609652 Yamada et al. Mar 1997 A
5610380 Nicolaisen Mar 1997 A
5610756 Lynam et al. Mar 1997 A
5611966 Varaprasad et al. Mar 1997 A
5614885 Van Lente et al. Mar 1997 A
5615023 Yang Mar 1997 A
5615857 Hook Apr 1997 A
5617085 Tsutsumi et al. Apr 1997 A
5619374 Roberts Apr 1997 A
5619375 Roberts Apr 1997 A
5621571 Bantli et al. Apr 1997 A
5626800 Williams et al. May 1997 A
5631089 Center, Jr. et al. May 1997 A
5631638 Kaspar et al. May 1997 A
5631639 Hibino et al. May 1997 A
5632092 Blank et al. May 1997 A
5632551 Roney et al. May 1997 A
5634709 Iwama Jun 1997 A
5640216 Hasegawa et al. Jun 1997 A
5642238 Sala Jun 1997 A
5644851 Blank et al. Jul 1997 A
5646614 Abersfelder et al. Jul 1997 A
5649756 Adams et al. Jul 1997 A
5649758 Dion Jul 1997 A
5650765 Park Jul 1997 A
5650929 Potter et al. Jul 1997 A
5661455 Van Lente et al. Aug 1997 A
5661651 Geschke et al. Aug 1997 A
5661804 Dykema et al. Aug 1997 A
5662375 Adams et al. Sep 1997 A
5666157 Aviv Sep 1997 A
5667289 Akahane et al. Sep 1997 A
5668663 Varaprasad et al. Sep 1997 A
5668675 Fredricks Sep 1997 A
5669698 Veldman et al. Sep 1997 A
5669699 Pastrick et al. Sep 1997 A
5669704 Pastrick Sep 1997 A
5669705 Pastrick et al. Sep 1997 A
5670935 Schofield et al. Sep 1997 A
5671996 Bos et al. Sep 1997 A
5673994 Fant, Jr. et al. Oct 1997 A
5673999 Koenck Oct 1997 A
5677598 De Hair et al. Oct 1997 A
5679283 Tonar et al. Oct 1997 A
5680123 Lee Oct 1997 A
5680245 Lynam Oct 1997 A
5680263 Zimmermann et al. Oct 1997 A
5686975 Lipton Nov 1997 A
5686979 Weber et al. Nov 1997 A
5689241 Clarke, Sr. et al. Nov 1997 A
5689370 Tonar et al. Nov 1997 A
5691848 Van Lente et al. Nov 1997 A
5692819 Mitsutake et al. Dec 1997 A
5696529 Evanicky et al. Dec 1997 A
5696567 Wada et al. Dec 1997 A
5699044 Van Lente et al. Dec 1997 A
5699188 Gilbert et al. Dec 1997 A
5703568 Hegyi Dec 1997 A
5708410 Blank et al. Jan 1998 A
5708415 Van Lente et al. Jan 1998 A
5708857 Ishibashi Jan 1998 A
5715093 Schierbeek et al. Feb 1998 A
5724187 Varaprasad Mar 1998 A
5724316 Brunts Mar 1998 A
5729194 Spears et al. Mar 1998 A
5737226 Olson et al. Apr 1998 A
5741966 Handfield et al. Apr 1998 A
5744227 Bright et al. Apr 1998 A
5745050 Nakagawa Apr 1998 A
5745266 Smith Apr 1998 A
5748172 Song et al. May 1998 A
5748287 Takahashi et al. May 1998 A
5751211 Shirai et al. May 1998 A
5751246 Hertel May 1998 A
5751390 Crawford et al. May 1998 A
5751489 Caskey et al. May 1998 A
5754099 Nishimura et al. May 1998 A
D394833 Muth Jun 1998 S
5760828 Cortes Jun 1998 A
5760931 Saburi et al. Jun 1998 A
5760962 Schofield et al. Jun 1998 A
5761094 Olson et al. Jun 1998 A
5762823 Hikmet Jun 1998 A
5764139 Nojima et al. Jun 1998 A
5765940 Levy et al. Jun 1998 A
5767793 Agravante et al. Jun 1998 A
5768020 Nagao Jun 1998 A
5775762 Vitito Jul 1998 A
5777779 Hashimoto et al. Jul 1998 A
5780160 Allemand et al. Jul 1998 A
5786772 Schofield et al. Jul 1998 A
5788357 Muth et al. Aug 1998 A
5790298 Tonar Aug 1998 A
5790502 Horinouchi et al. Aug 1998 A
5790973 Blaker et al. Aug 1998 A
5793308 Rosinski et al. Aug 1998 A
5793420 Schmidt Aug 1998 A
5796094 Schofield et al. Aug 1998 A
5796176 Kramer et al. Aug 1998 A
5798057 Hikmet Aug 1998 A
5798575 O'Farrell et al. Aug 1998 A
5798688 Schofield Aug 1998 A
5800918 Chartier et al. Sep 1998 A
5802727 Blank et al. Sep 1998 A
5803579 Turnbull et al. Sep 1998 A
5805330 Byker et al. Sep 1998 A
5805367 Kanazawa Sep 1998 A
5806879 Hamada et al. Sep 1998 A
5806965 Deese Sep 1998 A
5808197 Dao Sep 1998 A
5808566 Behr et al. Sep 1998 A
5808589 Fergason Sep 1998 A
5808713 Broer et al. Sep 1998 A
5808777 Lynam et al. Sep 1998 A
5808778 Bauer et al. Sep 1998 A
5812321 Schierbeek et al. Sep 1998 A
5813745 Fant, Jr. et al. Sep 1998 A
5818625 Forgette Oct 1998 A
5820097 Spooner Oct 1998 A
5820245 Desmond et al. Oct 1998 A
5822023 Suman et al. Oct 1998 A
5823654 Pastrick et al. Oct 1998 A
5825527 Forgette et al. Oct 1998 A
5835166 Hall et al. Nov 1998 A
5837994 Stam et al. Nov 1998 A
5844505 Van Ryzin Dec 1998 A
5848373 DeLorme et al. Dec 1998 A
5850176 Kinoshita et al. Dec 1998 A
5850205 Blouin Dec 1998 A
5863116 Pastrick et al. Jan 1999 A
5864419 Lynam Jan 1999 A
5867801 Denny Feb 1999 A
5871275 O'Farrell et al. Feb 1999 A
5871843 Yoneda et al. Feb 1999 A
5877707 Kowalick Mar 1999 A
5877897 Schofield et al. Mar 1999 A
5878353 ul Azam et al. Mar 1999 A
5878370 Olson Mar 1999 A
5879074 Pastrick Mar 1999 A
5883605 Knapp Mar 1999 A
5883739 Ashihara et al. Mar 1999 A
5888431 Tonar et al. Mar 1999 A
5894196 McDermott Apr 1999 A
D409540 Muth May 1999 S
5899551 Neijzen et al. May 1999 A
5899956 Chan May 1999 A
5904729 Ruzicka May 1999 A
5910854 Varaprasad et al. Jun 1999 A
5914815 Bos Jun 1999 A
5917664 O'Neill et al. Jun 1999 A
5918180 Dimino Jun 1999 A
5922176 Caskey Jul 1999 A
5923027 Stam et al. Jul 1999 A
5923457 Byker et al. Jul 1999 A
5924212 Domanski Jul 1999 A
5926087 Busch et al. Jul 1999 A
5927792 Welling et al. Jul 1999 A
5928572 Tonar et al. Jul 1999 A
5929786 Schofield et al. Jul 1999 A
5935702 Macquart et al. Aug 1999 A
5936774 Street Aug 1999 A
5938320 Crandall Aug 1999 A
5938321 Bos et al. Aug 1999 A
5938721 Dussell et al. Aug 1999 A
5940011 Agravante et al. Aug 1999 A
5940120 Frankhouse et al. Aug 1999 A
5940201 Ash et al. Aug 1999 A
5942895 Popovic et al. Aug 1999 A
5947586 Weber Sep 1999 A
5949331 Schofield et al. Sep 1999 A
5949506 Jones et al. Sep 1999 A
5956079 Ridgley Sep 1999 A
5956181 Lin Sep 1999 A
5959367 O'Farrell et al. Sep 1999 A
5959555 Furuta Sep 1999 A
5959577 Fan et al. Sep 1999 A
5963247 Banitt Oct 1999 A
5963284 Jones et al. Oct 1999 A
5965247 Jonza et al. Oct 1999 A
5968538 Snyder, Jr. Oct 1999 A
5971552 O'Farrell et al. Oct 1999 A
5973760 Dehmlow Oct 1999 A
5975715 Bauder Nov 1999 A
5984482 Rumsey et al. Nov 1999 A
5986730 Hansen et al. Nov 1999 A
5990469 Bechtel et al. Nov 1999 A
5990625 Meissner et al. Nov 1999 A
5995180 Moriwaki et al. Nov 1999 A
5998617 Srinivasa et al. Dec 1999 A
5998929 Bechtel et al. Dec 1999 A
6000823 Desmond et al. Dec 1999 A
6001486 Varaprasad et al. Dec 1999 A
6002511 Varaprasad et al. Dec 1999 A
6002983 Alland et al. Dec 1999 A
6005724 Todd Dec 1999 A
6007222 Thau Dec 1999 A
6008486 Stam et al. Dec 1999 A
6008871 Okumura Dec 1999 A
6009359 El-Hakim et al. Dec 1999 A
6016035 Eberspacher et al. Jan 2000 A
6016215 Byker Jan 2000 A
6019411 Carter et al. Feb 2000 A
6019475 Lynam et al. Feb 2000 A
6020987 Baumann et al. Feb 2000 A
6021371 Fultz Feb 2000 A
6023229 Bugno et al. Feb 2000 A
6025872 Ozaki et al. Feb 2000 A
6028537 Suman et al. Feb 2000 A
6037689 Bingle et al. Mar 2000 A
6040939 Demiryont et al. Mar 2000 A
6042253 Fant, Jr. et al. Mar 2000 A
6042934 Guiselin et al. Mar 2000 A
6045243 Muth et al. Apr 2000 A
6045643 Byker et al. Apr 2000 A
6046766 Sakata Apr 2000 A
6046837 Yamamoto Apr 2000 A
6049171 Stam et al. Apr 2000 A
D425466 Todd et al. May 2000 S
6060989 Gehlot May 2000 A
6061002 Weber et al. May 2000 A
6062920 Jordan et al. May 2000 A
6064508 Forgette et al. May 2000 A
6065840 Caskey et al. May 2000 A
6066920 Torihara et al. May 2000 A
6067111 Hahn et al. May 2000 A
6067500 Morimoto et al. May 2000 A
6068380 Lynn et al. May 2000 A
D426506 Todd et al. Jun 2000 S
D426507 Todd et al. Jun 2000 S
D427128 Mathieu Jun 2000 S
6072391 Suzuki et al. Jun 2000 A
6074077 Pastrick et al. Jun 2000 A
6074777 Reimers et al. Jun 2000 A
6076948 Bukosky et al. Jun 2000 A
6078355 Zengel Jun 2000 A
6078865 Koyanagi Jun 2000 A
D428372 Todd et al. Jul 2000 S
D428373 Todd et al. Jul 2000 S
6082881 Hicks Jul 2000 A
6084700 Knapp et al. Jul 2000 A
6086131 Bingle et al. Jul 2000 A
6086229 Pastrick Jul 2000 A
6087012 Varaprasad et al. Jul 2000 A
6087953 DeLine et al. Jul 2000 A
6091343 Dykema et al. Jul 2000 A
6093976 Kramer et al. Jul 2000 A
6094618 Harada Jul 2000 A
D428842 Todd et al. Aug 2000 S
D429202 Todd et al. Aug 2000 S
D430088 Todd et al. Aug 2000 S
6097023 Schofield et al. Aug 2000 A
6097316 Liaw et al. Aug 2000 A
6099131 Fletcher et al. Aug 2000 A
6099155 Pastrick et al. Aug 2000 A
6102546 Carter Aug 2000 A
6102559 Nold et al. Aug 2000 A
6104552 Thau et al. Aug 2000 A
6106121 Buckley et al. Aug 2000 A
6111498 Jobes et al. Aug 2000 A
6111683 Cammenga et al. Aug 2000 A
6111684 Forgette Aug 2000 A
6111685 Tench et al. Aug 2000 A
6111696 Allen et al. Aug 2000 A
6115086 Rosen Sep 2000 A
6115651 Cruz Sep 2000 A
6116743 Hoek Sep 2000 A
6118219 Okigami et al. Sep 2000 A
6122597 Saneyoshi et al. Sep 2000 A
6122921 Brezoczky et al. Sep 2000 A
6124647 Marcus et al. Sep 2000 A
6124886 DeLine et al. Sep 2000 A
6127919 Wylin Oct 2000 A
6127945 Mura-Smith Oct 2000 A
6128576 Nishimoto et al. Oct 2000 A
6130421 Bechtel et al. Oct 2000 A
6130448 Bauer et al. Oct 2000 A
6132072 Turnbull et al. Oct 2000 A
6137620 Guarr et al. Oct 2000 A
6139171 Waldmann Oct 2000 A
6139172 Bos et al. Oct 2000 A
6140933 Bugno et al. Oct 2000 A
6142656 Kurth Nov 2000 A
6146003 Thau Nov 2000 A
6147934 Arikawa et al. Nov 2000 A
6148261 Obradovich et al. Nov 2000 A
6149287 Pastrick et al. Nov 2000 A
6150014 Chu et al. Nov 2000 A
6151065 Steed Nov 2000 A
6151539 Bergholz et al. Nov 2000 A
6152551 Annas Nov 2000 A
6152590 Furst et al. Nov 2000 A
6154149 Tyckowski et al. Nov 2000 A
6154306 Varaprasad et al. Nov 2000 A
6157294 Urai et al. Dec 2000 A
6157418 Rosen Dec 2000 A
6157424 Eichenlaub Dec 2000 A
6157480 Anderson et al. Dec 2000 A
6158655 DeVries, Jr. et al. Dec 2000 A
6161865 Rose et al. Dec 2000 A
6164564 Franco et al. Dec 2000 A
6166625 Teowee et al. Dec 2000 A
6166629 Hamma et al. Dec 2000 A
6166834 Taketomi et al. Dec 2000 A
6166847 Tench et al. Dec 2000 A
6166848 Cammenga et al. Dec 2000 A
6167255 Kennedy, III et al. Dec 2000 A
6167755 Damson et al. Jan 2001 B1
6169955 Fultz Jan 2001 B1
6170956 Rumsey et al. Jan 2001 B1
6172600 Kakinami et al. Jan 2001 B1
6172601 Wada et al. Jan 2001 B1
6172613 DeLine et al. Jan 2001 B1
6173501 Blank et al. Jan 2001 B1
6175164 O'Farrell et al. Jan 2001 B1
6175300 Kendrick Jan 2001 B1
6176602 Pastrick et al. Jan 2001 B1
6178034 Allemand et al. Jan 2001 B1
6178377 Ishihara et al. Jan 2001 B1
6181387 Rosen Jan 2001 B1
6182006 Meek Jan 2001 B1
6183119 Desmond et al. Feb 2001 B1
6184679 Popovic et al. Feb 2001 B1
6184781 Ramakesavan Feb 2001 B1
6185492 Kagawa et al. Feb 2001 B1
6185501 Smith et al. Feb 2001 B1
6188505 Lomprey et al. Feb 2001 B1
6191704 Takenaga et al. Feb 2001 B1
6193378 Tonar et al. Feb 2001 B1
6193379 Tonar et al. Feb 2001 B1
6193912 Thieste et al. Feb 2001 B1
6195194 Roberts et al. Feb 2001 B1
6196688 Caskey et al. Mar 2001 B1
6198409 Schofield et al. Mar 2001 B1
6199014 Walker et al. Mar 2001 B1
6199810 Wu et al. Mar 2001 B1
6200010 Anders Mar 2001 B1
6201642 Bos Mar 2001 B1
6206553 Boddy et al. Mar 2001 B1
6207083 Varaprasad et al. Mar 2001 B1
6210008 Hoekstra et al. Apr 2001 B1
6210012 Broer Apr 2001 B1
6212470 Seymour et al. Apr 2001 B1
6217181 Lynam et al. Apr 2001 B1
6218934 Regan Apr 2001 B1
6222447 Schofield et al. Apr 2001 B1
6222460 DeLine et al. Apr 2001 B1
6222689 Higuchi et al. Apr 2001 B1
6227689 Miller May 2001 B1
6232937 Jacobsen et al. May 2001 B1
6236514 Sato May 2001 B1
6239851 Hatazawa et al. May 2001 B1
6239898 Byker et al. May 2001 B1
6239899 DeVries et al. May 2001 B1
6243003 DeLine et al. Jun 2001 B1
6244716 Steenwyk et al. Jun 2001 B1
6245262 Varaprasad et al. Jun 2001 B1
6247820 Van Order Jun 2001 B1
6249214 Kashiwazaki Jun 2001 B1
6249310 Lefkowitz Jun 2001 B1
6249369 Theiste et al. Jun 2001 B1
6250148 Lynam Jun 2001 B1
6250766 Strumolo et al. Jun 2001 B1
6250783 Stidham et al. Jun 2001 B1
6255639 Stam et al. Jul 2001 B1
6257746 Todd et al. Jul 2001 B1
6259412 Duroux Jul 2001 B1
6259475 Ramachandran et al. Jul 2001 B1
6260608 Kim Jul 2001 B1
6262842 Ouderkirk et al. Jul 2001 B1
6264353 Caraher et al. Jul 2001 B1
6265968 Betzitza et al. Jul 2001 B1
6268803 Gunderson et al. Jul 2001 B1
6268837 Kobayashi et al. Jul 2001 B1
6269308 Kodaka et al. Jul 2001 B1
6271901 Ide et al. Aug 2001 B1
6274221 Smith et al. Aug 2001 B2
6276821 Pastrick et al. Aug 2001 B1
6276822 Bedrosian et al. Aug 2001 B1
6277471 Tang Aug 2001 B1
6278271 Schott Aug 2001 B1
6278377 DeLine et al. Aug 2001 B1
6278941 Yokoyama Aug 2001 B1
6280068 Mertens et al. Aug 2001 B1
6280069 Pastrick et al. Aug 2001 B1
6281804 Haller et al. Aug 2001 B1
6286965 Caskey et al. Sep 2001 B1
6286984 Berg Sep 2001 B1
6289332 Menig et al. Sep 2001 B2
6290378 Buchalla et al. Sep 2001 B1
6291905 Drummond et al. Sep 2001 B1
6291906 Marcus et al. Sep 2001 B1
6294989 Schofield et al. Sep 2001 B1
6296379 Pastrick Oct 2001 B1
6297781 Turnbull et al. Oct 2001 B1
6299333 Pastrick et al. Oct 2001 B1
6300879 Regan et al. Oct 2001 B1
6301039 Tench Oct 2001 B1
6304173 Pala et al. Oct 2001 B2
6305807 Schierbeek Oct 2001 B1
6310611 Caldwell Oct 2001 B1
6310714 Lomprey et al. Oct 2001 B1
6310738 Chu Oct 2001 B1
6313454 Bos et al. Nov 2001 B1
6314295 Kawamoto Nov 2001 B1
6315440 Satoh Nov 2001 B1
6317057 Lee Nov 2001 B1
6317180 Kuroiwa et al. Nov 2001 B1
6317248 Agrawal et al. Nov 2001 B1
6318870 Spooner et al. Nov 2001 B1
6320176 Schofield et al. Nov 2001 B1
6320282 Caldwell Nov 2001 B1
6320612 Young Nov 2001 B1
6324295 Valery et al. Nov 2001 B1
6326613 Heslin et al. Dec 2001 B1
6326900 DeLine et al. Dec 2001 B2
6329925 Skiver et al. Dec 2001 B1
6330511 Ogura et al. Dec 2001 B2
6331066 Desmond et al. Dec 2001 B1
6333759 Mazzilli Dec 2001 B1
6335680 Matsuoka Jan 2002 B1
6336737 Thau Jan 2002 B1
6340850 O'Farrell et al. Jan 2002 B2
6341523 Lynam Jan 2002 B2
6344805 Yasui et al. Feb 2002 B1
6346698 Turnbull Feb 2002 B1
6347880 Furst et al. Feb 2002 B1
6348858 Weis et al. Feb 2002 B2
6351708 Takagi et al. Feb 2002 B1
6353392 Schofield et al. Mar 2002 B1
6356206 Takenaga et al. Mar 2002 B1
6356376 Tonar et al. Mar 2002 B1
6356389 Nilsen et al. Mar 2002 B1
6357883 Strumolo et al. Mar 2002 B1
6362121 Chopin et al. Mar 2002 B1
6362548 Bingle et al. Mar 2002 B1
6363326 Scully Mar 2002 B1
6366013 Leenders et al. Apr 2002 B1
6366213 DeLine et al. Apr 2002 B2
6369701 Yoshida et al. Apr 2002 B1
6370329 Teuchert Apr 2002 B1
6371636 Wesson Apr 2002 B1
6379013 Bechtel et al. Apr 2002 B1
6379788 Choi et al. Apr 2002 B2
6382805 Miyabukuro May 2002 B1
6385139 Arikawa et al. May 2002 B1
6386742 DeLine et al. May 2002 B1
6390529 Bingle et al. May 2002 B1
6390626 Knox May 2002 B2
6390635 Whitehead et al. May 2002 B2
6396397 Bos et al. May 2002 B1
6396408 Drummond et al. May 2002 B2
6396637 Roest et al. May 2002 B2
6407468 LeVesque et al. Jun 2002 B1
6407847 Poll et al. Jun 2002 B1
6408247 Ichikawa et al. Jun 2002 B1
6411204 Bloomfield et al. Jun 2002 B1
6412959 Tseng Jul 2002 B1
6412973 Bos et al. Jul 2002 B1
6414910 Kaneko et al. Jul 2002 B1
6415230 Maruko et al. Jul 2002 B1
6416208 Pastrick et al. Jul 2002 B2
6417786 Learman et al. Jul 2002 B2
6418376 Olson Jul 2002 B1
6419300 Pavao et al. Jul 2002 B1
6420036 Varaprasad et al. Jul 2002 B1
6420800 LeVesque et al. Jul 2002 B1
6420975 DeLine et al. Jul 2002 B1
6421081 Markus Jul 2002 B1
6424272 Gutta et al. Jul 2002 B1
6424273 Gutta et al. Jul 2002 B1
6424786 Beeson et al. Jul 2002 B1
6424892 Matsuoka Jul 2002 B1
6426492 Bos et al. Jul 2002 B1
6426568 Turnbull et al. Jul 2002 B2
6427349 Blank et al. Aug 2002 B1
6428172 Hutzel et al. Aug 2002 B1
6433676 DeLine et al. Aug 2002 B2
6433680 Ho Aug 2002 B1
6433914 Lomprey et al. Aug 2002 B1
6437688 Kobayashi Aug 2002 B1
6438491 Farmer Aug 2002 B1
6439755 Fant, Jr. et al. Aug 2002 B1
6441872 Ho Aug 2002 B1
6441943 Roberts et al. Aug 2002 B1
6441963 Murakami et al. Aug 2002 B2
6441964 Chu et al. Aug 2002 B1
6445287 Schofield et al. Sep 2002 B1
6447128 Lang et al. Sep 2002 B1
6449082 Agrawal et al. Sep 2002 B1
6452533 Yamabuchi et al. Sep 2002 B1
6452572 Fan et al. Sep 2002 B1
6456438 Lee et al. Sep 2002 B1
6462795 Clarke Oct 2002 B1
6463369 Sadano et al. Oct 2002 B2
6466701 Ejiri et al. Oct 2002 B1
6471362 Carter et al. Oct 2002 B1
6472977 Pochmuller Oct 2002 B1
6472979 Schofield et al. Oct 2002 B2
6473001 Blum Oct 2002 B1
6474853 Pastrick et al. Nov 2002 B2
6476731 Miki et al. Nov 2002 B1
6476855 Yamamoto Nov 2002 B1
6477460 Kepler Nov 2002 B2
6477464 McCarthy et al. Nov 2002 B2
6483429 Yasui et al. Nov 2002 B1
6483438 DeLine et al. Nov 2002 B2
6483613 Woodgate et al. Nov 2002 B1
6487500 Lemelson et al. Nov 2002 B2
6494602 Pastrick et al. Dec 2002 B2
6498620 Schofield et al. Dec 2002 B2
6501387 Skiver et al. Dec 2002 B2
6512203 Jones et al. Jan 2003 B2
6512624 Tonar et al. Jan 2003 B2
6513252 Schierbeek Feb 2003 B1
6515378 Drummond et al. Feb 2003 B2
6515581 Ho Feb 2003 B1
6515582 Teowee et al. Feb 2003 B1
6515597 Wada et al. Feb 2003 B1
6516664 Lynam Feb 2003 B2
6518691 Baba Feb 2003 B1
6519209 Arikawa et al. Feb 2003 B1
6520667 Mousseau Feb 2003 B1
6522451 Lynam Feb 2003 B1
6522969 Kannonji Feb 2003 B2
6525707 Kaneko et al. Feb 2003 B1
6534884 Marcus et al. Mar 2003 B2
6538709 Kurihara et al. Mar 2003 B1
6539306 Turnbull Mar 2003 B2
6542085 Yang Apr 2003 B1
6542182 Chutorash Apr 2003 B1
6543163 Ginsberg Apr 2003 B1
6545598 de Villeroche Apr 2003 B1
6549253 Robbie et al. Apr 2003 B1
6549335 Trapani et al. Apr 2003 B1
6550949 Bauer et al. Apr 2003 B1
6552326 Turnbull Apr 2003 B2
6552653 Nakaho et al. Apr 2003 B2
6553308 Uhlmann et al. Apr 2003 B1
6559761 Miller et al. May 2003 B1
6559902 Kusuda et al. May 2003 B1
6560004 Theiste et al. May 2003 B2
6560027 Meine May 2003 B2
6566821 Nakatsuka et al. May 2003 B2
6567060 Sekiguchi May 2003 B1
6567708 Bechtel et al. May 2003 B1
6568839 Pastrick et al. May 2003 B1
6572233 Northman et al. Jun 2003 B1
6573957 Suzuki Jun 2003 B1
6573963 Ouderkirk et al. Jun 2003 B2
6575582 Tenmyo Jun 2003 B2
6575643 Takahashi Jun 2003 B2
6578989 Osumi et al. Jun 2003 B2
6580373 Ohashi Jun 2003 B1
6580479 Sekiguchi et al. Jun 2003 B1
6580562 Aoki et al. Jun 2003 B2
6581007 Hasegawa et al. Jun 2003 B2
6583730 Lang et al. Jun 2003 B2
6591192 Okamura et al. Jul 2003 B2
6592230 Dupay Jul 2003 B2
6593565 Heslin et al. Jul 2003 B2
6593984 Arakawa et al. Jul 2003 B2
6594065 Byker et al. Jul 2003 B2
6594067 Poll et al. Jul 2003 B2
6594090 Kruschwitz et al. Jul 2003 B2
6594583 Ogura et al. Jul 2003 B2
6594614 Studt et al. Jul 2003 B2
6595649 Hoekstra et al. Jul 2003 B2
6597489 Guarr et al. Jul 2003 B1
6606183 Ikai et al. Aug 2003 B2
6611202 Schofield et al. Aug 2003 B2
6611227 Nebiyeloul-Kifle et al. Aug 2003 B1
6611759 Brosche Aug 2003 B2
6612723 Futhey et al. Sep 2003 B2
6614387 Deadman Sep 2003 B1
6614419 May Sep 2003 B1
6614579 Roberts et al. Sep 2003 B2
6615438 Franco et al. Sep 2003 B1
6616313 Furst et al. Sep 2003 B2
6616764 Kramer et al. Sep 2003 B2
6618672 Sasaki et al. Sep 2003 B2
6621616 Bauer et al. Sep 2003 B1
6624936 Kotchick et al. Sep 2003 B2
6627918 Getz et al. Sep 2003 B2
6630888 Lang et al. Oct 2003 B2
6636190 Hirakata et al. Oct 2003 B2
6636258 Strumolo Oct 2003 B2
6638582 Uchiyama et al. Oct 2003 B1
6639360 Roberts et al. Oct 2003 B2
6642840 Lang et al. Nov 2003 B2
6642851 Deline et al. Nov 2003 B2
6646697 Sekiguchi et al. Nov 2003 B1
6648477 Hutzel et al. Nov 2003 B2
6650457 Busscher et al. Nov 2003 B2
6657607 Evanicky et al. Dec 2003 B1
6661482 Hara Dec 2003 B2
6661830 Reed et al. Dec 2003 B1
6663262 Boyd et al. Dec 2003 B2
6665592 Kodama Dec 2003 B2
6669109 Ivanov et al. Dec 2003 B2
6669285 Park et al. Dec 2003 B1
6670207 Roberts Dec 2003 B1
6670910 Delcheccolo et al. Dec 2003 B2
6670935 Yeon et al. Dec 2003 B2
6670941 Albu et al. Dec 2003 B2
6671080 Poll et al. Dec 2003 B2
6672731 Schnell et al. Jan 2004 B2
6672734 Lammers Jan 2004 B2
6672744 DeLine et al. Jan 2004 B2
6672745 Bauer et al. Jan 2004 B1
6674370 Rodewald et al. Jan 2004 B2
6675075 Engelsberg et al. Jan 2004 B1
6678083 Anstee Jan 2004 B1
6678614 McCarthy et al. Jan 2004 B2
6679608 Bechtel et al. Jan 2004 B2
6683539 Trajkovic et al. Jan 2004 B2
6683969 Nishigaki et al. Jan 2004 B1
6685348 Pastrick et al. Feb 2004 B2
6690262 Winnett Feb 2004 B1
6690268 Schofield et al. Feb 2004 B2
6690413 Moore Feb 2004 B1
6690438 Sekiguchi Feb 2004 B2
6693517 McCarthy et al. Feb 2004 B2
6693518 Kumata et al. Feb 2004 B2
6693519 Keirstead Feb 2004 B2
6693524 Payne Feb 2004 B1
6700692 Tonar et al. Mar 2004 B2
6704434 Sakoh et al. Mar 2004 B1
6709136 Pastrick et al. Mar 2004 B2
6713783 Mase et al. Mar 2004 B1
6717109 Macher et al. Apr 2004 B1
6717610 Bos et al. Apr 2004 B1
6717712 Lynam et al. Apr 2004 B2
6719215 Drouillard Apr 2004 B2
6724446 Motomura et al. Apr 2004 B2
6726337 Whitehead et al. Apr 2004 B2
6727807 Trajkovic et al. Apr 2004 B2
6727808 Uselmann et al. Apr 2004 B1
6727844 Zimmermann et al. Apr 2004 B1
6731332 Yasui et al. May 2004 B1
6734807 King May 2004 B2
6736526 Matsuba et al. May 2004 B2
6737629 Nixon et al. May 2004 B2
6737630 Turnbull May 2004 B2
6737964 Samman et al. May 2004 B2
6738088 Uskolovsky et al. May 2004 B1
6742904 Bechtel et al. Jun 2004 B2
6744353 Sjonell Jun 2004 B2
6746775 Boire et al. Jun 2004 B1
6747716 Kuroiwa et al. Jun 2004 B2
6748211 Isaac et al. Jun 2004 B1
6749308 Niendort et al. Jun 2004 B1
6755542 Bechtel et al. Jun 2004 B2
6756912 Skiver et al. Jun 2004 B2
6757039 Ma Jun 2004 B2
6757109 Bos Jun 2004 B2
D493131 Lawlor et al. Jul 2004 S
D493394 Lawlor et al. Jul 2004 S
6759113 Tang Jul 2004 B1
6759945 Richard Jul 2004 B2
6760157 Allen et al. Jul 2004 B1
6765480 Tseng Jul 2004 B2
6773116 De Vaan et al. Aug 2004 B2
6774356 Heslin et al. Aug 2004 B2
6774810 DeLine et al. Aug 2004 B2
6778904 Iwami et al. Aug 2004 B2
6779900 Nolan-Brown Aug 2004 B1
6781738 Kikuchi et al. Aug 2004 B2
6782718 Lingle et al. Aug 2004 B2
6784129 Seto et al. Aug 2004 B2
6797396 Liu et al. Sep 2004 B1
6800871 Matsuda et al. Oct 2004 B2
6801127 Mizusawa et al. Oct 2004 B2
6801244 Takeda et al. Oct 2004 B2
6801283 Koyama et al. Oct 2004 B2
6805474 Walser et al. Oct 2004 B2
6806452 Bos et al. Oct 2004 B2
6806922 Ishitaka Oct 2004 B2
6810323 Bullock et al. Oct 2004 B1
6812463 Okada Nov 2004 B2
6812907 Gennetten et al. Nov 2004 B1
6819231 Berberich et al. Nov 2004 B2
6823261 Sekiguchi Nov 2004 B2
6824281 Schofield et al. Nov 2004 B2
6831268 Bechtel et al. Dec 2004 B2
6832848 Pastrick Dec 2004 B2
6834969 Bade et al. Dec 2004 B2
6836725 Millington et al. Dec 2004 B2
6838980 Gloger et al. Jan 2005 B2
6842189 Park Jan 2005 B2
6842276 Poll et al. Jan 2005 B2
6845805 Koster Jan 2005 B1
6846098 Bourdelais et al. Jan 2005 B2
6847424 Gotoh et al. Jan 2005 B2
6847487 Burgner Jan 2005 B2
6848817 Bos et al. Feb 2005 B2
6849165 Kloppel et al. Feb 2005 B2
6853491 Ruhle et al. Feb 2005 B1
6859148 Miller et al. Feb 2005 B2
6861789 Wei Mar 2005 B2
6870655 Northman et al. Mar 2005 B1
6870656 Tonar et al. Mar 2005 B2
6871982 Holman et al. Mar 2005 B2
6877888 DeLine et al. Apr 2005 B2
6882287 Schofield Apr 2005 B2
6889064 Baratono et al. May 2005 B2
6891563 Schofield et al. May 2005 B2
6891677 Nilsen et al. May 2005 B2
6898518 Padmanabhan May 2005 B2
6902284 Hutzel et al. Jun 2005 B2
6904348 Drummond et al. Jun 2005 B2
6906620 Nakai et al. Jun 2005 B2
6906632 DeLine et al. Jun 2005 B2
6909486 Wang et al. Jun 2005 B2
6910779 Abel et al. Jun 2005 B2
6912001 Okamoto et al. Jun 2005 B2
6912396 Sziraki et al. Jun 2005 B2
6914521 Rothkop Jul 2005 B2
6916099 Su et al. Jul 2005 B2
6917404 Baek Jul 2005 B2
6918674 Drummond et al. Jul 2005 B2
6922902 Schierbeek et al. Aug 2005 B2
6923080 Dobler et al. Aug 2005 B1
6928180 Stam et al. Aug 2005 B2
6928366 Ockerse et al. Aug 2005 B2
6930737 Weindorf et al. Aug 2005 B2
6933837 Gunderson et al. Aug 2005 B2
6934067 Ash et al. Aug 2005 B2
6940423 Takagi et al. Sep 2005 B2
6946978 Schofield Sep 2005 B2
6947576 Stam et al. Sep 2005 B2
6947577 Stam et al. Sep 2005 B2
6949772 Shimizu et al. Sep 2005 B2
6950035 Tanaka et al. Sep 2005 B2
6951410 Parsons Oct 2005 B2
6951681 Hartley et al. Oct 2005 B2
6952312 Weber et al. Oct 2005 B2
6958495 Nishijima et al. Oct 2005 B2
6958683 Mills et al. Oct 2005 B2
6959994 Fujikawa et al. Nov 2005 B2
6961178 Sugino et al. Nov 2005 B2
6961661 Sekiguchi Nov 2005 B2
6963438 Busscher et al. Nov 2005 B2
6968273 Ockerse et al. Nov 2005 B2
6971181 Ohm et al. Dec 2005 B2
6972888 Poll et al. Dec 2005 B2
6974236 Tenmyo Dec 2005 B2
6975215 Schofield et al. Dec 2005 B2
6977702 Wu Dec 2005 B2
6980092 Turnbull et al. Dec 2005 B2
6985291 Watson et al. Jan 2006 B2
6989736 Berberich et al. Jan 2006 B2
6992573 Blank et al. Jan 2006 B2
6992718 Takahara Jan 2006 B1
6992826 Wang Jan 2006 B2
6995687 Lang et al. Feb 2006 B2
6997571 Tenmyo Feb 2006 B2
7001058 Inditsky Feb 2006 B2
7004592 Varaprasad et al. Feb 2006 B2
7004593 Weller et al. Feb 2006 B2
7005974 McMahon et al. Feb 2006 B2
7006173 Hiyama et al. Feb 2006 B1
7008090 Blank Mar 2006 B2
7009751 Tonar et al. Mar 2006 B2
7012543 DeLine et al. Mar 2006 B2
7012727 Hutzel et al. Mar 2006 B2
7023331 Kodama Apr 2006 B2
7029156 Suehiro et al. Apr 2006 B2
7030738 Ishii Apr 2006 B2
7030775 Sekiguchi Apr 2006 B2
7038577 Pawlicki et al. May 2006 B2
7041965 Heslin et al. May 2006 B2
7042616 Tonar et al. May 2006 B2
7046418 Lin et al. May 2006 B2
7046448 Burgner May 2006 B2
7050908 Schwartz et al. May 2006 B1
7057505 Iwamoto Jun 2006 B2
7057681 Hinata et al. Jun 2006 B2
7063893 Hoffman Jun 2006 B2
7064882 Tonar et al. Jun 2006 B2
7068289 Satoh et al. Jun 2006 B2
7074486 Boire et al. Jul 2006 B2
7081810 Henderson et al. Jul 2006 B2
7085633 Nishira et al. Aug 2006 B2
7092052 Okamoto et al. Aug 2006 B2
7095432 Nakayama et al. Aug 2006 B2
7095567 Troxell et al. Aug 2006 B2
7106213 White Sep 2006 B2
7106392 You Sep 2006 B2
7108409 DeLine et al. Sep 2006 B2
7110021 Nobori et al. Sep 2006 B2
7114554 Bergman et al. Oct 2006 B2
7121028 Shoen et al. Oct 2006 B2
7125131 Olczak Oct 2006 B2
7130727 Liu et al. Oct 2006 B2
7132064 Li et al. Nov 2006 B2
7136091 Ichikawa et al. Nov 2006 B2
7138974 Hirakata et al. Nov 2006 B2
7149613 Stam et al. Dec 2006 B2
7150552 Weidel Dec 2006 B2
7151515 Kim et al. Dec 2006 B2
7151997 Uhlmann et al. Dec 2006 B2
7153588 McMan et al. Dec 2006 B2
7154657 Poll et al. Dec 2006 B2
7158881 McCarthy et al. Jan 2007 B2
7160017 Lee et al. Jan 2007 B2
7161567 Homma et al. Jan 2007 B2
7167796 Taylor et al. Jan 2007 B2
7168830 Pastrick et al. Jan 2007 B2
7175291 Li Feb 2007 B1
7176790 Yamazaki Feb 2007 B2
7184190 McCabe et al. Feb 2007 B2
7185995 Hatanaka et al. Mar 2007 B2
7187498 Bengoechea et al. Mar 2007 B2
7188963 Schofield et al. Mar 2007 B2
7193764 Lin et al. Mar 2007 B2
7195381 Lynam et al. Mar 2007 B2
7199767 Spero Apr 2007 B2
7202987 Varaprasad et al. Apr 2007 B2
7206697 Olney et al. Apr 2007 B2
7209277 Tonar et al. Apr 2007 B2
7215238 Buck et al. May 2007 B2
7215473 Fleming May 2007 B2
7221363 Roberts et al. May 2007 B2
7221365 Levesque et al. May 2007 B1
7224324 Quist et al. May 2007 B2
7227472 Roe Jun 2007 B1
7230523 Harter, Jr. et al. Jun 2007 B2
7232231 Shih Jun 2007 B2
7232594 Miroshin et al. Jun 2007 B2
7233304 Aratani et al. Jun 2007 B1
7235918 McCullough et al. Jun 2007 B2
7241030 Mok et al. Jul 2007 B2
7241037 Mathieu et al. Jul 2007 B2
7245207 Dayan et al. Jul 2007 B1
7245231 Kiefer et al. Jul 2007 B2
7245336 Hiyarna et al. Jul 2007 B2
7248283 Takagi et al. Jul 2007 B2
7248305 Ootsuta et al. Jul 2007 B2
7249860 Kulas et al. Jul 2007 B2
7251079 Capaldo et al. Jul 2007 B2
7253723 Lindahl et al. Aug 2007 B2
7255451 McCabe et al. Aug 2007 B2
7255465 DeLine et al. Aug 2007 B2
7259036 Borland et al. Aug 2007 B2
7262406 Heslin et al. Aug 2007 B2
7262916 Kao et al. Aug 2007 B2
7265342 Heslin et al. Sep 2007 B2
7268841 Kasajima et al. Sep 2007 B2
7269327 Tang Sep 2007 B2
7269328 Tang Sep 2007 B2
7271951 Weber et al. Sep 2007 B2
7274501 McCabe et al. Sep 2007 B2
7281491 Iwamaru Oct 2007 B2
7286280 Whitehead et al. Oct 2007 B2
7287868 Carter et al. Oct 2007 B2
7289037 Uken et al. Oct 2007 B2
7290919 Pan et al. Nov 2007 B2
7292208 Park et al. Nov 2007 B1
7300183 Kiyomoto et al. Nov 2007 B2
7302344 Olney et al. Nov 2007 B2
7304661 Ishikura Dec 2007 B2
7308341 Schofield et al. Dec 2007 B2
7310177 McCabe et al. Dec 2007 B2
7311428 DeLine et al. Dec 2007 B2
7316485 Roose Jan 2008 B2
7317386 Lengning et al. Jan 2008 B2
7318664 Hatanaka et al. Jan 2008 B2
7323819 Hong et al. Jan 2008 B2
7324043 Purden et al. Jan 2008 B2
7324172 Yamazaki Jan 2008 B2
7324174 Hafuka et al. Jan 2008 B2
7324261 Tonar et al. Jan 2008 B2
7327225 Nicholas et al. Feb 2008 B2
7327226 Turnbull et al. Feb 2008 B2
7327855 Chen Feb 2008 B1
7328103 McCarthy et al. Feb 2008 B2
7329013 Blank et al. Feb 2008 B2
7329850 Drummond et al. Feb 2008 B2
7331415 Hawes et al. Feb 2008 B2
7338177 Lynam Mar 2008 B2
7342707 Roberts et al. Mar 2008 B2
7344284 Lynam et al. Mar 2008 B2
7349143 Tonar et al. Mar 2008 B2
7349144 Varaprasad et al. Mar 2008 B2
7349582 Takeda et al. Mar 2008 B2
7355524 Schofield Apr 2008 B2
7360932 Uken et al. Apr 2008 B2
7362505 Hikmet et al. Apr 2008 B2
7368714 Remillard et al. May 2008 B2
7370983 DeWind et al. May 2008 B2
7372611 Tonar et al. May 2008 B2
7375895 Brynielsson May 2008 B2
7379224 Tonar et al. May 2008 B2
7379225 Tonar et al. May 2008 B2
7379243 Horsten et al. May 2008 B2
7379814 Ockerse et al. May 2008 B2
7379817 Tyson et al. May 2008 B1
7380633 Shen et al. Jun 2008 B2
7389171 Rupp Jun 2008 B2
7391563 McCabe et al. Jun 2008 B2
7396147 Munro Jul 2008 B2
7411637 Weiss Aug 2008 B2
7411732 Kao et al. Aug 2008 B2
7412328 Uhlmann et al. Aug 2008 B2
7417781 Tonar et al. Aug 2008 B2
7420159 Heslin et al. Sep 2008 B2
7420756 Lynam Sep 2008 B2
7429998 Kawauchi et al. Sep 2008 B2
7446462 Lim et al. Nov 2008 B2
7446650 Scholfield et al. Nov 2008 B2
7446924 Schofield et al. Nov 2008 B2
7448776 Tang Nov 2008 B2
7452090 Weller et al. Nov 2008 B2
7453057 Drummond et al. Nov 2008 B2
7455412 Rottcher Nov 2008 B2
7460007 Schofield et al. Dec 2008 B2
7467883 DeLine et al. Dec 2008 B2
7468651 DeLine et al. Dec 2008 B2
7471438 McCabe et al. Dec 2008 B2
7474963 Taylor et al. Jan 2009 B2
7477439 Tonar et al. Jan 2009 B2
7480149 DeWard et al. Jan 2009 B2
7488080 Skiver et al. Feb 2009 B2
7488099 Fogg et al. Feb 2009 B2
7489374 Utsumi et al. Feb 2009 B2
7490007 Taylor et al. Feb 2009 B2
7490943 Kikuchi et al. Feb 2009 B2
7490944 Blank et al. Feb 2009 B2
7494231 Varaprasad et al. Feb 2009 B2
7495719 Adachi et al. Feb 2009 B2
7496439 McCormick Feb 2009 B2
7502156 Tonar et al. Mar 2009 B2
7505047 Yoshimura Mar 2009 B2
7505188 Niiyama et al. Mar 2009 B2
7511607 Hubbard et al. Mar 2009 B2
7511872 Tonar et al. Mar 2009 B2
7525604 Xue Apr 2009 B2
7525715 McCabe et al. Apr 2009 B2
7526103 Schofield et al. Apr 2009 B2
7533998 Schofield et al. May 2009 B2
7538316 Heslin et al. May 2009 B2
7540620 Weller et al. Jun 2009 B2
7541570 Drummond et al. Jun 2009 B2
7542193 McCabe et al. Jun 2009 B2
7543946 Ockerse et al. Jun 2009 B2
7543947 Varaprasad et al. Jun 2009 B2
7545429 Travis Jun 2009 B2
7547467 Olson et al. Jun 2009 B2
7548291 Lee et al. Jun 2009 B2
7551354 Horsten et al. Jun 2009 B2
7561181 Schofield et al. Jul 2009 B2
7562985 Cortenraad et al. Jul 2009 B2
7567291 Bechtel et al. Jul 2009 B2
7571038 Butler et al. Aug 2009 B2
7571042 Taylor et al. Aug 2009 B2
7572017 Varaprasad et al. Aug 2009 B2
7572490 Park et al. Aug 2009 B2
7579939 Schofield et al. Aug 2009 B2
7579940 Schofield et al. Aug 2009 B2
7580795 McCarthy et al. Aug 2009 B2
7581859 Lynam Sep 2009 B2
7581867 Lee et al. Sep 2009 B2
7583184 Schofield et al. Sep 2009 B2
7586566 Nelson et al. Sep 2009 B2
7586666 McCabe et al. Sep 2009 B2
7589883 Varaprasad et al. Sep 2009 B2
7589893 Rottcher Sep 2009 B2
7600878 Blank et al. Oct 2009 B2
7605883 Yamaki et al. Oct 2009 B2
7619508 Lynam et al. Nov 2009 B2
7623202 Araki et al. Nov 2009 B2
7626749 Baur et al. Dec 2009 B2
7629996 Rademacher et al. Dec 2009 B2
7633567 Yamada et al. Dec 2009 B2
7636188 Baur et al. Dec 2009 B2
7636195 Nieuwkerk et al. Dec 2009 B2
7636930 Chang Dec 2009 B2
7643200 Varaprasad et al. Jan 2010 B2
7643927 Hils Jan 2010 B2
7651228 Skiver et al. Jan 2010 B2
7658521 DeLine et al. Feb 2010 B2
7663798 Tonar et al. Feb 2010 B2
7667579 DeLine et al. Feb 2010 B2
7670016 Weller et al. Mar 2010 B2
7688495 Tonar et al. Mar 2010 B2
7695174 Takayanagi et al. Apr 2010 B2
7696964 Lankhorst et al. Apr 2010 B2
7706046 Bauer et al. Apr 2010 B2
7710631 McCabe et al. May 2010 B2
7711479 Taylor et al. May 2010 B2
7724434 Cross et al. May 2010 B2
7726822 Blank et al. Jun 2010 B2
7728276 Drummond et al. Jun 2010 B2
7728721 Schofield et al. Jun 2010 B2
7728927 Nieuwkerk et al. Jun 2010 B2
7731403 Lynam et al. Jun 2010 B2
7734392 Schofield et al. Jun 2010 B2
7742864 Sekiguchi Jun 2010 B2
7746534 Tonar et al. Jun 2010 B2
7771061 Varaprasad et al. Aug 2010 B2
7787077 Kondoh et al. Aug 2010 B2
7791694 Molsen et al. Sep 2010 B2
7795675 Darwish et al. Sep 2010 B2
7815326 Blank et al. Oct 2010 B2
7821697 Varaprasad et al. Oct 2010 B2
7822543 Taylor et al. Oct 2010 B2
7826123 McCabe et al. Nov 2010 B2
7830583 Neuman et al. Nov 2010 B2
7832882 Weller et al. Nov 2010 B2
7842154 Lynam Nov 2010 B2
7854514 Conner et al. Dec 2010 B2
7855755 Weller et al. Dec 2010 B2
7859565 Schofield et al. Dec 2010 B2
7859737 McCabe et al. Dec 2010 B2
7864398 Dozeman et al. Jan 2011 B2
7864399 McCabe et al. Jan 2011 B2
7871169 Varaprasad et al. Jan 2011 B2
7873593 Schofield et al. Jan 2011 B2
7888629 Heslin et al. Feb 2011 B2
7898398 DeLine et al. Mar 2011 B2
7898719 Schofield et al. Mar 2011 B2
7903324 Kobayashi et al. Mar 2011 B2
7903335 Nieuwkerk et al. Mar 2011 B2
7906756 Drummond et al. Mar 2011 B2
7911547 Brott et al. Mar 2011 B2
7914188 DeLine et al. Mar 2011 B2
7916009 Schofield et al. Mar 2011 B2
7916380 Tonar et al. Mar 2011 B2
7918570 Weller et al. Apr 2011 B2
7926960 Skiver et al. Apr 2011 B2
7937667 Kramer et al. May 2011 B2
7965336 Bingle et al. Jun 2011 B2
7965357 Van De Witte et al. Jun 2011 B2
7980711 Takayanagi et al. Jul 2011 B2
7994471 Heslin et al. Aug 2011 B2
8000894 Taylor et al. Aug 2011 B2
8004768 Takayanagi et al. Aug 2011 B2
8019505 Schofield et al. Sep 2011 B2
8027691 Bernas et al. Sep 2011 B2
8031225 Watanabe et al. Oct 2011 B2
8040376 Yamada et al. Oct 2011 B2
8044776 Schofield et al. Oct 2011 B2
8047667 Weller et al. Nov 2011 B2
8049640 Uken et al. Nov 2011 B2
8063753 DeLine et al. Nov 2011 B2
8072318 Lynam et al. Dec 2011 B2
8083386 Lynam Dec 2011 B2
8094002 Schofield et al. Jan 2012 B2
8095260 Schofield et al. Jan 2012 B1
8095310 Taylor et al. Jan 2012 B2
8100568 DeLine et al. Jan 2012 B2
8106347 Drummond et al. Jan 2012 B2
8121787 Taylor et al. Feb 2012 B2
8134117 Heslin et al. Mar 2012 B2
8144033 Chinomi et al. Mar 2012 B2
8154418 Peterson et al. Apr 2012 B2
8162493 Skiver et al. Apr 2012 B2
8164817 Varaprasad et al. Apr 2012 B2
8169307 Nakamura et al. May 2012 B2
8177376 Weller et al. May 2012 B2
8179236 Weller et al. May 2012 B2
8179437 Schofield et al. May 2012 B2
8179586 Schofield et al. May 2012 B2
8194132 Dayan et al. Jun 2012 B2
8194133 DeWind et al. Jun 2012 B2
8217887 Sangam et al. Jul 2012 B2
8228588 McCabe et al. Jul 2012 B2
8237909 Ostreko et al. Aug 2012 B2
8282224 Anderson et al. Oct 2012 B2
8294975 Varaprasad et al. Oct 2012 B2
8304711 Drummond et al. Nov 2012 B2
8308325 Takayanagi et al. Nov 2012 B2
8309907 Heslin et al. Nov 2012 B2
8335032 McCabe et al. Dec 2012 B2
8339526 Minikey, Jr. et al. Dec 2012 B2
8358262 Degwekar et al. Jan 2013 B2
8797627 McCabe et al. Aug 2014 B2
9073491 McCabe et al. Jul 2015 B2
9545883 McCabe et al. Jan 2017 B2
10029616 McCabe et al. Jul 2018 B2
10363875 McCabe Jul 2019 B2
20010026316 Senatore Oct 2001 A1
20010035853 Hoelen et al. Nov 2001 A1
20010055165 McCarthy Dec 2001 A1
20020049535 Rigo et al. Apr 2002 A1
20020085155 Arikawa Jul 2002 A1
20020092958 Lusk Jul 2002 A1
20020118321 Ge Aug 2002 A1
20020133144 Chan et al. Sep 2002 A1
20020149727 Wang Oct 2002 A1
20020154007 Yang Oct 2002 A1
20030002165 Mathias et al. Jan 2003 A1
20030007261 Hutzel et al. Jan 2003 A1
20030030724 Okamoto Feb 2003 A1
20030069690 Correia et al. Apr 2003 A1
20030090568 Pico May 2003 A1
20030090569 Poechmueller May 2003 A1
20030098908 Misaiji et al. May 2003 A1
20030103142 Hitomi et al. Jun 2003 A1
20030122929 Minaudo et al. Jul 2003 A1
20030133014 Mendoza Jul 2003 A1
20030137586 Lewellen Jul 2003 A1
20030156193 Nakamura Aug 2003 A1
20030169158 Paul Sep 2003 A1
20030179293 Oizumi Sep 2003 A1
20030202096 Kim Oct 2003 A1
20030206256 Drain et al. Nov 2003 A1
20030214576 Koga Nov 2003 A1
20030214584 Ross Nov 2003 A1
20030227546 Hilborn et al. Dec 2003 A1
20040004541 Hong Jan 2004 A1
20040027695 Lin Feb 2004 A1
20040036768 Green Feb 2004 A1
20040080404 White Apr 2004 A1
20040239243 Roberts et al. Dec 2004 A1
20040239849 Wang Dec 2004 A1
20050018738 Duan et al. Jan 2005 A1
20050024591 Lian et al. Feb 2005 A1
20050117095 Ma Jun 2005 A1
20050168995 Kittelmann et al. Aug 2005 A1
20050237440 Sugimura et al. Oct 2005 A1
20050270766 Kung et al. Dec 2005 A1
20060050018 Hutzel et al. Mar 2006 A1
20060061008 Karner et al. Mar 2006 A1
20060076860 Hoss Apr 2006 A1
20060139953 Chou et al. Jun 2006 A1
20060187378 Bong et al. Aug 2006 A1
20060279522 Kurihara Dec 2006 A1
20070064108 Haler Mar 2007 A1
20070080585 Lyu Apr 2007 A1
20070086097 Motomiya et al. Apr 2007 A1
20070183037 De Boer et al. Aug 2007 A1
20070262732 Shen Nov 2007 A1
20080042938 Cok Feb 2008 A1
20090002491 Haler Jan 2009 A1
20090052003 Schofield et al. Feb 2009 A1
20090096937 Bauer et al. Apr 2009 A1
20090201137 Weller et al. Aug 2009 A1
20090258221 Diehl et al. Oct 2009 A1
20090262192 Schofield et al. Oct 2009 A1
20090296190 Anderson et al. Dec 2009 A1
20090303566 Tonar Dec 2009 A1
20100045899 Ockerse Feb 2010 A1
20100245701 Sato et al. Sep 2010 A1
20100246017 Tonar et al. Sep 2010 A1
20100277786 Anderson et al. Nov 2010 A1
20100289995 Hwang et al. Nov 2010 A1
20110128137 Varaprasad et al. Jun 2011 A1
20110166779 McCarthy et al. Jul 2011 A1
20110166785 McCarthy et al. Jul 2011 A1
20120050068 DeLine et al. Mar 2012 A1
20120062744 Schofield et al. Mar 2012 A1
20120086808 Lynam et al. Apr 2012 A1
20120182141 Peterson et al. Jul 2012 A1
20120203550 Skiver et al. Aug 2012 A1
20120206790 Varaprasad et al. Aug 2012 A1
20120224066 Weller et al. Sep 2012 A1
20120224248 Schofield et al. Sep 2012 A1
20120236152 De Wind et al. Sep 2012 A1
20120281268 McCabe et al. Nov 2012 A1
Foreign Referenced Citations (176)
Number Date Country
A-4031795 Feb 1995 AU
1189224 Jul 1998 CN
941408 Apr 1956 DE
944531 Jul 1956 DE
7323996 Nov 1973 DE
2808260 Aug 1979 DE
3248511 Jul 1984 DE
3301945 Jul 1984 DE
3614882 Nov 1987 DE
3720848 Jan 1989 DE
9306989.8 Jul 1993 DE
4329983 Mar 1995 DE
4444443 Jun 1996 DE
29703084 Apr 1997 DE
29805142 May 1998 DE
19741896 Apr 1999 DE
29902344 May 1999 DE
19755008 Jul 1999 DE
19934999 Feb 2001 DE
19943355 Mar 2001 DE
20118868 Mar 2002 DE
10131459 Jan 2003 DE
102005000650 Jul 2006 DE
109784 May 1984 EP
0299509 Jan 1989 EP
0513476 Nov 1992 EP
0524766 Jan 1993 EP
0728618 Aug 1996 EP
0729864 Sep 1996 EP
0825477 Feb 1998 EP
0830985 Mar 1998 EP
0899157 Mar 1999 EP
0928723 Jul 1999 EP
937601 Aug 1999 EP
1075986 Feb 2001 EP
1152285 Nov 2001 EP
1193773 Apr 2002 EP
1256833 Nov 2002 EP
1315639 Jun 2003 EP
1021987 Feb 1953 FR
1461419 Feb 1966 FR
2585991 Feb 1987 FR
2672857 Aug 1992 FR
2673499 Sep 1992 FR
2759045 Aug 1998 FR
810010 Mar 1959 GB
934037 Aug 1963 GB
1008411 Oct 1965 GB
1136134 Dec 1968 GB
1553376 Sep 1979 GB
2137573 Oct 1984 GB
2161440 Jan 1986 GB
2192370 Jan 1988 GB
2222991 Mar 1990 GB
2255539 Nov 1992 GB
2351055 Dec 2000 GB
2362494 Nov 2001 GB
52-146988 Nov 1977 JP
55039843 Mar 1980 JP
57-102602 Jun 1982 JP
57208530 Dec 1982 JP
58-020954 Feb 1983 JP
58-030729 Feb 1983 JP
58110334 Jun 1983 JP
58-180347 Oct 1983 JP
58209635 Dec 1983 JP
59114139 Jul 1984 JP
6080953 May 1985 JP
60212730 Oct 1985 JP
60261275 Nov 1985 JP
61-127186 Jun 1986 JP
61-260217 Nov 1986 JP
62043543 Feb 1987 JP
62-075619 Apr 1987 JP
62-131232 Jun 1987 JP
62122487 Jun 1987 JP
63-02753 Jan 1988 JP
63-085525 Apr 1988 JP
63-106730 May 1988 JP
63-106731 May 1988 JP
63-274286 Nov 1988 JP
6414700 Jan 1989 JP
01-130578 May 1989 JP
01123587 May 1989 JP
02-122844 Oct 1990 JP
03-28947 Mar 1991 JP
03-028947 Mar 1991 JP
03-052097 Mar 1991 JP
30-061192 Mar 1991 JP
03-110855 May 1991 JP
03-198026 Aug 1991 JP
03-243914 Oct 1991 JP
04114587 Apr 1992 JP
04245886 Sep 1992 JP
50000638 Jan 1993 JP
05-080716 Apr 1993 JP
05-183194 Jul 1993 JP
05-213113 Aug 1993 JP
05-257142 Oct 1993 JP
6227318 Aug 1994 JP
06-318734 Nov 1994 JP
07-146467 Jun 1995 JP
07-175035 Jul 1995 JP
07-191311 Jul 1995 JP
07-266928 Oct 1995 JP
07-267002 Oct 1995 JP
07-277072 Oct 1995 JP
07-281150 Oct 1995 JP
07-281185 Oct 1995 JP
08-008083 Jan 1996 JP
08-083581 Mar 1996 JP
08-216789 Aug 1996 JP
08-227769 Sep 1996 JP
09-033886 Feb 1997 JP
09-260074 Mar 1997 JP
05-077657 Jul 1997 JP
09-220976 Aug 1997 JP
09-230827 Sep 1997 JP
09-266078 Oct 1997 JP
09-288262 Nov 1997 JP
10-076880 Mar 1998 JP
10-190960 Jul 1998 JP
10-199480 Jul 1998 JP
10-206643 Aug 1998 JP
10-221692 Aug 1998 JP
10-239659 Sep 1998 JP
10-276298 Oct 1998 JP
11-038381 Feb 1999 JP
11-067485 Mar 1999 JP
11-078693 Mar 1999 JP
11-109337 Apr 1999 JP
11-160539 Jun 1999 JP
11-212073 Aug 1999 JP
11-283759 Oct 1999 JP
11-298058 Oct 1999 JP
11-305197 Nov 1999 JP
2000-131681 May 2000 JP
2000-153736 Jun 2000 JP
2000-159014 Jun 2000 JP
2000-255321 Sep 2000 JP
2000-330107 Nov 2000 JP
2001-083509 Mar 2001 JP
2001-097116 Apr 2001 JP
2001-222005 Aug 2001 JP
2002-072901 Mar 2002 JP
2002-122860 Apr 2002 JP
2002120649 Apr 2002 JP
2002-162626 Jun 2002 JP
2002-352611 Dec 2002 JP
2003-182454 Jul 2003 JP
2003-267129 Sep 2003 JP
2004-182156 Jul 2004 JP
2005-148119 Jun 2005 JP
2005-280526 Oct 2005 JP
2005-327600 Nov 2005 JP
38-46073 Nov 2006 JP
2008-083657 Apr 2008 JP
57-30639 Jun 2015 JP
61-07035 Apr 2017 JP
20060038856 May 2006 KR
100663930 Jan 2007 KR
1982002448 Jul 1982 WO
1986006179 Oct 1986 WO
1994019212 Sep 1994 WO
1996021581 Jul 1996 WO
1998014974 Apr 1998 WO
1998038547 Sep 1998 WO
1999015360 Apr 1999 WO
2000023826 Apr 2000 WO
2000052661 Sep 2000 WO
2000055685 Sep 2000 WO
2001001192 Jan 2001 WO
2002018174 Mar 2002 WO
2002049881 Jun 2002 WO
2003021343 Mar 2003 WO
2003078941 Sep 2003 WO
Non-Patent Literature Citations (7)
Entry
Stewart, James W.; HP SnapLED: LED Assemblies for Automotive Signal Applications; Nov. 1, 1998; Hewlett-Packard Journal; vol. 50, No. 1, www.hpl.hp.com/hpjournal/98nov/nov98al.pdf.
Edgar, Julian; Goodbye 12 Volts . . . Hello 42 Volts!; Oct. 5, 1999; Autospeed 50; Issue 50; www.autospeed.co.nz/cms/A_0319/article.html.
Kobe, Gerry; 42 Volts Goes Underhood; Mar. 2000; Automotive Industries; Cahners Publishing Company; www.findarticles.com/p/articles/mi_m3012/is_3_180/ai_61361677.
Jewett, Dale; Aug. 2000; Automotive Industries; Cahners Publising Company; www.findarticles.com/p/articles/mi_m3012/is_8_180ai_64341779.
National Semiconductor, LM78S40, Universal Switching Regulator Subsystem, National Semiconductor Corporation, Apr. 1996, p. 6.
Dana H. Ballard and Christopher M. Brown, Computer Vision, Prentice-Hall, Englewood Cliffs, New Jersey, 5 pages, 1982.
G. Wang, D. Renshaw, P.B. Denyer and M. Lu, CMOS Video Cameras, article, 1991, 4 pages, University of Edinburgh, UK.
Related Publications (1)
Number Date Country
20190351828 A1 Nov 2019 US
Provisional Applications (5)
Number Date Country
60490111 Jul 2003 US
60423903 Nov 2002 US
60412275 Sep 2002 US
60424116 Nov 2002 US
60489816 Jul 2003 US
Continuations (11)
Number Date Country
Parent 16042053 Jul 2018 US
Child 16524290 US
Parent 15406859 Jan 2017 US
Child 16042053 US
Parent 14791947 Jul 2015 US
Child 15406859 US
Parent 14450315 Aug 2014 US
Child 14791947 US
Parent 13716766 Dec 2012 US
Child 14450315 US
Parent 12979492 Dec 2010 US
Child 13716766 US
Parent 12727691 Mar 2010 US
Child 12979492 US
Parent 12429620 Apr 2009 US
Child 12727691 US
Parent 11956893 Dec 2007 US
Child 12429620 US
Parent 11709625 Feb 2007 US
Child 11956893 US
Parent 10533762 US
Child 11709625 US
Continuation in Parts (1)
Number Date Country
Parent 10528269 US
Child 10533762 US